JPH0328689B2 - - Google Patents

Info

Publication number
JPH0328689B2
JPH0328689B2 JP2361582A JP2361582A JPH0328689B2 JP H0328689 B2 JPH0328689 B2 JP H0328689B2 JP 2361582 A JP2361582 A JP 2361582A JP 2361582 A JP2361582 A JP 2361582A JP H0328689 B2 JPH0328689 B2 JP H0328689B2
Authority
JP
Japan
Prior art keywords
focus
focus state
lens
images
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2361582A
Other languages
Japanese (ja)
Other versions
JPS58142306A (en
Inventor
Kenji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2361582A priority Critical patent/JPS58142306A/en
Priority to US06/464,578 priority patent/US4559446A/en
Priority to DE3305676A priority patent/DE3305676C2/en
Publication of JPS58142306A publication Critical patent/JPS58142306A/en
Publication of JPH0328689B2 publication Critical patent/JPH0328689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Focusing (AREA)

Description

【発明の詳細な説明】 本発明は、カメラ等の光学機器に用いられる焦
点検出方法の処号処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a processing method for a focus detection method used in an optical device such as a camera.

従来カメラの焦点検出装置の1つの方法とし
て、撮影レンズの瞳を分割して形成した2像のず
れを観測し、合焦状態を判別するものが知られて
いる。例えば、カメラの撮影レンズ予定結像面に
フライアイレンズ群を配置し、撮影レンズのデフ
オーカス量に対応してずれた2像を発生させる装
置が米国特許第4185191号公報に開示されている。
また、並設した2個の二次結像系により前記予定
結像画に形成された空中像を固体イメージセンサ
面に導き、それぞれの像の相対的な位置ずれを検
知する所謂二次結像方式が特開昭55−118019号公
報、同55−155331号公報等に開示されている。後
者の二次結像方式は、全長が稍々大きくなるのも
のの、特殊光学系を必要としない利点がある。
2. Description of the Related Art As one method of a focus detection device for a conventional camera, a method is known in which the pupil of a photographing lens is divided and the shift of two images formed is observed to determine the in-focus state. For example, US Pat. No. 4,185,191 discloses a device in which a fly-eye lens group is arranged on the intended image formation plane of a camera lens and generates two images shifted in accordance with the amount of defocus of the camera lens.
In addition, so-called secondary imaging is performed in which the aerial image formed in the planned image is guided to the solid-state image sensor surface by two secondary imaging systems arranged in parallel, and the relative positional shift of each image is detected. The method is disclosed in Japanese Patent Application Laid-open No. 55-118019, Japanese Patent Application Laid-open No. 55-155331, etc. The latter secondary imaging method has the advantage that it does not require a special optical system, although the overall length becomes slightly larger.

