JPS6129909B2 - - Google Patents

Info

Publication number
JPS6129909B2
JPS6129909B2 JP5253479A JP5253479A JPS6129909B2 JP S6129909 B2 JPS6129909 B2 JP S6129909B2 JP 5253479 A JP5253479 A JP 5253479A JP 5253479 A JP5253479 A JP 5253479A JP S6129909 B2 JPS6129909 B2 JP S6129909B2
Authority
JP
Japan
Prior art keywords
spherical
water
lightweight
sludge
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5253479A
Other languages
Japanese (ja)
Other versions
JPS55144464A (en
Inventor
Chikao Shiho
Masahiko Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP5253479A priority Critical patent/JPS55144464A/en
Publication of JPS55144464A publication Critical patent/JPS55144464A/en
Publication of JPS6129909B2 publication Critical patent/JPS6129909B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/365Gypsum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は軽量のセツコウ成形体に関する。 従来、セツコウを原料とする軽量成形体は、多
量の水を使用する方法、軽量充填剤を用いる方
法、発泡法、繊維状セツコウを用いる方法などに
よつて製造されていた。しかしながら、これらの
方法を適用して得られるセツコウ成形体は十分な
強度を有するものではなかつた。 本出願人は先に、実質的に繊維状セツコウで形
成された球状セツコウを用いて軽量成形体を得る
方法を提案している。しかし、この球状セツコウ
は軽量ではあつても、かさ密度に限界があるた
め、該球状セツコウを用いて密度が0.3g/cm3
下で、しかも十分な強度を有する成形体を得るこ
とができなかつた。 本発明の目的は、特定の製法によつて得られる
非常に軽量な球状セツコウを使用することによ
り、上記の諸欠点を解消した軽量セツコウ成形体
を提供することにある。 本発明の軽量セツコウ成形体は原料セツコウ
を、半水セツコウまたは微粉状無機物からなる種
晶の存在下に気泡を存在させた水性溶媒中で加熱
下、撹拌することによつて得られる実質的に繊維
状セツコウより形成された球状セツコウに水およ
び/または結合剤を配合して成形、硬化せしめる
ことによつて得られる。 まずはじめに、本発明の軽量セツコウ成形体を
製造するために用いる球状セツコウについて説明
する。該球状セツコウは、二水セツコウ、半水セ
ツコウ、可溶性無水セツコウおよびこれらの混合
物を原料セツコウとして用いて、この原料セツコ
ウを半水セツコウまたは微粉状無機物からなる種
晶の存在下に気泡を存在させた水溶性溶媒中で加
熱下、撹拌することにつて得られる。 原料セツコウとしては任意の起源のものを使用
でき、たとえば天然セツコウ、化学セツコウ、排
煙脱硫処理に際し副生するセツコウ等を用いるこ
とができる。 また水性溶媒としては、水またはこの水に酸、
水溶性有機物のいずれか一方あるいは両者を含有
せしめた水溶液をあげることができ、ここで使用
する酸は有機酸、無機酸のいずれでもよい。たと
えば有機酸としては酢酸、酒石酸、ギ酸、リンゴ
酸等が好ましく、無機酸としては塩酸、硫酸、硝
酸、ホウ酸等が好適である。また、酸水溶液の濃
度については特に制限はないが、通常は有機酸の
場合0.05〜80重量%、好ましくは0.2〜40重量%
とし、無機酸の場合0.01〜50重量%、好ましくは
は0.05〜20重量%とする。一方、水溶性有機物と
しては、エチレングリコール、ジエチレングリコ
ール、グリセリン等が好適に使用でき、水溶液中
における濃度は一般に0.02〜40重量%、好ましく
は0.1〜20重量%である。 原料セツコウは上記水性溶媒に対して室温下で
全量を加えて混合したのち所定温度まで加熱して
もよく、あるいは予め水性溶媒を所定温度に加熱
しておき、しかる後に原料セツコウを添加、混合
してもよい。さらに、上記原料セツコウに、半水
セツコウまたは微粉状無機物からなる種晶を添加
してよりよい球状セツコウを製造する。なお、上
記水性溶媒に対して混合すべき原料セツコウの量
は特に制限はないが、一般的には溶媒の重量に基
いて0.5〜50重量%、好ましくは2〜30重量%の
範囲で選定し、スラリー状に調製する。 このようにして調製したスラリーを100〜180
