JPS6143315B2 - - Google Patents

Info

Publication number
JPS6143315B2
JPS6143315B2 JP16925879A JP16925879A JPS6143315B2 JP S6143315 B2 JPS6143315 B2 JP S6143315B2 JP 16925879 A JP16925879 A JP 16925879A JP 16925879 A JP16925879 A JP 16925879A JP S6143315 B2 JPS6143315 B2 JP S6143315B2
Authority
JP
Japan
Prior art keywords
slurry
aqueous slurry
fibrous
aqueous
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16925879A
Other languages
Japanese (ja)
Other versions
JPS5692150A (en
Inventor
Masakatsu Oota
Masahiko Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP16925879A priority Critical patent/JPS5692150A/en
Publication of JPS5692150A publication Critical patent/JPS5692150A/en
Publication of JPS6143315B2 publication Critical patent/JPS6143315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はセツコウ成形体の製造法に関する。 軽量セツコウ成形体の製造方法として、近時繊
維状セツコウあるいは実質的に繊維状セツコウよ
り形成された球状セツコウを原料として水和硬化
して成形体を得る方法が提案されている。 これらの方法に用いる原料セツコウは通常、二
水セツコウを主体とするセツコウの水性スラリー
を100〜180℃で水熱反応して得られるα型半水セ
ツコウの水性スラリーである。このα型半水セツ
コウは約80℃以上の温度では安定であるが、温度
が低下すると二水セツコウに転換する。この二水
セツコウへの転換を防止するため、高温のα型半
水セツコウの水性スラリーを熱時過し、必要に
よりアルコールなどで水洗後、乾燥してα型半水
セツコウを得、次いで通常水と混合して成形する
方法が採用されている。 しかしながら、この方法は工程が複雑であるた
め水熱反応スラリーを直接成形することが望まれ
ている。ところが、水熱反応スラリーを直接成形
する方法では、得られる成形体が従来法による成
形体と比較して強度が極端に小さいという欠点を
有している。 本発明は上記記の欠点を解消して水熱反応スラ
リーの直接成形でありながら強度の大きい成形体
を簡略化された工程で製造する方法を提供するこ
とを目的としている。 本発明は、二水セツコウ、半水セツコウ、可溶
性無水セツコウもしくはこれらの混合物を水性ス
ラリーとなし、100〜180℃の温度でα型半水繊維
状セツコウおよび/または実質的に繊維状セツコ
ウより形成された球状セツコウが得られるまで水
熱反応を行ない、得られた反応生成物の水性スラ
リーにβ型半水セツコウ、可溶性無水セツコウお
よびセツコウ水溶液のうちの少なくとも1種を添
加し、次いで脱水成形し硬化することを特徴とす
るセツコウ成形体の製造法を提供するものであ
る。 本発明において原料として用いるセツコウは二
水セツコウ、半水セツコウ、可溶性無水セツコウ
もしくはこれらの混合物であり、これらを主成分
とするものであれば天然に産出するセツコウ、化
学合成によるセツコウ、排脱セツコウ等いずれで
もよい。 上記原料セツコウの適当量を水と配合して水性
スラリーとする。通常はこの水性スラリーが用い
られるが、必要に応じて水に少量の酸、水溶性有
機物のいずれか一方あるいは両者を適宜添加する
こともできる。こゝで用いる酸としては有機酸、
無機酸のいずれでもよく、例えば酢酸、酒石酸、
ギ酸、リンゴ酸等の有機酸や塩酸、硫酸、硝酸、
ホウ酸等の無機酸が好適なものである。これら酸
の添加量については特に制限はないが、通常は水
溶液中の濃度が有機酸の場合0.05〜10重量%、好
ましくは0.1〜5重量%とし、無機酸の場合0.01
〜5重量%、好ましくは0.05〜3重量%とする。
また、水溶性有機物としては、例えばエチレング
リコール、ジエチレングリコール、グリセリン等
が好適に利用され、水溶液中における濃度は一般
に0.02〜5重量%、好ましくは0.1〜3重量%で
ある。水に酸や水溶性有機物を加えると、セツコ
ウの溶解度が低下し、後の工程においてセツコウ
の析出をを容易にするという効果が得られる。 原料セツコウと水を配合し、撹拌してスラリー
とする場合、混合すべき原料セツコウの量は一般
的に水の重量に基づいて2〜50重量%、好ましく
は5〜30重量%の範囲とする。 水熱反応は、上記水性スラリーを100〜180℃、
好ましくは105〜140℃の温度に加熱して行なう。
なお、水熱反応を行なうにあたり添加剤としてタ
ルク、無水ケイ酸、ケイ酸、炭酸カルシウム、半
水セツコウ、可溶性無水セツコウもしくはこれら
の混合物を適宜加えることもできる。添加剤とし
て半水セツコウや可溶性無水セツコウを用いると
きは、スラリーの温度を半水セツコウが水和しな
くなる温度、具体的には70℃以上、好ましくは85
℃以上に加温してから添加すべきである。添加剤
を加える場合は原料セツコウの重量に基いて
0.001〜50重量%、好ましくは1〜20重量%の割
合で加える。 水熱反応はα型半水繊維状セツコウおよび/ま
たは実質的に繊維状セツコウより形成された球状
セツコウが得られるまで行なうが、通常の場合反
応時間は1〜90分、好ましくは3〜60分とすれば
よい。なお、この反応時間は反応温度により異な
るが、圧力下で行なうことにより常圧下で行なう
場合よりも大巾に短縮させることができる。また
水熱反応に際しては撹拌翼などの手段により混合
もしくは撹拌しながら行なうことが好ましく、特
に球状セツコウを得るためには必要なことであ
る。本発明では、繊維状セツコウよりも球状セツ
コウの方が後に得られる成形体の強度などの点で
望ましい。 このようにして生成したα型半水繊維状セツコ
ウおよび/または実質的に繊維状セツコウより形
成された球状セツコウの水性スラリーから必要に
応じて過剰水を分離したのち、補強剤として繊維
を、結合剤として水溶性重合体(ポリビニルアル
コール、カルボキシメチルセルロース、ヒドロキ
シエチルセルロース、ポリアクリルアミド、ポリ
アクリル酸、ポリエチレンオキシドなど)、重合
体エマルジヨン(酢酸ビニルエマルジヨン、アク
リル樹脂エマルジヨンなど)、水硬性無機物(水
ガラス、ケイ酸ソーダ、アルミナゾル、シリカゾ
ル、セメント、セツコウなど)等を所望により適
宜添加することができる。 さらに本発明では上記水熱反応生成物の水性ス
ラリーにβ型半水セツコウ、可溶性無水セツコウ
およびセツコウ水溶液のうちの少なくとも1種を
添加する。なお、これら物質の添加は上記の補強
剤や結合剤の前後いずれに行なつてもよい。こゝ
でセツコウ水溶液とは二水セツコウ、半水セツコ
ウおよび可溶性無水セツコウを水に加えて混合
後、静置したときに得られる上澄液を意味する。
これらβ型半水セツコウ等の物質はスラリー中の
原料セツコウ100重量部に対してカルシウム換算
で0.01〜5重量部の割合で添加する。これら物質
を添加することにより次の脱水成形を行なうにあ
たり水性スラリーを冷却して所定温度にまで下げ
る等の処理が不要となるばかりか、高温(50℃以
上)スラリーを用いるので、成形前の原料半水セ
ツコウの二水化が起り難いという大きな特徴があ
る。 次いで、水性スラリーを脱水成形し、水和硬化
せしめることによりセツコウ成形体を製造する
が、これらの操作は常法によつて行なうことがで
きる。たとえば圧縮成形、押出し成形、流し込み
成形、抄造成形等の手段を適用して脱水成形し、
水和硬化せしめればよい。硬化後、遊離水分は乾
燥等の手段により除去する。 このようにして得られたセツコウ成形体は軽量
で、かつ高強度であるという特色を有している。
また、プロセス的立場からみると、本発明の方法
は水熱反応スラリーを用いて直接に成形するため
工程が簡略化され、連続的操作が可能であるこ
と、成形工程前の水性スラリーの冷却が不要でス
ラリー中の原料半水セツコウの成形前の二水化の
心配がないこと、成形後の硬化が速いこと、成形
品の収縮が小さいこと等の特色を有している。な
お、水性スラリーの固形分中の球状セツコウの割
合が多いと得られる成形体の強度が大きいばかり
でなく、作業性も向上する。 本発明の方法により得られる製品は、上記の如
き特色を備えているため天井材、断熱板、吸音
板、間仕切材などの建材として極めて有用であ
る。 次に本発明を実施例により詳しく説明する。 実施例 1〜4 3ガラス製オートクレーブに水2を仕込
み、135℃に加熱した。次いで、この中に200r.p.
m.で撹拌しながら二水セツコウ300gおよびβ型
半水セツコウ3gを仕込み、125℃で10分間反応せ
しめた。 得られた反応生成物(主としてα型半水球状セ
ツコウ)の水性スラリーに表―1に示した添加剤
を加え、該スラリーの一部を抄造面100mm×100mm
