JPS6143282B2 - - Google Patents

Info

Publication number
JPS6143282B2
JPS6143282B2 JP6148678A JP6148678A JPS6143282B2 JP S6143282 B2 JPS6143282 B2 JP S6143282B2 JP 6148678 A JP6148678 A JP 6148678A JP 6148678 A JP6148678 A JP 6148678A JP S6143282 B2 JPS6143282 B2 JP S6143282B2
Authority
JP
Japan
Prior art keywords
tungsten
wastewater
molybdenum
tellurium
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6148678A
Other languages
Japanese (ja)
Other versions
JPS54152613A (en
Inventor
Taneaki Okuda
Toshio Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6148678A priority Critical patent/JPS54152613A/en
Publication of JPS54152613A publication Critical patent/JPS54152613A/en
Publication of JPS6143282B2 publication Critical patent/JPS6143282B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、重金属を含有する廃水から、タング
ステン,テルルまたはモリブデンを高純度で回収
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering tungsten, tellurium or molybdenum in high purity from wastewater containing heavy metals.

タングステンやモリブデンは耐熱,耐酸合金中
に有効な成分として使用されるほか、電子管の電
極,フイラメント,発熱体,水素添加用の触媒,
潤滑油への添加剤,分析用の試薬など広い範囲で
使用される有用な金属である。そして材料の製造
各種の処理の結果生成し、排出される廃水に、こ
れらの金属が単独で含まれることは殆んどない。
Tungsten and molybdenum are used as effective components in heat-resistant and acid-resistant alloys, as well as in electron tube electrodes, filaments, heating elements, hydrogenation catalysts, and
It is a useful metal that is used in a wide range of applications, including as an additive to lubricating oil and as a reagent for analysis. These metals are rarely contained alone in the wastewater generated and discharged as a result of various materials manufacturing processes.

また、従来の廃水技術によつては、他の重金属
と共存するタングステン,テルル,モリブデンを
効率よく、高純度で回収することは不可能である
ため、放流されるか、他の重金属スラツジととも
に、投棄されているのが現状である。またこれら
の金属は現在、水質汚濁防止法に基く排水基準の
項目には、含まれていないが、将来規制の対象に
すべきものとして検討が進められている金属であ
ると同時に極めて、貴重であり回収が強く望まれ
ている金属でもある。これらの金属を廃水から分
離するためには塩酸などで廃水を強い酸性にする
必要があるが、この際生ずる沈澱物は、共存する
重金属を強く吸着するため高純度で分離すること
は不可能であり、また分離後の洗浄は極めて困難
であることが知られている。
In addition, it is impossible to efficiently recover tungsten, tellurium, and molybdenum, which coexist with other heavy metals, in high purity using conventional wastewater technology, so they are either discharged or collected along with other heavy metal sludge. The current situation is that it is being dumped. Although these metals are not currently included in the wastewater standards based on the Water Pollution Control Law, they are currently being considered as subject to future regulations, and are extremely valuable. It is also a metal that is highly desired to be recovered. In order to separate these metals from wastewater, it is necessary to make the wastewater strongly acidic using hydrochloric acid, etc. However, the precipitate that is produced during this process strongly adsorbs coexisting heavy metals, making it impossible to separate with high purity. It is known that cleaning after separation is extremely difficult.

本発明は、このような従来では不可能であつた
タングステン,テルルまたはモリブデンの回収方
法を提供するものである。
The present invention provides a method for recovering tungsten, tellurium, or molybdenum, which has been impossible in the past.

本発明の回収方法はモリブデン,タングステン
またはテルルを含有する廃水に、第一鉄塩を加え
更にアルカリを加えてPHを8以上12以下に保持
し、必要ならば100℃以下好ましくは60〜90℃に
加熱して酸素を含む気体と接触させるか、過酸化
水素などの酸化剤を添加することにより、第一鉄
イオンの一部を酸化して、スピネル型フエライト
沈澱を生成させ、固液分離した後、この分離水の
PHを2以下に下げ生成するモリブデン,タングス
テンまたはテルルの含水酸化物沈澱を分離するこ
とを特徴とする。
The recovery method of the present invention is to add ferrous salt to wastewater containing molybdenum, tungsten or tellurium, and then add alkali to maintain the pH at 8 to 12, and if necessary, to 100℃ or less, preferably 60 to 90℃. By heating it to a temperature of 100°C and contacting it with an oxygen-containing gas, or by adding an oxidizing agent such as hydrogen peroxide, some of the ferrous ions are oxidized to form a spinel-type ferrite precipitate, which is then separated into solid-liquid. After that, this separated water
It is characterized by lowering the pH to 2 or less and separating the precipitates of hydrous oxides of molybdenum, tungsten or tellurium.