℃、好ましくは105〜140℃の温度に加熱して撹拌
しながら水熱反応を行なわしめる。この水熱反応
は、通常加圧下に行なわれることになり、前記範
囲外の温度では軽量の球状セツコウを得ることが
困難であり、しかも反応時間が長くなる。水熱反
応は、水性溶媒中に気泡を存在させた状態で行な
わしめるが、この際の気泡は、たとえば空気や窒
素ガスなどを水性溶媒に導入したり、空気連行剤
もしくは発泡剤を添加せしめることによつて反応
系に存在させることができる。前者の場合には素
焼板などを用いて行なうことができ、後者の場合
における空気連行剤もしくは発泡剤として、たと
えばサポニン、石けん、アルキルベンゼンスルホ
ン酸ソーダ、ポリオキシエチレンアルキル硫酸ナ
トリウム等を用いることができ、またアルコール
類などの助剤を併用することもできる。なお、必
要に応じて反応系にポリビニルアルコール、メチ
ルセルロースなどの増粘剤を加えることもでき
る。 反応時間に関しては、実質的に繊維状セツコウ
より形成された球状セツコウが得られるまでとす
ることが必要であるが、通常は1分〜90分でよ
く、好ましくは3〜60分とすればよい。この反応
時間は反応温度の影響を受けるが、加圧下で行な
うことにより常圧下で行なう場合よりも著しく短
縮することができる。また、球状セツコウを得る
ためには撹拌することが必要であり、その手段と
して通常は撹拌羽根を用いるが、同様な効果が得
られる他の方法を任意に利用することができる。 球状セツコウは、最初に生成した短繊維状セツ
コウが撹拌効果によりからみ合つて球状体を形成
することにより得られるものと考えられるが、水
性溶媒中に気泡を存在させているため、球状セツ
コウの生成過程において繊維状セツコウがからみ
合う際に多数の気泡が取り込まれ、球状セツコウ
が形成された後、この気泡が除かれて空隙を生じ
るため、非常に軽量の球状セツコウが得られるも
のと推定される。 水熱反応終了後、通常は反応混合物の熱時固液
分離を行ない、液状物は反応溶媒として再使用す
る。含溶媒率(溶媒/固形分×100)が40%以下
の固形物は乾燥して半水の球状セツコウを得る。
乾燥処理は50〜120℃の温度で1〜3時間加熱す
ることにより行なう。得られる半水球状セツコウ
は可溶性であり、水の存在下で二水の球状セツコ
ウに変換させることのできる。また、この半水球
状セツコウを安定させるため、200℃程度で加熱
処理を行ない可溶性型無水セツコウとし、さら
に500〜800℃の加熱処理により型無水セツコウ
とすることができる。セツコウの安定化は、この
ような加熱処理によるほか有機重合体等による処
理によつて行なうことも可能である。さらに、水
熱反応終了後の球状セツコウのスラリーはそのま
ま素材として各種用途に利用することもできる。 このようにして得られる球状セツコウは直径が
0.01〜10mm、通常は0.05〜1mm、かさ密度0.01〜
0.1g/cm3という非常に軽量で均質なものであ
る。 本発明に係る軽量セツコウ成形体は、上記した
特定の製法によつて得られる軽量球状セツコウに
水および/または結合剤を配合して成形、硬化せ
しめることによつて製造することができる。 球状セツコウに加える水の量は水和硬化の場
合、半水セツコウまたは無水セツコウが二水セツ
コウに変換するために必要な理論水和量以上とす
べきであり、水を加えた混合物を圧縮、押出、流
し込み、抄造、吹付等の成形法によつて成形し、
水和硬化せしめる。なお、水和硬化せしめるに際
し、結合剤を加えることによつてセツコウの結合
を強固にし、一層強度を向上させることができ
る。また、結合剤を用いれば、水和硬化を必ずし
も必要としないで成形体を得ることができること
は勿論である。この目的に適う結合剤としてポリ
ビニルアルコール、カルボキシメチルセルロー
ス、ヒドロキシエチルセルロース、ポリアクリル
アミド、ポリアクリル酸、ポリエチレンオキシド
などの水溶性有機重合体、酢酸ビニルエマルジヨ
ン、アクリル樹脂エマルジヨンなどの水分散性有
機重合体、アクリル酸エステル、カルボキシメチ
ルセルロースなどの有機系結合剤やシリカゾル、
アルミナゾルなどの水分散系コロイド形成性無機
化合物、水ガラス、けい酸ソーダなどの水溶性無
機化合物、燐酸アルミニウム、燐酸マグネシウム
などの無機系結合剤、セメント、セツコウなどの
水硬性材料等を併用することができる。これら結
合剤は球状セツコウ100重量部あたり0.01〜100重
量部、好ましくは0.1〜20重量部の割合で用い
る。なお、球状セツコウとして型無水セツコウ
を使用し、結合剤を用いた場合は、水と共に硬化
促進剤を使用する必要がある。ここで用いる硬化
促進剤としては硫酸マグネシウム、塩化カルシウ
ム、硫酸銅、硫酸アルミニウムなどがある。 さらに所望により、ガラス繊維、アスベスト、
ロツクウール、型無水セツコウ繊維などの無機
系繊維、合成繊維、パルプ、木粉などの有機系材
料等の補強材料を球状セツコウ100重量部あたり
0.01〜100重量部、好ましくは0.1〜20重量部の割
合で加えたり、パーライト、シラスバルーン、バ
ーミキユライトなどの軽量骨材、硫酸マグネシウ
ム、塩化カルシウム、硫酸カリウムなどの硬化促