で40メツシユの金網をもつ抄造成形型枠に流し込
んだ。その後、該スラリーに5℃の水を流し込で
該スラリーの温度を表―1に示した温度に調整し
たのち圧縮脱水、抄造成形を行なつた。なお、該
スラリーの冷却に用いた水は金網を通過し、全体
をほゞ均一に冷却することができた。成形してか
ら0.5時間後、脱型し、60℃で8時間乾燥してて
成形体を得た。実験条件と結果を表―1に示す。 比較例 1〜3 反応生成物の水性スラリーに添加剤(ただし比
較例3のみはAl2(SO43・18H2Oを使用)を加え
なかつたこと以外は実施例1〜4と同様にしてセ
ツコウ成形体を得た。結果を表―1に示す。 参考例 1 実施例1で得られた反応生成物の水性スラリー
を熱時過し、さらにメタノールで洗浄した後60
℃で3時間乾燥処理を行ないα型半水球状セツコ
ウを得た。この球状セツコウは平均繊維径1.2μ
の繊維より形成された平均粒子径200μ、嵩密度
0.12g/cm3のものであつた。 この球状セツコウ80gに30℃の水300mlを加え
てスラリーとなし、以下、実施例1に準じてセツ
コウ成形体を得た。結果を表―1に示す。 実施例 5 3ガラス製オートクレーブに水2を仕込
み、145℃に加熱した。次いで、この中に200r.p.
m.で撹拌しながら二水セツコウ300gを仕込み、
135℃で10分間反応せしめた。このときの反応生
成物は主としてα型半水繊維状セツコウであつ
た。以下、実施例1〜4と同様にしてセツコウ成
形体を得た。結果を表―1に示す。 比較例 4 反応生成物の水性スラリーに添加剤を加えなか
つたこと以外は実施例5と同様にしてセツコウ成
形体を得た。結果を表―1に示す。 参考例 5 実施例5で得られた反応生成物の水性スラリー
を熱時過し、さらにメタノールで洗浄した後60
℃で3時間乾燥処理を行ないα型半水繊維状セツ
コウを得た。この繊維状セツコウは平均繊維径
1.5μ、平均繊維長さ140μ、嵩密度0.11g/cm3
あつた。 この繊維状セツコウ80gに30℃の水300mlを加
えてスラリーとなし、以下実施例1に準じてセツ
コウ成形体を得た。結果を表―1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a molded body. As a method for producing a lightweight molded body, a method has recently been proposed in which a molded body is obtained by hydration-curing using a fibrous bodywork or a spherical body formed substantially from a fibrous bodywood as a raw material. The raw material used in these methods is usually an aqueous slurry of α-type hemihydrate obtained by hydrothermally reacting an aqueous slurry mainly composed of dihydrate at 100 to 180°C. This α-type hemihydrate is stable at temperatures above about 80°C, but when the temperature drops, it converts to dihydrate. In order to prevent this conversion to dihydrate, an aqueous slurry of α-type hemihydrate is heated, washed with alcohol if necessary, and dried to obtain α-type hemihydrate. A method of mixing and molding is adopted. However, since this method requires complicated steps, it is desired to directly mold the hydrothermal reaction slurry. However, the method of directly molding a hydrothermal reaction slurry has the disadvantage that the strength of the molded product obtained is extremely low compared to molded products produced by conventional methods. The object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for producing a molded article with high strength through a simplified process, even though it is directly molded from a hydrothermal reaction slurry. The present invention provides an aqueous slurry made of dihydrate, hemihydrate, soluble anhydrous or a mixture thereof, and formed from α-type hemihydrate fibrous and/or substantially fibrous slurry at a temperature of 100 to 180°C. A hydrothermal reaction is carried out until a spherical shell is obtained, and at least one of a β-type hemihydrous shell, a soluble anhydrous shell, and an aqueous solution of the shell is added to the aqueous slurry of the obtained reaction product, and then dehydrated and shaped. The present invention provides a method for producing a molded body that is characterized by being hardened. In the present invention, the slag used as a raw material is dihydrated sludge, semi-hydrated sludge, soluble anhydrous sludge, or a mixture thereof.Those containing these as main ingredients include naturally occurring sludge, chemically synthesized sludge, and excreted sludge. etc. Any one is fine. An appropriate amount of the above raw material is mixed with water to form an aqueous slurry. Usually, this aqueous slurry is used, but if necessary, a small amount of an acid, a water-soluble organic substance, or both may be appropriately added to the water. The acids used here include organic acids,
Any inorganic acid may be used, such as acetic acid, tartaric acid,
Organic acids such as formic acid and malic acid, hydrochloric acid, sulfuric acid, nitric acid,
Inorganic acids such as boric acid are preferred. There are no particular restrictions on the amount of these acids added, but the concentration in the aqueous solution is usually 0.05 to 10% by weight for organic acids, preferably 0.1 to 5% by weight, and 0.01% for inorganic acids.
-5% by weight, preferably 0.05-3% by weight.
