JP2007302483A - Hollow spherical type ii anhydrous gypsum particle, method for producing hollow spherical type ii anhydrous gypsum particle, and porous lightweight hardened gypsum product - Google Patents
Hollow spherical type ii anhydrous gypsum particle, method for producing hollow spherical type ii anhydrous gypsum particle, and porous lightweight hardened gypsum product Download PDFInfo
- Publication number
- JP2007302483A JP2007302483A JP2006129508A JP2006129508A JP2007302483A JP 2007302483 A JP2007302483 A JP 2007302483A JP 2006129508 A JP2006129508 A JP 2006129508A JP 2006129508 A JP2006129508 A JP 2006129508A JP 2007302483 A JP2007302483 A JP 2007302483A
- Authority
- JP
- Japan
- Prior art keywords
- gypsum
- hollow spherical
- type
- spherical particles
- anhydrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/02—Methods and apparatus for dehydrating gypsum
- C04B11/028—Devices therefor characterised by the type of calcining devices used therefor or by the type of hemihydrate obtained
- C04B11/036—Devices therefor characterised by the type of calcining devices used therefor or by the type of hemihydrate obtained for the dry process, e.g. dehydrating in a fluidised bed or in a rotary kiln, i.e. to obtain beta-hemihydrate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/02—Methods and apparatus for dehydrating gypsum
- C04B11/024—Ingredients added before, or during, the calcining process, e.g. calcination modifiers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/05—Calcium sulfate cements obtaining anhydrite, e.g. Keene's cement
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
本発明は、新規な形態のII型無水石膏中空球状粒子、およびその製造方法、ならびに当該II型無水石膏中空球状粒子を含有する多孔質軽量石膏硬化体に関する。 The present invention relates to a novel type II anhydrous gypsum hollow spherical particle, a production method thereof, and a porous lightweight gypsum hardened body containing the type II anhydrous gypsum hollow spherical particle.
近年、省エネルギー、安全性、快適性、心身の健康などを確保した健康住宅志向が広がっている。石膏ボードは比較的安価であり断熱性などに優れているため建築物の内装材などに用いられているが、さらなる安全性、快適性といった要求性能の付与が今後の課題の一つとなっている。また、近年は高層マンションやビルなど多く建造されているが、建物の重量を抑えるために、軽量で高強度の内装材が求められている。この要求性能にアプローチするためには、石膏硬化体を多孔質化することが一つの有効手段であり、多孔体であれば調湿能、環境ホルモンやVOCの吸着能などの付加価値を石膏ボードに付与することができる。 In recent years, the trend toward healthy homes that ensure energy saving, safety, comfort, and mental and physical health has been increasing. Gypsum board is relatively inexpensive and has excellent heat insulation properties, so it is used for building interior materials. However, the addition of required performance such as safety and comfort is one of the future issues. . In recent years, many high-rise condominiums and buildings have been built, but in order to reduce the weight of the building, lightweight and high-strength interior materials are required. In order to approach this required performance, making the gypsum hardened body porous is one effective means, and if it is a porous body, the added value such as humidity control ability, environmental hormone and VOC adsorption capacity etc. Can be granted.
しかし、一般に石膏硬化体を多孔質化するためには混水量を高くする方法が用いられるが、この方法では多孔質化により強度がいちじるしく低下するなどの問題がある。また、高分子中空球状粒子を添加して多孔質化する方法も考えられるが、石膏硬化体の不燃性の低下、あるいは中空球状粒子表面を通じてクラックが生じる可能性もあるため、同じ素材で中空球状粒子を作製することが望ましい。特許文献1は、中空柱状炭酸カルシウムを開示している。特許文献1の中空柱状炭酸カルシウムは比重が軽いので石膏スラリーに添加し、硬化させた場合、石膏硬化体の多孔質化には貢献するものの、異なる素材であるため、硬化体の不燃性の低下、あるいは中空球状粒子表面を通じてクラックが生じる可能性がある。 However, in general, a method of increasing the amount of mixed water is used to make the gypsum hardened body porous. However, this method has a problem that the strength is significantly reduced by making the porous material porous. In addition, a method of adding a polymer hollow spherical particle to make it porous is also conceivable, but since the nonflammability of the gypsum hardened body may be reduced, or cracks may occur through the surface of the hollow spherical particle, It is desirable to produce particles. Patent Document 1 discloses hollow columnar calcium carbonate. Since the hollow columnar calcium carbonate of Patent Document 1 has a low specific gravity, when added to a gypsum slurry and cured, it contributes to making the gypsum hardened body porous, but because it is a different material, the nonflammability of the hardened body is reduced. Alternatively, cracks may occur through the surface of the hollow spherical particles.