進剤、ゼラチンなどの硬化遅延剤等を適宜選択し
て添加することができる。 上記の如く、球状セツコウに水および/または
結合剤ならびに必要な他の添加剤を加えてスラリ
ーとしたのち、各種の成形方法により成形して、
硬化せしめることによつて目的とする成形体を得
る。硬化後、遊離水分は乾燥等の手段により除去
する。 本発明の成形体は密度が0.5g/cm2以下、特に
0.3g/cm3以下という非常に軽量であることが大
きな特色である。しかも、軽量であるにも拘らず
機械的強度が高く、かつ熱伝導率が小さく良好な
保温性、断熱性を有し、吸音特性の良好である。
また、成形体の製造という立場から判断すると、
球状セツコウを素としているため、繊維状のもの
と比較して結晶破損がきわめて少なく、作業性の
向上を図ることができるという特色を有してい
る。 本発明の軽量セツコウ成形体は保温材、断熱
材、吸音材、天井材、芯材等として有効に使用で
き、とりわけ軽量であることを要求される分野に
おいて有利に用いられる。 次に、本発明を実施例により詳しく説明する。 製造例 1 3容のステンレス製オートクレープに0.5重
量%の酢酸水溶液2を仕込み、100r.p.m.で撹
拌しながら140℃に昇温し、この温度で二水セツ
コウ80gと種晶としてβ−半水セツコウ4gを投
入し、135℃で20分間反応させた。なお、この際
にオートクレープ下部より焼結板を介して30c.c./
分の速度で溶媒中に空気を導入した。 次いで反応物を熱時ろ過し、さらにメタノール
で洗浄して反応生成物を得た。この生成物を60℃
で3時間乾燥処理を行ない、半水軽量球状セツコ
ウを得た。このセツコウは径が100〜300μ、かさ
密度が0.07g/cm3であつた。 この半水球状セツコウをさらに800℃で2時間
加熱して無水球状セツコウを得た。 製造例 2 製造例1において用いた酢酸水溶液に代え、水
2を用い、かつ撹拌機の回転数を200r.p.m.と
し、常温において原料の二水セツコウ200gおよ
び種晶のβ−半水セツコウ10gを投入し、次いで
140℃に昇温して20分間反応させたほかは、製造
例1と同様の操作をして無水球状セツコウを得
た。 参考例 1 上記製造例1において空気の導入を行なわなか
つたこと以外は同様にして半水球状セツコウを得
た。このセツコウの径は100〜300μであり、かさ
密度は0.14g/cm3であつた。 参考例 2 3容のステンレス製オートクレープに水2
を仕込み、100r.p.m.で撹拌しながら140℃に昇温
し、この温度で種晶は用いず、原料の二水セツコ
ウ80gを投入し、135℃で2時間反応を行なつ
た。 次いで反応物を熱時ろ過し、さらにメタノール
で洗浄して反応生成物を得た。この生成物を60℃
で3時間乾燥処理を行ない、半水繊維状セツコウ
を得た。このセツコウの径は0.5〜2μであり、
長さは100〜500μ、かさ密度は0.09g/cm3であつ
た。 実施例 1〜9 前記製造例1で得られた球状セツコウを用いて
表−1に示したスラリー配合物を調製し、このス
ラリー配合物を抄造面100mm×100mmで40メツシユ
の金網をもつ抄造型枠に流し込み、抄造圧縮成型
し100mm×100mm×20mmの成形体を得た。 脱型した後、成形体を60℃の熱風乾燥機で乾燥
した。このようにして得られた成形体の物性につ
いての測定値を表−1に示す。 実施例 10 前記製造例2で得られた無水球状セツコウを用
いて表−1に示したスラリー配合物を調製し、以
下実施例1〜9と同様にして成形体を得た。この
ものの物性を表−1に示す。 比較例 1〜2 前記参考例1で得られた半水球状セツコウを用
いて表−1に示したスラリー配合物を調製し、以
下実施例1〜9と同様にして成形体を得た。この
ものの物性を表−1に示す。 比較例 1〜2 前記参考例1で得られた半水球状セツコウを用
いて表−1に示したスラリー配合物を調製し、以
下実施例1〜9と同様にして成形体を得た。この
ものの物性を表−1に示す。 比較例 3 前記参考例2で得られた半水繊維状セツコウを
用いて表−1に示したスラリー配合物を調製し、
以下実施例1〜9と同様にして成形体を得た。こ
のものの物性を表−1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lightweight molded body. Conventionally, lightweight molded articles using slag as a raw material have been produced by methods using a large amount of water, using lightweight fillers, foaming methods, methods using fibrous sludge, and the like. However, the molded bodies obtained by applying these methods did not have sufficient strength. The present applicant has previously proposed a method for