この二次結像方式の焦点検出装置の原理を第1
図を用い簡単に説明すると、焦点検出をする撮影
レンズ1と光軸を同じくしてフイールドレンズ2
が配置され、これらの後方に2個の二次結像レン
ズ3a,3bが並列され、更にその後方にそれぞ
れ受光用センサアレイ4a,4bが配置されてい
る。なお、5a,5bは二次結像レンズの近傍に
設けられた絞りである。フイールドレンズ2は撮
影レンズ1の射出瞳を2個の二次結像レンズ3
a,3bの瞳面に略々結像している。この結果、
二次結像レンズ3a,3bのそれぞれに入射する
光線束は、撮影レンズ1の射出瞳面上に於いて各
二次結像レンズ3a,3bに対応する、互いに重
なり合うことのない等面積の領域から射出された
ものとなる。フイールドレンズ2の近傍に形成さ
れた空中像が二次結像レンズ3a,3bによりセ
ンサアレイ4a,4bの面上に再結像されると、
前記空中像が形成された光軸方向の位置の相違に
基づき、再結像された2像はその位置を変えるこ
とになる。第2図はこの現像が起る様子を示して
おり、第2図aの合焦状態を中心として、第2図
b,cのように後ピント、前ピントのそれぞれで
センサアレイ4a,4bの面上に形成された2像
はセンサアレイ4a,4b面上を逆方向に移動す
る。この像強度分布を光電変換し電気的処理回路
を用いて、前記2像の相対的位置ずれを検出すれ
ば合焦状態の判別を行なうことができる。
The principle of this secondary imaging type focus detection device is explained first.
To explain briefly using a diagram, the field lens 2 has the same optical axis as the photographic lens 1 that performs focus detection.
are arranged, two secondary imaging lenses 3a and 3b are arranged in parallel behind these lenses, and light receiving sensor arrays 4a and 4b are arranged further behind them, respectively. Note that 5a and 5b are apertures provided near the secondary imaging lens. The field lens 2 connects the exit pupil of the photographing lens 1 with two secondary imaging lenses 3.
The images are approximately formed on the pupil planes a and 3b. As a result,
The light beams incident on each of the secondary imaging lenses 3a and 3b are distributed over areas of equal area that do not overlap with each other and correspond to the respective secondary imaging lenses 3a and 3b on the exit pupil plane of the photographing lens 1. It will be ejected from. When the aerial image formed near the field lens 2 is re-imaged onto the surfaces of the sensor arrays 4a and 4b by the secondary imaging lenses 3a and 3b,
Based on the difference in the positions in the optical axis direction where the aerial images were formed, the two re-formed images change their positions. FIG. 2 shows how this development occurs, with the sensor arrays 4a and 4b centered on the in-focus state shown in FIG. The two images formed on the surface move in opposite directions on the sensor array 4a, 4b surface. The in-focus state can be determined by photoelectrically converting this image intensity distribution and detecting a relative positional shift between the two images using an electrical processing circuit.

光電変換された信号の処理方法としては、例え
ば特開昭54−87222号公報、米国特許第4250376号
公報後が知られている。2個の二次像を光電変換
した受光信号をそれぞれa(i)、b(i)、(但し、i
=1〜N)とするとき、前記公知例では適当な定
数kに対し、 V=N-Ki=1 |a(i)−b(i+k)|−N-Ki=1 |a(i+k)−b(i)| …(1) をアナログ演算回路により、或いはデジタル的に
計算し、このVの値の正負により撮影レンズ1の
繰り出し方向を決定する。この場合は通常kの値
はk=1に選択される。第3図に於いて特然A及
びBは光電変換されるべき2像の相対的に位置変
化した光強度分布を示している。ここで41と4
1′,42と42′等々の点の組はセンサアレイ4
a,4bの対応する素子対の出力であることを表
わし、例えばk=1の場合、(1)式の第1項は41
と42′,42と43′等々の組でそれぞれの差を
とりその絶対値を加算したものである。従つてこ
の信号処理方法は、2像から得られた特性A,B
間の差分の面積を求め、この面積部分がレンズの
繰り出し位置の何れの方向に多く集中しているか
を判別することにほかならない。
Methods for processing photoelectrically converted signals are known, for example, in Japanese Patent Laid-Open No. 54-87222 and US Pat. No. 4,250,376. The received light signals obtained by photoelectrically converting the two secondary images are a(i), b(i), respectively (where i
= 1 to N), in the known example, for an appropriate constant k, V= NKi=1 |a(i)−b(i+k)|− NKi=1 |a(i+k)− b(i)|...(1) is calculated by an analog calculation circuit or digitally, and the direction in which the photographing lens 1 is extended is determined based on the sign or negative of this value of V. In this case, the value of k is usually chosen to be k=1. In FIG. 3, A and B specifically show the light intensity distributions of two images to be photoelectrically converted whose positions have changed relative to each other. Here 41 and 4
The set of points 1', 42 and 42' etc. is the sensor array 4.
It represents the output of the corresponding element pair a, 4b. For example, when k = 1, the first term of equation (1) is 41
and 42', 42 and 43', etc., and their absolute values are added. Therefore, this signal processing method uses the characteristics A and B obtained from the two images.
This is nothing but finding the area of the difference between them and determining in which direction of the lens extension position this area is concentrated.

然しながら、この上述の演算は絶対値を求める
ことを必要とし、これを実現する電気的回路が複
雑となる欠点がある。また、個々の素子対の出力
同志の減算を実施しているために、各出力値の誤
差が集積されることになり、演算の精度が問題と
なる。
However, the above-mentioned calculation requires the determination of an absolute value, which has the disadvantage that the electrical circuit for realizing this is complicated. Furthermore, since the outputs of each pair of elements are subtracted, errors in each output value are accumulated, which poses a problem in the accuracy of the calculation.