非特許文献1には、石膏水溶液を噴霧乾燥することにより、β型半水I石膏中空球状粒子が作製できることを記載している。この方法によって同じ素材で中空球状粒子を作製することができるが、β型半水I石膏中空球状粒子を石膏スラリーに添加し硬化させると、石膏硬化体内において中空球状粒子の形状を維持しないため、多孔質化には貢献しなかった。
本発明は、水硬性石膏スラリーに添加し、硬化させた後もその形状を石膏硬化体内で維持するII型無水石膏中空球状粒子と、そのようにして得られる多孔質軽量石膏硬化体を提供することを目的とする。 The present invention provides a type II anhydrous gypsum hollow spherical particle that maintains its shape in a gypsum cured body after being added to a hydraulic gypsum slurry and cured, and a porous lightweight gypsum cured product thus obtained. For the purpose.
本発明のII型無水石膏中空球状粒子は、内部に中空構造を有することを特徴とする。 The type II anhydrous gypsum hollow spherical particles of the present invention are characterized by having a hollow structure inside.
本発明のII型無水石膏中空球状粒子は、所定濃度の石膏水溶液と媒晶剤とを配合させた水溶液を調整する工程と、前記水溶液を所定の乾燥温度、コンプレッサー圧及びブロアー圧の下で石膏回収温度150〜250℃で噴霧乾燥を行い、β型半水I石膏中空球状粒子を得る工程と、前記β型半水I石膏中空球状粒子を350〜550℃で焼成する工程とからなる製造方法により作製されることを特徴とする。 The type II anhydrous gypsum hollow spherical particles of the present invention include a step of preparing an aqueous solution in which a predetermined concentration of a gypsum aqueous solution and a crystallite is blended, and the aqueous solution is subjected to gypsum under a predetermined drying temperature, compressor pressure, and blower pressure. A production method comprising spray drying at a recovery temperature of 150 to 250 ° C. to obtain β-type semi-water I gypsum hollow spherical particles and firing the β-type semi-water I gypsum hollow spherical particles at 350 to 550 ° C. It is produced by.
前記製造方法によって作製されるので、均一な球状粒子を得ることができる。また、II型無水石膏中空球状粒子の粒径制御が容易である。 Since it is produced by the production method, uniform spherical particles can be obtained. Moreover, the particle size control of the type II anhydrous gypsum hollow spherical particles is easy.
更に、前記製造方法は、連続操作が可能となり、本発明のII型無水石膏中空球状粒子を効率良く製造することが可能となる。 Furthermore, the production method can be continuously operated, and the type II anhydrous gypsum hollow spherical particles of the present invention can be efficiently produced.
本発明のII型無水石膏中空球状粒子は、内部が中空構造を有するので、石膏硬化体に添加した場合、多孔質化に貢献する。さらに、石膏硬化体と同じ素材で形成されているので、石膏硬化体の強度を保つことができる。 Since the type II anhydrous gypsum hollow spherical particles of the present invention have a hollow structure inside, when added to a gypsum hardened body, it contributes to making it porous. Furthermore, since it is formed of the same material as the gypsum hardened body, the strength of the gypsum hardened body can be maintained.