obtaining a lightweight molded body using a spherical mold made of substantially fibrous mold. However, even though this spherical shell is lightweight, it has a limited bulk density, so it is not possible to use the spherical shell to obtain a molded product with a density of 0.3 g/cm 3 or less and sufficient strength. Ta. An object of the present invention is to provide a lightweight molded body that eliminates the above-mentioned drawbacks by using a very lightweight spherical body that is obtained by a specific manufacturing method. The lightweight molded material of the present invention is obtained by stirring raw material material under heating in an aqueous solvent in which air bubbles are present in the presence of semi-hydrated material or seed crystals made of finely powdered inorganic material. It is obtained by blending water and/or a binder with a spherical shell formed from a fibrous shell, followed by molding and curing. First of all, the spherical mold used for manufacturing the lightweight molded molded material of the present invention will be explained. The spherical sludge is produced by using dihydrate sludge, semi-hydrated sludge, soluble anhydrous sludge, and a mixture thereof as a raw material sludge, and allowing the raw material sludge to exist in the presence of a seed crystal consisting of a half-hydrate sludge or a finely powdered inorganic material. It is obtained by stirring under heating in a water-soluble solvent. The raw material can be of any origin, such as natural sludge, chemical sludge, or slough produced as a by-product during flue gas desulfurization treatment. In addition, as an aqueous solvent, water or this water with an acid,
Examples include aqueous solutions containing one or both of water-soluble organic substances, and the acid used here may be either an organic acid or an inorganic acid. For example, the organic acids are preferably acetic acid, tartaric acid, formic acid, malic acid, etc., and the inorganic acids are preferably hydrochloric acid, sulfuric acid, nitric acid, boric acid, etc. There are no particular restrictions on the concentration of the acid aqueous solution, but in the case of organic acids, it is usually 0.05 to 80% by weight, preferably 0.2 to 40% by weight.