本発明で使用する第一鉄塩は、最も安価に入手
できる硫酸塩が、使用に便利であるが、特にこの
塩に限るものではない。但し、廃液中にアルカリ
土類金属イオンが共存したり、後の処理のPH調整
に、アルカリ土類水酸化物などを使用する場合に
は硫酸第一鉄を使用する必要がある。そして、廃
水中のタングステン,テルル,モリブデン以外の
重金属に対し、通常2〜5倍当量以上添加する必
要があるが、必ず一度に添加する必要はなく、処
理の過程で不足と見られる場合追加しても支障な
い。次に、アルカリを加えてPH調整する場合PHを
8以上12以下に限つたのは、PHが8より低い場合
には、酸化によつてスピネル型のフエライト沈澱
を得にくいばかりか、酸化に必要な時間が長くな
りすぎるからであり、また、PHを12より高くした
場合でもフエライト沈澱は生成するが異相が生じ
やすくなるからである。酸化条件は廃水の量と濃
度とによつて最適に決定されるべきである。概
ね、高濃度少量廃水の場合には加熱,空気酸化が
適当であり、低濃度多量の廃水の場合には、室温
で、酸化するのが、経済的であると考えられる。
The ferrous salt used in the present invention is most conveniently the sulfate salt available at the lowest cost, but is not particularly limited to this salt. However, ferrous sulfate must be used if alkaline earth metal ions coexist in the waste liquid or if alkaline earth hydroxide or the like is used to adjust the pH in subsequent processing. It is usually necessary to add 2 to 5 times the equivalent of heavy metals other than tungsten, tellurium, and molybdenum in wastewater, but it is not necessary to add them all at once, and they can be added if they are found to be insufficient during the treatment process. There is no problem. Next, when adjusting the pH by adding alkali, the pH is limited to 8 or more and 12 or less.If the pH is lower than 8, it is not only difficult to obtain spinel-type ferrite precipitates by oxidation, but also the PH is not necessary for oxidation. This is because the time becomes too long, and even if the pH is set higher than 12, ferrite precipitate will still be formed, but a different phase will likely occur. Oxidation conditions should be optimally determined depending on the amount and concentration of wastewater. In general, heating and air oxidation are appropriate in the case of high-concentration, small-volume wastewater, and it is considered economical to oxidize at room temperature, in the case of low-concentration, large-volume wastewater.

酸化により生成するフエライト沈澱の中に、マ
ンガン,コバルト,ニツケル,クロム,亜鉛,銅
カドミウムなどの重金属は容易に組み込まれるの
に反し、モリブデン,テルルやタングステンは組
み込まれるが、その程度が小さい。このため、フ
エライト沈澱を取り除いた分離水中のモリブデ
ン,テルル,タングステン以外の重金属の濃度
は、痕跡程度となりモリブデン,テルルまたは、
タングステンのみが高純度で残る。従つてPHを2
以下に下げることにより生成するこれらの含水酸
化物沈澱を高純度で回収することが可能となる。
While heavy metals such as manganese, cobalt, nickel, chromium, zinc, and copper cadmium are easily incorporated into the ferrite precipitate produced by oxidation, molybdenum, tellurium, and tungsten are incorporated, but to a small extent. Therefore, the concentration of heavy metals other than molybdenum, tellurium, and tungsten in the separated water from which the ferrite precipitate has been removed is only traces.
Only high purity tungsten remains. Therefore, PH is 2
By lowering the concentration below, it becomes possible to recover these hydrous oxide precipitates with high purity.

次に、実施例により、本発明を具体的に説明す
る。
Next, the present invention will be specifically explained with reference to Examples.