本発明のII型無水石膏中空球状粒子の製造方法によれば、II型無水石膏中空球状粒子を均一な球状粒子で形成することができる。また、II型無水石膏中空球状粒子の粒径制御が容易となる。更に、本発明のII型無水石膏中空球状粒子の製造方法によれば、連続操作が可能となり、本発明のII型無水石膏中空球状粒子を効率的に製造することができる。 According to the method for producing type II anhydrous gypsum hollow spherical particles of the present invention, type II anhydrous gypsum hollow spherical particles can be formed of uniform spherical particles. Moreover, the particle size control of the type II anhydrous gypsum hollow spherical particles becomes easy. Furthermore, according to the method for producing type II anhydrous gypsum hollow spherical particles of the present invention, continuous operation is possible, and the type II anhydrous gypsum hollow spherical particles of the present invention can be efficiently produced.
本発明の多孔質軽量石膏硬化体は、本発明のII型無水石膏中空球状粒子を含有するので、強度を維持したまま軽量な石膏硬化体を提供することができる。 Since the porous lightweight gypsum cured product of the present invention contains the type II anhydrous gypsum hollow spherical particles of the present invention, a lightweight gypsum cured product can be provided while maintaining strength.
また、本発明の多孔質軽量石膏硬化体は、水硬性石膏スラリーに配合すると凝結を促進する。 Moreover, when the porous lightweight gypsum hardened body of the present invention is blended in a hydraulic gypsum slurry, the setting is accelerated.
本発明の実施の形態について説明する。 Embodiments of the present invention will be described.
本実施形態のII型無水石膏中空球状粒子は、内部に中空体構造を有する。 The type II anhydrous gypsum hollow spherical particles of this embodiment have a hollow body structure inside.
本実施形態のII型無水石膏中空球状粒子は、所定濃度の石膏水溶液と媒晶剤とを配合させた水溶液を調整する工程と、前記水溶液を所定の乾燥温度、コンプレッサー圧及びブロアー圧の下で石膏回収温度150〜250℃で噴霧乾燥を行い、β型半水I石膏中空球状粒子を得る工程と、前記β型半水I石膏中空球状粒子を350〜550℃で焼成する工程とからなる製造方法により作製される。 The type II anhydrous gypsum hollow spherical particles of the present embodiment include a step of preparing an aqueous solution in which a gypsum aqueous solution having a predetermined concentration and a crystal clearing agent are mixed, and the aqueous solution is subjected to a predetermined drying temperature, a compressor pressure, and a blower pressure. Production comprising a step of spray drying at a gypsum recovery temperature of 150 to 250 ° C. to obtain β-type semi-water I gypsum hollow spherical particles and a step of firing the β-type semi-water I gypsum hollow spherical particles at 350 to 550 ° C. Produced by the method.
前記石膏水溶液の濃度は、(1.1)〜(18.4)mmol・dm-3である。石膏としてはα型やβ型の半水石膏を使用するが、二水石膏を使用してもよい。 The concentration of the gypsum aqueous solution is (1.1) to (18.4) mmol · dm −3 . As the gypsum, α-type or β-type hemihydrate gypsum is used, but dihydrate gypsum may be used.
前記媒晶剤の例としては、クエン酸、(α-アミラーゼ)、(d-グルタミン酸)等が挙げられる。これらの中でクエン酸が好ましく使用できる。 Examples of the crystallizing agent include citric acid, (α-amylase), (d-glutamic acid) and the like. Of these, citric acid can be preferably used.
前記媒晶剤の添加量は、(0.1)〜(1.0)wt%である。 The addition amount of the crystallizing agent is (0.1) to (1.0) wt%.
前記乾燥温度は、(180)〜(450)℃である。 The drying temperature is (180) to (450) ° C.
前記石膏回収温度は、(180)〜(220)℃である。 The gypsum recovery temperature is (180) to (220) ° C.
前記コンプレッサー圧は、(40)〜(120)kPaである。 The compressor pressure is (40) to (120) kPa.