In the case of inorganic acids, the amount is 0.01 to 50% by weight, preferably 0.05 to 20% by weight. On the other hand, as the water-soluble organic substance, ethylene glycol, diethylene glycol, glycerin, etc. can be suitably used, and the concentration in the aqueous solution is generally 0.02 to 40% by weight, preferably 0.1 to 20% by weight. The raw material can be added in its entirety to the aqueous solvent at room temperature, mixed and then heated to a predetermined temperature, or the aqueous solvent can be heated to a predetermined temperature in advance, and then the raw material can be added and mixed. It's okay. Furthermore, a better spherical shell is produced by adding seed crystals made of semi-hydrated shell or finely powdered inorganic material to the raw material shell. The amount of raw material to be mixed with the above aqueous solvent is not particularly limited, but it is generally selected in the range of 0.5 to 50% by weight, preferably 2 to 30% by weight based on the weight of the solvent. , prepared in slurry form. The slurry prepared in this way was
The hydrothermal reaction is carried out by heating to a temperature of 105-140°C, preferably 105-140°C, and stirring. This hydrothermal reaction is usually carried out under pressure, and at temperatures outside the above range it is difficult to obtain lightweight spherical shells and the reaction time becomes longer. The hydrothermal reaction is carried out in the presence of air bubbles in an aqueous solvent, but the air bubbles at this time can be created by introducing air, nitrogen gas, etc. into the aqueous solvent, or by adding an air entraining agent or blowing agent. can be present in the reaction system by In the former case, a clay plate or the like can be used, and in the latter case, saponin, soap, sodium alkylbenzene sulfonate, sodium polyoxyethylene alkyl sulfate, etc. can be used as the air entraining agent or foaming agent. , and auxiliary agents such as alcohols can also be used in combination. In addition, a thickener such as polyvinyl alcohol or methyl cellulose can be added to the reaction system if necessary. Regarding the reaction time, it is necessary that the reaction time is until a spherical shell formed substantially from a fibrous shell is obtained, but it is usually 1 minute to 90 minutes, preferably 3 to 60 minutes. . This reaction time is affected by the reaction temperature, but by carrying out the reaction under increased pressure, it can be significantly shorter than when carrying out the reaction under normal pressure. Further, in order to obtain a spherical slag, it is necessary to stir, and a stirring blade is usually used as a means for stirring, but other methods that can obtain the same effect can be used as desired. It is thought that the spherical strands are obtained when the initially generated short fibrous strands intertwine to form a spherical body due to the stirring effect, but the presence of air bubbles in the aqueous solvent prevents the formation of spherical strands. It is presumed that during the process, when the fibrous shells become entangled, a large number of air bubbles are taken in, forming a spherical shell, and then these air bubbles are removed to create voids, resulting in an extremely lightweight spherical shell. . After the hydrothermal reaction is completed, the reaction mixture is usually subjected to solid-liquid separation under heat, and the liquid is reused as a reaction solvent. Solids with a solvent content (solvent/solid content x 100) of 40% or less are dried to obtain semi-hydrated spherical slags.
The drying treatment is carried out by heating at a temperature of 50 to 120°C for 1 to 3 hours. The resulting hemihydric spheres are soluble and can be converted into dihydric spheres in the presence of water. In addition, in order to stabilize this hemihydrate spherical slag, it can be heat-treated at about 200°C to form a soluble anhydrous sludge, and further heat-treated at 500 to 800°C to form an anhydrous slag. In addition to such heat treatment, the stabilization of the phlegm can also be achieved by treatment with an organic polymer or the like. Furthermore, the slurry of spherical snails after the completion of the hydrothermal reaction can be used as a raw material for various purposes. The spherical settsukou obtained in this way has a diameter of
0.01~10mm, usually 0.05~1mm, bulk density 0.01~
It is extremely lightweight and homogeneous at 0.1 g/cm 3 . The lightweight molded body according to the present invention can be produced by blending water and/or a binder with a lightweight spherical body obtained by the above-described specific manufacturing method, followed by molding and curing. In the case of hydration curing, the amount of water added to the spherical curing should be greater than or equal to the theoretical hydration amount required to convert semi-hydrated curing or anhydrous curing into dihydrate curing, and the water-added mixture should be compressed, Molded by extrusion, pouring, papermaking, spraying, etc.
Hydration hardening. In addition, by adding a binder during hydration curing, the bonding of the adhesive can be strengthened and the strength can be further improved. Moreover, it goes without saying that if a binder is used, a molded article can be obtained without necessarily requiring hydration curing. Binders suitable for this purpose include water-soluble organic polymers such as polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, polyacrylamide, polyacrylic acid, polyethylene oxide, water-dispersible organic polymers such as vinyl acetate emulsion, acrylic resin emulsion, etc. Organic binders such as acrylic esters and carboxymethylcellulose, silica sol,
Use together with water-dispersed colloid-forming inorganic compounds such as alumina sol, water glass, water-soluble inorganic compounds such as sodium silicate, inorganic binders such as aluminum phosphate and magnesium phosphate, cement, hydraulic materials such as slag, etc. I can do it. These binders are used in a proportion of 0.01 to 100 parts by weight, preferably 0.1 to 20 parts by weight, per 100 parts by weight of the spherical adhesive. In addition, when a type anhydrous plaster is used as the spherical plaster and a binder is used, it is necessary to use a curing accelerator together with water. Examples of hardening accelerators used here include magnesium sulfate, calcium chloride, copper sulfate, and aluminum sulfate. Furthermore, if desired, glass fiber, asbestos,
Reinforcement materials such as inorganic fibers such as rock wool and type anhydrous fibers, synthetic fibers, pulp, organic materials such as wood flour, etc. per 100 parts by weight of spherical fibers.