本発明の目的は、瞳分割方式により2像を形成
する焦点検出装置に於いて、従来法に比べ簡易で
あり、かつ精度が良好で新規な信号処理の手法に
よる焦点検出方法を提供することにあり、その要
旨は、焦点検出されるべき主たる結像光学系の瞳
を分割し、分割されたそれぞれの瞳領域から射出
された結像光束の形成する複数の物体像を、光電
変換素子アレイにより電気的に検知することによ
り合焦状態を判別する場合に於いて、前記それぞ
れの物体像を受光する複数の光電変換素子アレイ
を一定の対応関係により対応させ、該対応する素
子の光電出力をそれぞれ比較し、その最小又は最
大出力値を抽出加算する演算処理を行なつて合焦
状態判別信号を求めることを特徴とするものであ
る。
An object of the present invention is to provide a focus detection method using a novel signal processing method that is simpler and more accurate than conventional methods in a focus detection device that forms two images using a pupil division method. The gist of this method is to divide the pupil of the main imaging optical system to be focus-detected, and use a photoelectric conversion element array to generate multiple object images formed by the imaging light beams emitted from each divided pupil area. When determining the in-focus state by electrical detection, a plurality of photoelectric conversion element arrays that receive the respective object images are made to correspond in a certain correspondence relationship, and the photoelectric outputs of the corresponding elements are respectively The feature is that a focus state determination signal is obtained by performing arithmetic processing of comparing, extracting and adding the minimum or maximum output values.

本発明を図示の実施例に基づいて詳細に説明す
る。
The present invention will be explained in detail based on illustrated embodiments.

先ず本発明の一実施例として、 V=N-Ki=1 min{a(i),b(i+k)}−N-Ki=1 min{a(i+k),b(i)} …(2) として、合焦状態判別信号Vを演算する焦点検出
方法について以下に説明する。(2)式で光電出力ノ
ズル信号a(i)、b(i)、(但しi=1〜N)は全て
正値信号であり、またmin{x,y}は2個の正
実数x、yの内、小なるものを示している。前出
の第3図の特性A及びBは2個の二次像、即ちa
(i)、b(i)、(i=1〜N)の光強度分布をそれぞ
れ表わし、出力信号は同図の41,41′から5
4,54′までとする。ここで点41の出力信号
をA(41)、点41′の出力信号をB(41′)等と表
わすものとすると、(2)式の第1項V1は、 V1=min{A(41),B(42′)}+min{A
(42),B(43′)} +min{A(43),B(44′)}+……
+min{A(53),B(54′)}…(3) となり、同図の出力信号に具体的に当てはめる
と、 V1=B(42′)+B(43′) +……+A(52)+A(53) …(4) となる。同様にして(2)式の第2項V2を求めると、
V=V1−V2は第3図では正となり、合焦状態で
はないことが判る。上述の(2)式の各項は特性A,
Bをそれぞれ若干ずらした状態で共通に囲まれた
部分を求めており、Vが小さくなる程合焦状態に
近付くことになる。この演算を実施した後に、V
の符号の正負に応じて予め定められた方向に撮影
レンズ1を駆動すれば合焦状態へと近付けること
ができる。合焦時にはV=Oとなるべきであり、
実際的には合焦判定基準幅εを設定し、Vの絶対
値がεより小さいとき合焦と判断すればよい。第
4図は撮影レンズ1の繰り出し位置により、上述
したVの値が変化する様子を示している。
First, as an example of the present invention, V= NKi=1 min{a(i), b(i+k)}− NKi=1 min{a(i+k), b(i)}...(2) A focus detection method for calculating the focus state determination signal V will be described below. In equation (2), the photoelectric output nozzle signals a(i), b(i), (where i = 1 to N) are all positive value signals, and min{x, y} are two positive real numbers x, The smaller value of y is shown. Characteristics A and B in FIG. 3 above are two secondary images, namely a
(i), b(i), (i = 1 to N) respectively, and the output signals are from 41, 41' to 5 in the same figure.
Up to 4,54'. Here, if the output signal at point 41 is expressed as A (41), the output signal at point 41' is expressed as B (41'), etc., then the first term V 1 of equation (2) is expressed as V 1 = min {A (41),B(42')}+min{A
(42), B(43')} +min{A(43), B(44')}+...
+min {A(53), B(54')}...(3), and applying it specifically to the output signal in the same figure, V 1 = B(42') + B(43') +...+A(52 ) + A (53) ...(4). Similarly, finding the second term V 2 in equation (2), we get
V=V 1 -V 2 is positive in FIG. 3, indicating that the lens is not in focus. Each term in equation (2) above has characteristics A,
A common surrounded area is obtained while B is slightly shifted from each other, and the smaller V becomes, the closer to the in-focus state it becomes. After performing this operation, V
By driving the photographing lens 1 in a predetermined direction depending on the sign of the image, it is possible to bring the lens 1 closer to the in-focus state. When in focus, V=O should be achieved,
Practically speaking, a focus determination reference width ε may be set, and in-focus may be determined when the absolute value of V is smaller than ε. FIG. 4 shows how the above-mentioned value of V changes depending on the extended position of the photographic lens 1.