Further, as the water-soluble organic substance, for example, ethylene glycol, diethylene glycol, glycerin, etc. are suitably used, and the concentration in the aqueous solution is generally 0.02 to 5% by weight, preferably 0.1 to 3% by weight. When an acid or a water-soluble organic substance is added to water, the solubility of the phlegm is reduced, which has the effect of facilitating the precipitation of the phlegm in a later step. When mixing raw material and water and stirring to form a slurry, the amount of raw material to be mixed is generally in the range of 2 to 50% by weight, preferably 5 to 30% by weight, based on the weight of water. . In the hydrothermal reaction, the above aqueous slurry is heated at 100 to 180℃.
It is preferably carried out by heating to a temperature of 105 to 140°C.
In carrying out the hydrothermal reaction, talc, silicic anhydride, silicic acid, calcium carbonate, hemihydrous slag, soluble anhydrous slag, or a mixture thereof may be appropriately added as an additive. When using a semi-hydrated slag or a soluble anhydrous sludge as an additive, the temperature of the slurry is set to a temperature at which the semi-hydrated sludge is no longer hydrated, specifically 70°C or higher, preferably 85°C or higher.
It should be added after warming to above ℃. When adding additives, add them based on the weight of the raw material.
It is added in a proportion of 0.001 to 50% by weight, preferably 1 to 20% by weight. The hydrothermal reaction is carried out until an α-type hemiwater fibrous shell and/or a spherical shell formed substantially from a fibrous shell is obtained, and the reaction time is usually 1 to 90 minutes, preferably 3 to 60 minutes. And it is sufficient. Although this reaction time varies depending on the reaction temperature, by carrying out the reaction under pressure, it can be significantly shortened compared to the case where the reaction is carried out under normal pressure. Further, during the hydrothermal reaction, it is preferable to carry out the reaction while mixing or stirring using a means such as a stirring blade, which is especially necessary in order to obtain spherical snails. In the present invention, spherical moldings are more desirable than fibrous moldings in terms of the strength of the molded product obtained later. Excess water is removed as necessary from the aqueous slurry of the α-type hemihydrous fibrous fibrous and/or spherical fibrous slurry formed in this way, and then fibers are bonded as a reinforcing agent. As agents, water-soluble polymers (polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, polyacrylamide, polyacrylic acid, polyethylene oxide, etc.), polymer emulsions (vinyl acetate emulsion, acrylic resin emulsion, etc.), hydraulic inorganic substances (water glass, Sodium silicate, alumina sol, silica sol, cement, clay, etc.) can be added as desired. Further, in the present invention, at least one of β-type hemihydrate, soluble anhydrous, and aqueous solution is added to the aqueous slurry of the hydrothermal reaction product. Note that these substances may be added before or after adding the reinforcing agent or binder. The aqueous solution herein means a supernatant liquid obtained when dihydrated solution, semi-hydrated solution, and soluble anhydrous solution are added to water, mixed, and then allowed to stand.
These substances such as β-type hemihydrate are added at a ratio of 0.01 to 5 parts by weight, calculated as calcium, per 100 parts by weight of the raw material in the slurry. Adding these substances not only eliminates the need for cooling the aqueous slurry to a predetermined temperature for the next dehydration molding process, but also eliminates the need for processing such as cooling the aqueous slurry to a predetermined temperature. A major feature is that it is difficult for semi-hydrated water to become dihydrated. Next, the aqueous slurry is subjected to dehydration molding and hydration hardening to produce a solid molded article, and these operations can be performed by conventional methods. For example, dehydration molding is performed by applying means such as compression molding, extrusion molding, casting molding, and paper forming.