前記ブロアー圧は、(-50)hPaである。→回収量のみに影響
前記焼成する工程における、焼成温度は、(300)〜(1000)℃であり、350〜550℃であることが好ましい。
The blower pressure is (-50) hPa. → Effects only on recovery amount The firing temperature in the firing step is (300) to (1000) ° C., preferably 350 to 550 ° C.
前記焼成する工程における、焼成時間は、(0.5)〜(2)時間であり、(1)〜(2)時間であることが好ましい。 The firing time in the firing step is (0.5) to (2) hours, preferably (1) to (2) hours.
本実施形態のII型無水石膏中空球状粒子の粒径は、4μm〜50μmであり、10μm〜20μmであることが好ましい。 The particle size of the type II anhydrous gypsum hollow spherical particles of this embodiment is 4 μm to 50 μm, and preferably 10 μm to 20 μm.
本実施形態の多孔質軽量石膏硬化体は、II型無水石膏中空球状粒子を焼石膏に対して5〜20wt%添加した水硬性石膏組成物に水を加えて硬化させたことを特徴とする。 The porous lightweight gypsum hardened body of the present embodiment is characterized in that water is added to a hydraulic gypsum composition in which 5 to 20 wt% of type II anhydrous gypsum hollow spherical particles are added to calcined gypsum and cured.
本実施形態の多孔質軽量石膏硬化体は、二水石膏の針状結晶マトリックス中に本実施形態のII型無水石膏中空球状粒子が分散していることを特徴とする。
実施例
以下、本発明の好適な実施例を示す。
本発明のII型無水石膏中空球状粒子および多孔質軽量石膏硬化体の製造方法を、図1を用いて説明する。
(II型無水石膏中空球状粒子の作製)
半水石膏を純水に溶解させて、濃度18.8mmol・dm-3の二水石膏溶液を作製した(S101)。この二水石膏溶液にクエン酸を0.1wt%添加することにより、噴霧溶液を作製した(S102)。噴霧溶液を、流量0.30cm3・s-1により噴霧乾燥機内部に導入し、乾燥温度400℃、コンプレッサー圧60kPa、ブロア圧-50hPa、試料回収温度200℃の条件で噴霧乾燥を行い(S103)、これにより、粒径20μm程度のβ型半水I石膏中空球状粒子を得た(S104)。
The porous lightweight gypsum hardened body of this embodiment is characterized in that the type II anhydrous gypsum hollow spherical particles of this embodiment are dispersed in a needle-like crystal matrix of dihydrate gypsum.
Examples Hereinafter, preferred examples of the present invention will be described.
A method for producing type II anhydrous gypsum hollow spherical particles and a cured porous lightweight gypsum according to the present invention will be described with reference to FIG.
(Preparation of type II anhydrous gypsum hollow spherical particles)
Hemihydrate gypsum was dissolved in pure water to prepare a dihydrate gypsum solution having a concentration of 18.8 mmol · dm −3 (S101). A spray solution was prepared by adding 0.1 wt% of citric acid to the dihydrate gypsum solution (S102). The spray solution is introduced into the spray dryer at a flow rate of 0.30 cm 3 · s −1 and spray-dried under the conditions of a drying temperature of 400 ° C., a compressor pressure of 60 kPa, a blower pressure of -50 hPa, and a sample recovery temperature of 200 ° C. (S103) Thus, β-type semi-water I gypsum hollow spherical particles having a particle size of about 20 μm were obtained (S104).
得られたβ型半水I石膏中空球状粒子は、500℃で1時間焼成することでII型無水石膏中空球状粒子とした(S106〜S107)。
(多孔質軽量石膏硬化体の作製)
次に、上記方法で得られたII型無水石膏中空球状粒子を使用して多孔質軽量石膏硬化体の作製する方法について説明する。
The obtained β-type semi-water I gypsum hollow spherical particles were calcined at 500 ° C. for 1 hour to form II-type anhydrous gypsum hollow spherical particles (S106 to S107).
(Preparation of porous lightweight gypsum hardened body)
Next, a method for producing a porous lightweight gypsum hardened body using type II anhydrous gypsum hollow spherical particles obtained by the above method will be described.