第5図はこの演算をアナログ演算回路で行なう
一実施例であり、61,62は二次像を受光する
センサアレイであり、これらから時系例信号とし
て出力された受光信号は2段のアナログシストレ
ジスタ63,64を通過する。センサアレイ6
1,62は物理的に2系列に隔てられて配列され
る必要はなく、1列のセンサアレイを部分的に分
けて用いてもよい。これらの電子部材は図示しな
いクロツク発生回路により同期制御されている。
シフトレジスタ63,64はそれぞれa(i)、a
(i+1)及びb(i)、b(i+1)の信号を保持し
ており、2式のmin{a(i),b(i+1)}を決定
するコンパレータ65、min{a(i+1),b(i)}
を決定するコンパレータ66に結線されている。
コンパレータ65及びその反転出力を生ずる
NOTゲート71は排反的にアナログスイツチ6
7,68を制御し、積分器73にmin{a(i),b
(i+1)}を出力する。同様にコンパレータ66
及びその反転出力ゲート72は排反的にアナログ
スイツチ69,70を制御し、積分器74にmin
{a(i+1),b(i)}を出力する。積分器73,
74の出力は差動増幅器75に導かれ、この差動
増幅器75から合焦状態判別信号Vが出力され
る。
FIG. 5 shows an example in which this calculation is performed using an analog calculation circuit. Reference numerals 61 and 62 are sensor arrays that receive secondary images, and the light reception signals output from these as time-series signals are sent to a two-stage analog circuit. It passes through the system registers 63 and 64. sensor array 6
Sensor arrays 1 and 62 do not need to be physically separated into two lines and may be used by partially dividing one line of sensor arrays. These electronic components are synchronously controlled by a clock generating circuit (not shown).
The shift registers 63 and 64 are a(i) and a, respectively.
A comparator 65 holds the signals of (i+1), b(i), b(i+1) and determines the two equations min{a(i), b(i+1)}, min{a(i+1), b (i)}
It is connected to a comparator 66 that determines.
Comparator 65 and its inverted output
NOT gate 71 is exclusively connected to analog switch 6
7 and 68, and the integrator 73 has min{a(i), b
(i+1)} is output. Similarly, comparator 66
and its inverted output gate 72 exclusively controls the analog switches 69 and 70, and the integrator 74
Output {a(i+1), b(i)}. Integrator 73,
The output of 74 is led to a differential amplifier 75, which outputs a focus state determination signal V.

この第5図の焦点検出処理回路は、乗算、除
算、絶対値等の非線形演算処理を全く必要としな
いので、アナログ演算回路で容易に実現すること
が可能である。勿論、デジタル演算回路を用いる
場合にも非線形処理を必要としないことは大きな
利点である。
The focus detection processing circuit shown in FIG. 5 does not require any nonlinear arithmetic processing such as multiplication, division, or absolute value, so it can be easily realized with an analog arithmetic circuit. Of course, the use of digital arithmetic circuits also has the great advantage of not requiring nonlinear processing.