It may be added in a proportion of 0.01 to 100 parts by weight, preferably 0.1 to 20 parts by weight, or a lightweight aggregate such as perlite, shirasu balloon, vermiculite, hardening accelerator such as magnesium sulfate, calcium chloride, potassium sulfate, gelatin, etc. A curing retarder and the like can be appropriately selected and added. As mentioned above, water and/or a binder and other necessary additives are added to the spherical sludge to form a slurry, which is then molded using various molding methods.
A desired molded article is obtained by curing. After curing, free moisture is removed by drying or other means. The molded article of the present invention has a density of 0.5 g/cm 2 or less, especially
A major feature is that it is extremely lightweight, weighing less than 0.3 g/cm 3 . Moreover, despite being lightweight, it has high mechanical strength, low thermal conductivity, good heat retention and heat insulation properties, and good sound absorption properties.
Also, judging from the standpoint of manufacturing molded objects,
Since it is made of spherical crystals, it has the characteristic that crystal breakage is extremely less compared to fibrous ones, and it is possible to improve workability. The lightweight molded article of the present invention can be effectively used as a heat insulating material, a heat insulating material, a sound absorbing material, a ceiling material, a core material, etc., and is particularly advantageously used in fields where lightness is required. Next, the present invention will be explained in detail with reference to examples. Production example 1 A 3-volume stainless steel autoclave was charged with 0.5% by weight acetic acid aqueous solution 2, and the temperature was raised to 140°C while stirring at 100 rpm. At this temperature, 80 g of dihydrate and β-hemihydrate were added as seed crystals. 4 g of Setsuko was added and reacted at 135°C for 20 minutes. In addition, at this time, 30 c.c./
Air was introduced into the solvent at a rate of 1 minute. The reaction product was then filtered while hot and further washed with methanol to obtain a reaction product. This product at 60℃
A drying process was carried out for 3 hours to obtain semi-water lightweight spherical snails. This snail had a diameter of 100 to 300 μm and a bulk density of 0.07 g/cm 3 . This semi-hydrated spherical shell was further heated at 800°C for 2 hours to obtain an anhydrous spherical shell. Production Example 2 Using water 2 instead of the acetic acid aqueous solution used in Production Example 1, and setting the rotation speed of the stirrer to 200 rpm, 200 g of raw material dihydrate and 10 g of β-hemihydrate seed crystal were added at room temperature. put it in, then
Anhydrous spherical snails were obtained in the same manner as in Production Example 1, except that the temperature was raised to 140°C and the reaction was carried out for 20 minutes. Reference Example 1 A semi-water spherical snail was obtained in the same manner as in Production Example 1 above, except that air was not introduced. The diameter of this shell was 100 to 300 μ, and the bulk density was 0.14 g/cm 3 . Reference example 2 2 parts of water in a 3 volume stainless steel autoclave
was charged, and the temperature was raised to 140°C while stirring at 100 rpm. At this temperature, 80 g of the raw material Nissui Setsuko was added without using seed crystals, and the reaction was carried out at 135°C for 2 hours. The reaction product was then filtered while hot and further washed with methanol to obtain a reaction product. This product at 60℃
A drying process was carried out for 3 hours to obtain a semi-aqueous fibrous snail. The diameter of this settsuko is 0.5 to 2μ,