先ず、試薬焼石膏を準備し(S108)、これに、上記製造過程で得られたII型無水石膏中空球状粒子を添加する(S109)。 First, reagent calcined gypsum is prepared (S108), and the type II anhydrous gypsum hollow spherical particles obtained in the above production process are added thereto (S109).
試薬焼石膏に対し中空球状粒子を5〜20wt%となるように添加し、試薬焼石膏に対し混水量70 wt%で水を加えて(S110)、硬化させ(S111)、硬化体を作製した(S112)。 Hollow spherical particles were added to the reagent calcined gypsum so as to be 5 to 20 wt%, and water was added to the reagent calcined gypsum at a mixed water amount of 70 wt% (S110) and cured (S111) to produce a cured product. (S112).
なお、得られたII型無水石膏中空球状粒子の特定を走査型電子顕微鏡で観察を行った。また、硬化体の強度を表す指標として圧縮強さを測定した。 The type II anhydrous gypsum hollow spherical particles were identified with a scanning electron microscope. Further, the compressive strength was measured as an index representing the strength of the cured product.
噴霧乾燥法により得られたII型無水石膏中空球状粒子の走査型電子顕微写真を図2に示す。図2aに示すとおり、生成物は微細な針状の一次粒子から構成された粒径20μm程度の球状二次粒子であり、X線回折図形および熱分析よりII型無水石膏であることが確かめられた。 FIG. 2 shows a scanning electron micrograph of type II anhydrous gypsum hollow spherical particles obtained by spray drying. As shown in FIG. 2a, the product is a spherical secondary particle having a particle size of about 20 μm composed of fine needle-like primary particles, and it is confirmed that it is type II anhydrous gypsum by X-ray diffraction pattern and thermal analysis. It was.
図2bは、得られたII型無水石膏中空球状粒子をエポキシ樹脂に包含させ、ミクロトームにて切断した破断面を示す。図2cはII型無水石膏中空球状粒子の拡大図を、2(d)は中空粒子の内部組織を示す。 FIG. 2b shows a fracture surface of the obtained type II anhydrous gypsum hollow spherical particles included in an epoxy resin and cut with a microtome. FIG. 2c shows an enlarged view of type II anhydrous gypsum hollow spherical particles, and 2 (d) shows the internal structure of the hollow particles.
図2b〜図2dに示すとおり、球状粒子の内部構造は中空体であった。 次に、石膏硬化体の多孔質度を、気孔率で表す。 As shown in FIGS. 2b to 2d, the internal structure of the spherical particles was a hollow body. Next, the porosity of the gypsum hardened body is expressed by the porosity.
気孔率は、石膏硬化体の密度等から下記の式で求めた。 The porosity was determined by the following formula from the density of the gypsum hardened body.
気孔率(%)=(1−(実測かさ密度÷(二水セッコウ理論密度×(1−中空球状粒子添加率/100)+II型無水セッコウ理論密度×中空球状粒子添加率/100)))×100
石膏硬化体の気孔率に及ぼす中空球状粒子添加の影響について検討を行ったところ、中空球状粒子無添加では気孔率56%であるが、中空球状粒子を添加することにより気孔率は増大する傾向が見られた。
Porosity (%) = (1− (measured bulk density ÷ (two water gypsum theoretical density × (1−hollow spherical particle addition rate / 100) + type II anhydrous gypsum theoretical density × hollow spherical particle addition rate / 100))) × 100
When the effect of the addition of hollow spherical particles on the porosity of the hardened gypsum was examined, the porosity was 56% without the addition of hollow spherical particles, but the porosity tends to increase with the addition of hollow spherical particles. It was seen.