次に、本発明の他の実施例を説明する。この実
施例に於いては、 V=N-Ki=1 max{a(i),b(i+1)}−N-Ki=1 max{a(i+k),b(i)} …(5) を演算する。但し、max{x,y}は2個の正実
数x,yの内、大なるものを示し、他の信号は先
の実施例で説明したものと同様である。先の実施
例が特性A,Bのうち最小のものを選択し、両特
性により共通に囲まれた面積部分を求めていたの
に対し、本実施例では特性A,Bを全て含む面積
部分を抽出演算している。この演算式(5)を用いた
場合、撮影レンズの繰出し位置に対する合焦状態
判別信号Vの値は先の実施例に対してその符号が
逆転している。従つて、Vの正負によつて予め定
められている撮影レンズの駆動方向は先の実施例
とは逆方向になる。回路的には前出の第5図に於
いて、コンパレータ65,66及びその反転出力
を生ずるNOTゲート71,72の出力とアナロ
グスイツチ67,68,69,70との結線を入
れ換えることにより演算処理が実現される。
Next, another embodiment of the present invention will be described. In this example, V= NKi=1 max{a(i), b(i+1)}− NKi=1 max{a(i+k), b(i)}...(5) calculate. However, max{x, y} indicates the larger of the two positive real numbers x, y, and the other signals are the same as those described in the previous embodiment. While the previous example selected the smallest of characteristics A and B and found the area area commonly surrounded by both characteristics, this example selects the area area that includes both characteristics A and B. Performing extraction calculations. When this arithmetic expression (5) is used, the sign of the value of the focus state determination signal V for the extended position of the photographic lens is reversed compared to the previous embodiment. Therefore, the driving direction of the photographing lens, which is predetermined by the positive or negative value of V, is opposite to that of the previous embodiment. In terms of the circuit, in the above-mentioned FIG. 5, arithmetic processing is performed by switching the connections between the outputs of the comparators 65 and 66 and the NOT gates 71 and 72 that produce their inverted outputs, and the analog switches 67, 68, 69, and 70. is realized.

以上詳細にわたつて述べたように、本発明に係
る焦点検出方法は、従来例のように2個のセンサ
アレイから得られた特性の差を求める必要もな
く、また非線形な演算処理をすることもないの
で、誤差の介入が少なくかつ演算を実現する回路
が複雑となることもない。従つてこの方法を用い
ることにより瞳分割式焦点検出装置を簡易にかつ
高精度に構成することができる。
As described in detail above, the focus detection method according to the present invention does not require calculating the difference in characteristics obtained from two sensor arrays as in the conventional example, and does not require nonlinear calculation processing. Therefore, the interference of errors is small and the circuit for realizing calculations does not become complicated. Therefore, by using this method, a pupil division type focus detection device can be constructed simply and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二次結像方式による焦点検出装置の原
理の説明図、第2図a,b,cは像ずれの原理の
説明図、第3図は相対的に位置のずれた2個の二
次像の出力特性図、第4図は合焦信号の説明図、
第5図は本発明の方法を実現する一実施例の回路
構成図である。 符号1は撮影レンズ、2はフイールドレンズ、
3a,3bは二次結像レンズ、4a,4bはセン
サアレイである。
Fig. 1 is an explanatory diagram of the principle of a focus detection device using a secondary imaging method, Fig. 2 a, b, and c are explanatory diagrams of the principle of image shift, and Fig. 3 is an illustration of the principle of image shift. Output characteristic diagram of the secondary image, Figure 4 is an explanatory diagram of the focusing signal,
FIG. 5 is a circuit configuration diagram of an embodiment for realizing the method of the present invention. Code 1 is a photographic lens, 2 is a field lens,
3a and 3b are secondary imaging lenses, and 4a and 4b are sensor arrays.