It can be cured by hydration. After curing, free moisture is removed by drying or other means. The molded article thus obtained is characterized by being lightweight and having high strength.
In addition, from a process standpoint, the method of the present invention simplifies the process because it directly molds using a hydrothermal reaction slurry, allows continuous operation, and requires cooling of the aqueous slurry before the molding process. It has the following characteristics: there is no need to worry about dihydration of the raw material half-hydrate in the slurry before molding, it hardens quickly after molding, and the shrinkage of the molded product is small. Incidentally, when the proportion of spherical particles in the solid content of the aqueous slurry is high, not only the strength of the obtained molded article is high, but also the workability is improved. The products obtained by the method of the present invention have the above characteristics and are therefore extremely useful as building materials such as ceiling materials, heat insulating boards, sound absorbing boards, and partition materials. Next, the present invention will be explained in detail with reference to examples. Examples 1 to 4 3 Water 2 was charged into a glass autoclave and heated to 135°C. Next, add 200r.p.
300 g of dihydrous slag and 3 g of β-type hemihydrate sludge were charged while stirring at m. m., and reacted at 125°C for 10 minutes. The additives shown in Table 1 were added to the aqueous slurry of the obtained reaction product (mainly α-type hemihydroglobules), and a portion of the slurry was added to the papermaking surface of 100 mm x 100 mm.
Then, it was poured into a paper molding mold with a 40-mesh wire mesh. Thereafter, 5°C water was poured into the slurry to adjust the temperature of the slurry to the temperature shown in Table 1, followed by compression dehydration and paper forming. Note that the water used for cooling the slurry passed through a wire mesh, and the entire slurry could be cooled almost uniformly. 0.5 hours after molding, the mold was removed and dried at 60°C for 8 hours to obtain a molded product. Table 1 shows the experimental conditions and results. Comparative Examples 1 to 3 Same as Examples 1 to 4 except that no additive was added to the aqueous slurry of the reaction product (only Comparative Example 3 used Al 2 (SO 4 ) 3.18H 2 O). A compact molded body was obtained. The results are shown in Table-1. Reference Example 1 After heating the aqueous slurry of the reaction product obtained in Example 1 and washing with methanol,
A drying treatment was carried out at ℃ for 3 hours to obtain α-type hemihydroglobules. This spherical fiber has an average fiber diameter of 1.2μ.
Formed from fibers with an average particle diameter of 200μ and a bulk density of
It was 0.12g/ cm3 . 300 ml of water at 30° C. was added to 80 g of this spherical clay to form a slurry, and a clay molded body was obtained in the same manner as in Example 1. The results are shown in Table-1. Example 5 Water 2 was charged into a glass autoclave and heated to 145°C. Next, add 200r.p.
Add 300g of Nisui Setsukou while stirring with m.
The reaction was carried out at 135°C for 10 minutes. The reaction product at this time was mainly α-type hemihydrate fibrous snails. Hereinafter, a molded body was obtained in the same manner as in Examples 1 to 4. The results are shown in Table-1. Comparative Example 4 A molded article was obtained in the same manner as in Example 5 except that no additive was added to the aqueous slurry of the reaction product. The results are shown in Table-1. Reference Example 5 After heating the aqueous slurry of the reaction product obtained in Example 5 and washing with methanol,
A drying treatment was carried out at ℃ for 3 hours to obtain α-type hemihydrate fibrous snails. This fibrous fiber has an average fiber diameter of
1.5μ, average fiber length 140μ, and bulk density 0.11g/cm 3 . 300 ml of water at 30° C. was added to 80 g of this fibrous clay to form a slurry, and a clay molded body was obtained in accordance with Example 1. The results are shown in Table-1. 【table】