また、中空球状粒子添加量と混水量を変化させ得られた多孔質軽量石膏硬化体の圧縮強さと気孔率の関係について示したのが図3である。従来までの混水量を変化させて得られた多孔質硬化体は、気孔率の増加にともない圧縮強さは直線的に低下する傾向が見られ、気孔率61%のとき圧縮強さは50%にまで減少した。一方、中空球状粒子添加量を変化させた場合には添加量が少ない条件では圧縮強さも低下するが、5wt%添加以上では気孔率が増加しても圧縮強さとの低下はほとんど見られず、同じ気孔率61%において圧縮強さの低下は20%程度であった。 FIG. 3 shows the relationship between the compressive strength and the porosity of a cured porous lightweight gypsum obtained by changing the amount of hollow spherical particles added and the amount of mixed water. The conventional porous cured products obtained by changing the amount of mixed water show a tendency for the compressive strength to decrease linearly as the porosity increases, and when the porosity is 61%, the compressive strength is 50%. Decreased to. On the other hand, when the amount of hollow spherical particles added is changed, the compressive strength also decreases under the condition where the added amount is small, but with the addition of 5 wt% or more, there is almost no decrease in compressive strength even when the porosity is increased. At the same porosity of 61%, the decrease in compressive strength was about 20%.
また、中空球状粒子を添加した硬化体破断面を走査型電子顕微鏡により観察したところ、中空球状粒子が二水石膏の針状結晶の絡み合いの中に均一に分散した組織であることが確認された。写真を図5(a)および図5(b)に示す。
また、中空球状粒子表面には一部二水石膏の針状結晶の生成も確認され、この絡み合いが高強度化の主因と考えられる。
Further, when the hardened fracture surface to which the hollow spherical particles were added was observed with a scanning electron microscope, it was confirmed that the hollow spherical particles had a structure uniformly dispersed in the entanglement of the needle-shaped crystals of dihydrate gypsum. . The photographs are shown in FIGS. 5 (a) and 5 (b).
In addition, the formation of needle-like crystals of dihydrate gypsum was partially confirmed on the surface of the hollow spherical particles, and this entanglement is considered to be the main cause of increasing the strength.
図4は、硬化体の凝結時間に及ぼすII型無水石膏中空球状粒子添加量を表す。硬化体の凝結時間は、中空球状粒子を添加することで短縮する傾向がみられ、20wt%添加したものでは、始発14分、終結17分と大幅に促進された。 FIG. 4 shows the amount of type II anhydrous gypsum hollow spherical particles added to the setting time of the cured product. The setting time of the cured product tended to be shortened by adding hollow spherical particles, and when it was added at 20 wt%, the initial setting was 14 minutes and the final setting was 17 minutes.
本発明のII型無水石膏中空球状粒子は、軽量で且つ高強度を有する石膏硬化体の作製に利用できる。 The type II anhydrous gypsum hollow spherical particles of the present invention can be used to produce a gypsum hardened body that is lightweight and has high strength.
Claims (5)
前記水溶液を所定の乾燥温度、コンプレッサー圧及びブロアー圧の下で石膏回収温度150〜250℃で噴霧乾燥を行い、β型半水I石膏中空球状粒子を得る工程と、
前記β型半水I石膏中空球状粒子を350〜550℃で焼成する工程、
からなることを特徴とする、II型無水石膏中空球状粒子製造方法。 A step of preparing an aqueous solution in which a predetermined concentration of gypsum aqueous solution and a crystal clearing agent are mixed;
Spray drying the aqueous solution under a predetermined drying temperature, compressor pressure and blower pressure at a gypsum recovery temperature of 150 to 250 ° C. to obtain β-type semi-water I gypsum hollow spherical particles;
Firing the β-type semi-water I gypsum hollow spherical particles at 350 to 550 ° C.,
A method for producing type II anhydrous gypsum hollow spherical particles, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006129508A JP2007302483A (en) | 2006-05-08 | 2006-05-08 | Hollow spherical type ii anhydrous gypsum particle, method for producing hollow spherical type ii anhydrous gypsum particle, and porous lightweight hardened gypsum product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006129508A JP2007302483A (en) | 2006-05-08 | 2006-05-08 | Hollow spherical type ii anhydrous gypsum particle, method for producing hollow spherical type ii anhydrous gypsum particle, and porous lightweight hardened gypsum product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007302483A true JP2007302483A (en) | 2007-11-22 |
Family