The length was 100-500μ, and the bulk density was 0.09g/cm 3 . Examples 1 to 9 A slurry composition shown in Table 1 was prepared using the spherical mold obtained in Production Example 1, and the slurry composition was applied to a papermaking mold having a papermaking surface of 100mm x 100mm and a wire mesh of 40 meshes. The mixture was poured into a frame and subjected to paper compression molding to obtain a molded article measuring 100 mm x 100 mm x 20 mm. After demolding, the molded body was dried in a hot air dryer at 60°C. Table 1 shows the measured values for the physical properties of the molded product thus obtained. Example 10 A slurry composition shown in Table 1 was prepared using the anhydrous spherical slag obtained in Production Example 2, and a molded article was obtained in the same manner as in Examples 1 to 9. The physical properties of this product are shown in Table 1. Comparative Examples 1 to 2 Slurry formulations shown in Table 1 were prepared using the hemihydrospherical spherules obtained in Reference Example 1, and molded bodies were obtained in the same manner as in Examples 1 to 9. The physical properties of this product are shown in Table 1. Comparative Examples 1 to 2 Slurry formulations shown in Table 1 were prepared using the hemihydrospherical spherules obtained in Reference Example 1, and molded bodies were obtained in the same manner as in Examples 1 to 9. The physical properties of this product are shown in Table 1. Comparative Example 3 A slurry formulation shown in Table 1 was prepared using the hemihydrate fibrous sludge obtained in Reference Example 2, and
Thereafter, molded bodies were obtained in the same manner as in Examples 1 to 9. The physical properties of this product are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 原料セツコウを、半水セツコウまたは微粉状
無機物からなる種晶の存在下に気泡を存在させた
水性溶媒中で加熱下、撹拌することによつて得ら
れる実質的に繊維状セツコウより形成された球状
セツコウに水および/または結合剤を配合して成
形、硬化せしめてなる軽量セツコウ成形体。
1. Formed from substantially fibrous slag obtained by stirring raw sludge under heating in an aqueous solvent in which air bubbles are present in the presence of seed crystals consisting of semi-hydrated sludge or finely powdered inorganic material. A lightweight molded body made by blending water and/or a binder with a spherical body and molding and curing it.
JP5253479A 1979-05-01 1979-05-01 Lightweight gypsum formed body Granted JPS55144464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253479A JPS55144464A (en) 1979-05-01 1979-05-01 Lightweight gypsum formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253479A JPS55144464A (en) 1979-05-01 1979-05-01 Lightweight gypsum formed body

Publications (2)

Publication Number Publication Date
JPS55144464A JPS55144464A (en) 1980-11-11
JPS6129909B2 true JPS6129909B2 (en) 1986-07-10

Family

ID=12917423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253479A Granted JPS55144464A (en) 1979-05-01 1979-05-01 Lightweight gypsum formed body

Country Status (1)

Country Link
JP (1) JPS55144464A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302483A (en) * 2006-05-08 2007-11-22 Yoshino Gypsum Co Ltd Hollow spherical type ii anhydrous gypsum particle, method for producing hollow spherical type ii anhydrous gypsum particle, and porous lightweight hardened gypsum product

Also Published As

Publication number Publication date
JPS55144464A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
US4174230A (en) Gypsum compositions
US5340513A (en) Process for the production of calcium hydrosilicate bonded shaped articles
JPH0138067B2 (en)
CN106116422B (en) A kind of light hollow thermal insulation board and preparation method thereof
JP2000109380A (en) Lightweight inorganic board
JPS6129909B2 (en)
JPS60171260A (en) Hydraulic inorganic composition
JP2875839B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JP3398544B2 (en) Method for producing perlite cured product
JPS586699B2 (en) Setsukou molded body
JPS5929551B2 (en) Manufacturing method of flame-retardant organic fiber molded body
JPS58181750A (en) Gypsum composite material composition and manufacture of gypsum composite formed body
JPS6143315B2 (en)
JP2875838B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JPH0761876A (en) Production of inorganic hardened material
JPH03141172A (en) Production of formed article of xonotlite-type light-weight calcium silicate hydrate
JP2755447B2 (en) Manufacturing method of zonotorite-based compact calcium silicate hydrate
SU1583386A1 (en) Initial composition for producing autoclave heat-insulator articles
JPS6143314B2 (en)
JP3365811B2 (en) Method for producing hydraulic molded product
JPS586698B2 (en) Gypsum hardened body
JPH026360A (en) Lightweight cement composition and production of lightweight cement form therefrom
JPS6335595B2 (en)
JPS5827216B2 (en) Method for manufacturing lightweight cured gypsum body with improved mechanical strength
JPH11343182A (en) Inorganic plate and its production