Claims (1)

【特許請求の範囲】 1 二水セツコウ、半水セツコウ、可溶性無水セ
ツコウもしくはこれらの混合物を水性スラリーと
なし、100〜180℃の温度でα型半水繊維状セツコ
ウおよび/または実質的に繊維状セツコウより形
成された球状セツコウが得られるまで水熱反応を
行ない、得られた反応生成物の水性スラリーにβ
型半水セツコウ、可溶性無水セツコウおよびセツ
コウ水溶液のうちの少なくとも1種を添加し、次
いで脱水成形し硬化することを特徴とするセツコ
ウ成形体の製造法。 2 反応生成物の水性スラリーにβ型半水セツコ
ウ、可溶性無水セツコウおよびセツコウ水溶液の
うちの少なくと1種をスラリー中の原料セツコウ
100重量部に対してカルシウム換算で0.01〜5重
量部の割合で添加する特許請求の範囲第1項記載
の方法。
[Claims] 1. An aqueous slurry made of dihydrate, hemihydrate, soluble anhydrous or a mixture thereof, and α-type hemihydrate fibrous and/or substantially fibrous at a temperature of 100 to 180°C. The hydrothermal reaction is carried out until a spherical settsukou is obtained, and the aqueous slurry of the reaction product is
1. A method for producing a molded product, which comprises adding at least one of a semi-hydrated mold, a soluble anhydrous mold, and an aqueous mold solution, followed by dehydration molding and curing. 2. Adding at least one of β-type hemihydrate, soluble anhydrous, and aqueous solution to the aqueous slurry of the reaction product as a raw material in the slurry.
The method according to claim 1, wherein the amount is added in an amount of 0.01 to 5 parts by weight in terms of calcium per 100 parts by weight.
JP16925879A 1979-12-27 1979-12-27 Manufacture of gypsum formed body Granted JPS5692150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16925879A JPS5692150A (en) 1979-12-27 1979-12-27 Manufacture of gypsum formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16925879A JPS5692150A (en) 1979-12-27 1979-12-27 Manufacture of gypsum formed body