ID=38836749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006129508A Pending JP2007302483A (en) | 2006-05-08 | 2006-05-08 | Hollow spherical type ii anhydrous gypsum particle, method for producing hollow spherical type ii anhydrous gypsum particle, and porous lightweight hardened gypsum product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007302483A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144464A (en) * | 1979-05-01 | 1980-11-11 | Idemitsu Kosan Co | Lightweight gypsum formed body |
JPS55144416A (en) * | 1979-05-01 | 1980-11-11 | Idemitsu Kosan Co Ltd | Manufacture of light weight spherical gypsum |
JP2002348169A (en) * | 2001-03-21 | 2002-12-04 | Grg Material:Kk | Construction material |
-
2006
- 2006-05-08 JP JP2006129508A patent/JP2007302483A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144464A (en) * | 1979-05-01 | 1980-11-11 | Idemitsu Kosan Co | Lightweight gypsum formed body |
JPS55144416A (en) * | 1979-05-01 | 1980-11-11 | Idemitsu Kosan Co Ltd | Manufacture of light weight spherical gypsum |
JP2002348169A (en) * | 2001-03-21 | 2002-12-04 | Grg Material:Kk | Construction material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dutta et al. | Effect of silica fume additions on porosity of fly ash geopolymers | |
JP5066766B2 (en) | Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same | |
Thokchom et al. | Effect of incorporating silica fume in fly ash geopolymers | |
CN105272097A (en) | Novel magnesian cementing material and preparation method for magnesian cementing plate prepared from novel magnesian cementing material | |
CN111499405B (en) | Preparation method of porous ceramsite, product and application of porous ceramsite in concrete subway track acoustic panel | |
US10807869B2 (en) | Method for producing porous calcium deficient hydroxyapatite granules | |
JP4677899B2 (en) | Manufacture of goods from fly ash | |
CN110582475B (en) | Geopolymer-based inorganic foams | |
TW202340116A (en) | Cement compositions with 3d graphene carbons | |
JP2002536288A (en) | Method for producing hydraulic binder based on hard gypsum III or α-type hard gypsum and hydraulic binder obtained by the method | |
Nurjaya et al. | Thermal effect on flexural strength of geopolymer matrix composite with alumina and wollastonite as fillers | |
CN111960707B (en) | Application of sierozem powder and anti-crack gypsum mortar | |
CN104310828A (en) | Method for preparing alpha-semi-hydrated gypsum by use of polyphenol grafted polyethyleneimine as crystal modifier | |
JP4009619B2 (en) | Building material and method of manufacturing building material | |
JP2007302483A (en) | Hollow spherical type ii anhydrous gypsum particle, method for producing hollow spherical type ii anhydrous gypsum particle, and porous lightweight hardened gypsum product | |
Fang et al. | The Influences and Effect Mechanism of Low Temperature Curing on the Performances of Basic Magnesium Sulfate Cement | |
RU2376258C1 (en) | Lime and siliceous binder, method of lime and siliceous binder production and method of moulding sand production for extruded silicate items | |
JP2021075439A (en) | Method for producing tobermorite-containing housing material, tobermorite, and tobermorite-containing housing material | |
CN109650941B (en) | Ceramic sheet synthesized by ceramic polishing waste at low temperature and having humidity regulating function | |
Dutta et al. | Strength and durability of fly ash geopolymer blended with lime stone dust | |
CN109704699B (en) | Ceramic sheet synthesized by ceramic non-polishing waste at low temperature and having humidity regulating function | |
EP4269370A1 (en) | Process for the production of alkali-activated materials (aams), products obtainable with said process and heat insulating materials comprising said aam products | |
Haliru et al. | INFLUENCE OF CURING CONDITIONS ON THE EARLY STRENGTH OF LOW TEMPERATURE BELITE CEMENTS | |
JP2005306665A (en) | Building material and method of manufacturing building material | |
CN114716220A (en) | Phosphogypsum raw soil composite humidity-controlling material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120717 |