Claims (1)

【特許請求の範囲】[Claims] 1 焦点検出されるべき主たる結像光学系の瞳を
分割し、分割されたそれぞれの瞳領域から射出さ
れた結像光束の形成する複数の物体像を、光電変
換素子アレイにより電気的に検知することにより
合焦状態を判別する場合に於いて、前記それぞれ
の物体像を受光する複数の光電変換素子アレイを
一定の対応関係により対応させ、該対応する素子
の光電出力をそれぞれ比較し、その最小又は最大
の出力値を抽出加算する演算処理を行なつて合焦
状態判別信号を求めることを特徴とする焦点検出
方法。
1. Divide the pupil of the main imaging optical system whose focus is to be detected, and electrically detect multiple object images formed by the imaging light flux emitted from each divided pupil area using a photoelectric conversion element array. When determining the in-focus state by determining the in-focus state, a plurality of photoelectric conversion element arrays that receive the respective object images are made to correspond according to a certain correspondence relationship, and the photoelectric outputs of the corresponding elements are compared, and the minimum Alternatively, a focus detection method is characterized in that a focus state determination signal is obtained by performing arithmetic processing to extract and add maximum output values.
JP2361582A 1982-02-18 1982-02-18 Detection of focus Granted JPS58142306A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2361582A JPS58142306A (en) 1982-02-18 1982-02-18 Detection of focus
US06/464,578 US4559446A (en) 1982-02-18 1983-02-07 Focus detecting system using light from an imaging optical system for focus detection
DE3305676A DE3305676C2 (en) 1982-02-18 1983-02-18 Device for determining sharpness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2361582A JPS58142306A (en) 1982-02-18 1982-02-18 Detection of focus

Publications (2)

Publication Number Publication Date
JPS58142306A JPS58142306A (en) 1983-08-24
JPH0328689B2 true JPH0328689B2 (en) 1991-04-19

Family

ID=12115507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2361582A Granted JPS58142306A (en) 1982-02-18 1982-02-18 Detection of focus

Country Status (1)

Country Link
JP (1) JPS58142306A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810296B2 (en) * 1986-09-22 1996-01-31 富士写真フイルム株式会社 Phase difference detector
JPH07117645B2 (en) * 1987-12-14 1995-12-18 キヤノン株式会社 Focus detection device
JP2756351B2 (en) * 1990-07-06 1998-05-25 キヤノン株式会社 Focus detection device
US5440367A (en) * 1990-11-07 1995-08-08 Canon Kabushiki Kaisha Focus detecting apparatus provided with a plurality of detection fields
JP3210027B2 (en) * 1991-04-05 2001-09-17 キヤノン株式会社 camera
JP2927047B2 (en) * 1991-05-02 1999-07-28 キヤノン株式会社 Focus detection device
US5381206A (en) * 1991-07-22 1995-01-10 Canon Kabushiki Kaisha Focus detecting device
US5367153A (en) * 1991-11-01 1994-11-22 Canon Kabushiki Kaisha Apparatus for detecting the focus adjusting state of an objective lens by performing filter processing
JPH0968644A (en) * 1995-08-31 1997-03-11 Nikon Corp Automatic focusing device

Also Published As

Publication number Publication date
JPS58142306A (en) 1983-08-24

Similar Documents

Publication Publication Date Title
JP3406656B2 (en) Distance measuring device
US4412741A (en) Method for the automatic or semiautomatic distance measurement and focusing of the image of an object onto a focal plane
JPS6060511A (en) Distance measuring device
US4618236A (en) Focus detecting apparatus
JPH0380290B2 (en)
US4559446A (en) Focus detecting system using light from an imaging optical system for focus detection
JPH0328689B2 (en)
JPH0328691B2 (en)
JP2002207156A (en) Range-finding device for camera
US5613167A (en) Active-type automatic focusing apparatus
JPS5952362B2 (en) distance detection device
JPH0328690B2 (en)
US4251143A (en) Photographic camera with means indicating the state of focus
US4220406A (en) Optical electronic focusing device
JPS61145515A (en) Focus detecting device
JP2916202B2 (en) Focus position detection device
JPS6057047B2 (en) focus detection device
JPS6113566B2 (en)
US6104879A (en) Signal forming apparatus
JP3310079B2 (en) Camera ranging device
JP3233435B2 (en) Distance measuring device
JPH06102451A (en) Focus detecting device
JPS6236208B2 (en)
JPS6237364B2 (en)
JPH0621894B2 (en) Focus detection device