実施例 1 クロム,コバルト,亜鉛,銅をそれぞれ200
mg/で含み、タングステンを約100mg/含有
する重金属調整廃水1に、硫酸第一鉄を30gv
添加し、約30%のカセイソーダ溶液を添加してPH
を10に維持しながら、65℃に加熱し、毎分2/
minの速度で空気を吹き込み酸化を行つたところ
2時間後には黒色のフエライト生成反応が終了し
た。フエライト沈澱を永久磁石により完全に除去
した液に、塩酸を加えPHを0付近まで下げ生成し
た沈澱を過分離し、水洗後105℃で乾燥したと
ころ、1.1gのタングステンの含水酸化物を回収
することができた。これはタングステンとしては
87%の回収率に相当する。尚この酸化物中の重金
属不純物含有量は、すべて0.1%以下であつた。
Example 1 Chromium, cobalt, zinc, copper each at 200%
30 gv of ferrous sulfate to heavy metal-adjusted wastewater 1 containing approximately 100 mg/mg of tungsten.
Add and adjust the pH by adding approximately 30% caustic soda solution
Heat to 65℃ while maintaining the
Oxidation was carried out by blowing air at a rate of 2 hours, and the black ferrite production reaction was completed after 2 hours. Hydrochloric acid was added to the solution from which the ferrite precipitate was completely removed using a permanent magnet, the pH was lowered to around 0, and the formed precipitate was over-separated. After washing with water and drying at 105°C, 1.1 g of tungsten hydrous oxide was recovered. I was able to do that. This is tungsten
This corresponds to a recovery rate of 87%. The content of heavy metal impurities in these oxides was all below 0.1%.

実施例 2 ニツケル,鉄,マンガン,をそれぞれ50mg/
含有しモリブデンを2000mg/の濃度で含有する
廃水0.5に、硫酸第一鉄を10g添加し約30%の
カセイソーダを用いて、PHを11に保持し撹拌機を
用いてゆるやかに撹拌し空気と液面のみで接触さ
せ8時間酸化反応を続け、生成したフエライト粒
子を磁気分離し、分離水を塩酸でPH1にし、過
分離後少量の1/10NHCLですゝぎ乾燥した結
果、約1.2gの含水酸化モリブデンを回収でき
た。これはモリブデンとして80%の回収率に相当
する。尚この酸化物中の不純物重金属濃度は0.1
%以下であつた。
Example 2 Nickel, iron, manganese, 50mg/each
10g of ferrous sulfate was added to 0.5% wastewater containing molybdenum at a concentration of 2000mg/2,000mg, and approximately 30% caustic soda was used to maintain the pH at 11 and gently stirred using a stirrer to separate air and liquid. The oxidation reaction was continued for 8 hours by contacting only the surfaces, the generated ferrite particles were magnetically separated, the separated water was adjusted to pH 1 with hydrochloric acid, and after excessive separation, it was rinsed and dried with a small amount of 1/10 NHCl. As a result, approximately 1.2 g of hydrous oxidation was obtained. We were able to recover molybdenum. This corresponds to a recovery rate of 80% for molybdenum. The impurity heavy metal concentration in this oxide is 0.1
% or less.

実施例 3 タングステンの代りにテルル1000mg/を含有
すること以外、実施例1と同様な廃水に実施と同
じ処理を行つたところ、含水テルル酸として1.5
g回収できた。これはテルルとして83%の回収率
であつた。
Example 3 The same treatment as in Example 1 was performed on the same wastewater as in Example 1, except that 1000 mg of tellurium was contained instead of tungsten.
I was able to collect g. This was a recovery rate of 83% as tellurium.

以上、実施例により具体的に示したように本発
明が廃水中のモリブデン,テルル,タングステン
の回収に極めて有効な新規の方法を提供すること
は明らかである。
As specifically shown in the examples above, it is clear that the present invention provides a novel method that is extremely effective for recovering molybdenum, tellurium, and tungsten from wastewater.