Publications (2)

Publication Number Publication Date
JPS5692150A JPS5692150A (en) 1981-07-25
JPS6143315B2 true JPS6143315B2 (en) 1986-09-26

Family

ID=15883165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16925879A Granted JPS5692150A (en) 1979-12-27 1979-12-27 Manufacture of gypsum formed body

Country Status (1)

Country Link
JP (1) JPS5692150A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290706A (en) * 1987-05-25 1988-11-28 Mitsubishi Heavy Ind Ltd Manufacture of gypsum board

Also Published As

Publication number Publication date
JPS5692150A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
US4174230A (en) Gypsum compositions
US5340513A (en) Process for the production of calcium hydrosilicate bonded shaped articles
JPS6143315B2 (en)
JPS6143314B2 (en)
US4477397A (en) Method for recycling greenware in the manufacture of hydrous calcium silicate insulation products
JPS586699B2 (en) Setsukou molded body
JPS6129909B2 (en)
JPS623109B2 (en)
CA1058828A (en) Process of producing calcium aluminate monosulfate hydrate
HU188042B (en) Concrete shaped bodies and method for producing same
JP2875839B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JPS586698B2 (en) Gypsum hardened body
JPS586697B2 (en) Lightweight gypsum hardened body
JPS5827216B2 (en) Method for manufacturing lightweight cured gypsum body with improved mechanical strength
JPS6232132B2 (en)
JPH05339038A (en) Production of hydraulic body
JP2875838B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JPS6335595B2 (en)
JPH09328374A (en) Perlite hardened form and its production
SU1692962A1 (en) Method for obtaining raw granules for expanded clay aggregate production
SU1583386A1 (en) Initial composition for producing autoclave heat-insulator articles
JP2748556B2 (en) Manufacturing method of lightweight cellular concrete
JP4457376B2 (en) Rapid manufacturing method of ceramic-based molded body and solidified body thereof
JPS63214404A (en) Manufacture of light-weight building material through extrusion molding
JPS6221745B2 (en)