Claims (1)

【特許請求の範囲】[Claims] 1 モリブデン,タングステンおよびテルルの少
なくとも1つと重金属とを含有する廃水に第一鉄
塩を加えPHを8以上12以下に保持し酸素を含む気
体と接触させるか、酸化剤を添加することにより
第一鉄イオンの一部を酸化して、該重金属を含む
スピネル型フエライト沈澱を生成させる工程と該
フエライト沈澱を固液分離した後、この分離水分
のPHを2以下に下げモリブデン,タングステンお
よびテルルの少なくとも1つの含水酸化物沈澱を
生成せしめる工程とを含むことを特徴とする廃水
中の金属の回収方法。
1. Ferrous salt is added to wastewater containing at least one of molybdenum, tungsten, and tellurium and heavy metals to maintain the pH between 8 and 12, and the ferrous water is brought into contact with oxygen-containing gas, or by adding an oxidizing agent. A step of oxidizing a part of the iron ions to produce a spinel-type ferrite precipitate containing the heavy metals, and after solid-liquid separation of the ferrite precipitate, the pH of the separated water is lowered to 2 or less and at least molybdenum, tungsten and tellurium are removed. 1. A method for recovering metals from wastewater, the method comprising: generating one hydrous oxide precipitate.
JP6148678A 1978-05-22 1978-05-22 Recovering method for metal in waste water Granted JPS54152613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6148678A JPS54152613A (en) 1978-05-22 1978-05-22 Recovering method for metal in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6148678A JPS54152613A (en) 1978-05-22 1978-05-22 Recovering method for metal in waste water

Publications (2)

Publication Number Publication Date
JPS54152613A JPS54152613A (en) 1979-12-01
JPS6143282B2 true JPS6143282B2 (en) 1986-09-26

Family

ID=13172454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6148678A Granted JPS54152613A (en) 1978-05-22 1978-05-22 Recovering method for metal in waste water

Country Status (1)

Country Link
JP (1) JPS54152613A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3484652D1 (en) * 1983-03-21 1991-07-04 Union Oil Co METHOD FOR SEPARATING HEAVY METALS FROM AQUEOUS SOLUTIONS BY CO-RECEIVING.
US5045214A (en) * 1983-03-21 1991-09-03 Union Oil Company Of California Methods for removing substances from aqueous solutions
JP5691732B2 (en) * 2011-03-29 2015-04-01 住友金属鉱山株式会社 Method for producing molybdenum trioxide
CN117505066B (en) * 2024-01-05 2024-03-29 湖南启航纳米材料科技有限公司 Yellow tungsten oxide deironing processing apparatus

Also Published As

Publication number Publication date
JPS54152613A (en) 1979-12-01

Similar Documents

Publication Publication Date Title
EP0097478B1 (en) Process for removal and recovery of mercury from waste water
CN109607872B (en) Comprehensive utilization of arsenic-containing waste acid and safe arsenic disposal method
CN111153519B (en) Method for separating ferrochromium from chromium-containing pickling waste liquid
US2398493A (en) Production of magnesium chloride from serpentine
US4606765A (en) Process for treating zinc-laden dust issuing from electric steel plant furnaces
SU1241998A3 (en) Method of extracting zinc,copper and cadmium from roasted product
US5431713A (en) Method for the reclamation of metallic compounds from zinc and lead containing dust
CN105753038B (en) A kind of production technology of feed grade monohydrate zinc sulphate
CN110468277A (en) The method of rhenium is recycled from Copper making waste acid
CN102965499B (en) Method for extracting valuable element in arsenic salt purification slag from zinc hydrometallurgy
JPS6143282B2 (en)
JP4215547B2 (en) Cobalt recovery method
JPH0340093B2 (en)
AU2018273872B2 (en) Extraction of iron (III) oxide from different iron-containing ores
GB2309030A (en) Producing pure lead oxide from exhausted batteries
JP2000264640A (en) Treatment of waste liquor of hydrochloric acid
CN110055425A (en) A kind of electroplating sludge heavy metal resources method
JP4439804B2 (en) Cobalt recovery method
CN111534694B (en) Molybdenum-removing slag recovery processing method
KR100415645B1 (en) METHOD FOR PRODUCING A HIGH-PURITY CuO
CA1087132A (en) Method for coalescing mercury particles
US3549321A (en) Removal of iron from solution
JP4264519B2 (en) Method for reducing metal impurities
JP3245926B2 (en) Method for producing Mn-Zn ferrite
CN111020203A (en) Method for recovering copper and iron ions in copper and iron-containing solid waste