JPS6142974A - Photocoupled element - Google Patents

Photocoupled element

Info

Publication number
JPS6142974A
JPS6142974A JP59164681A JP16468184A JPS6142974A JP S6142974 A JPS6142974 A JP S6142974A JP 59164681 A JP59164681 A JP 59164681A JP 16468184 A JP16468184 A JP 16468184A JP S6142974 A JPS6142974 A JP S6142974A
Authority
JP
Japan
Prior art keywords
photo
light
receiving element
conductive layer
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59164681A
Other languages
Japanese (ja)
Inventor
Hidekazu Awaji
淡路 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59164681A priority Critical patent/JPS6142974A/en
Publication of JPS6142974A publication Critical patent/JPS6142974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain photo couplers of high noise-resistance and high sensitivity which are shielded electrostatically, by a method wherein a photo receiving element is provided with a composite layer consisting of photo-permeable insulation layers and a photo-permeable conductive layer. CONSTITUTION:An aluminum electrode 5 is formed on the surface of the emitter region 2 of a photo transistor 1, and a triple composite layer consisting of a photo-premeable insulation layer 6, photo-permeable conductive layer 7, and photo-permeable insulation layer 8 is formed by covering a base region 3 and excluding part of the aluminum electrode 5. This photo-permeable conductive layer 7 forms an electrostatic shielding film on the base region 3. This can prevent the invasion of noise coming through the coupling capacitance between the light emitting element and the light receiving element and shortens the distance between the elements. Besides, the elements can be insulated from each other with a high-insulation material, and the improvement in noise resistance and sensitivity of the title element can be attained.

Description

【発明の詳細な説明】 く技術分野〉 本発明は光結合素子に関する。[Detailed description of the invention] Technical fields> The present invention relates to an optical coupling device.

〈従来技術〉 従来の光結合素子(以下、ホトカプラという)は、第4
図または第5図に示すように、発光ダイオードである発
光素子101とホトトランジスタである受光素子102
とが互いに対向するとともに、発光素子101と受光素
子102との間を透光性樹脂103またはガラス104
などの透光性材で電気的に絶縁する。しかるに、発光素
子101と受光素子102とが対向しているため、発光
素子101と受光素子102との間でコンデンサを形成
する。第6図はホトカプラの等価回路を示しており、発
光ダイオード101とホトトランジスタ102との間に
結合容量Cが形成される。
<Prior art> Conventional optical coupling devices (hereinafter referred to as photocouplers)
As shown in the figure or FIG. 5, a light emitting element 101 which is a light emitting diode and a light receiving element 102 which is a phototransistor
are opposed to each other, and a light-transmitting resin 103 or glass 104 is placed between the light-emitting element 101 and the light-receiving element 102.
Electrically insulate with transparent material such as However, since the light emitting element 101 and the light receiving element 102 face each other, a capacitor is formed between the light emitting element 101 and the light receiving element 102. FIG. 6 shows an equivalent circuit of a photocoupler, in which a coupling capacitance C is formed between a light emitting diode 101 and a phototransistor 102.

ホトカプラの感度を向上させるためには、発光素子と受
光素子との間の距離をできるだけ小さくする必要がある
。しかし、この距離を小さくすると、発光素子と受光素
子との間の絶縁破壊電圧が低下するため、発光素子と受
光素子、との間の透光性絶縁層に高絶縁性の材料を用い
なければならない、しかるに、高絶縁性材料は誘電率ε
が大であり、素子間路1i11dが小さくなると、次式
により結合容量Cはますます大きくなる。
In order to improve the sensitivity of a photocoupler, it is necessary to minimize the distance between the light emitting element and the light receiving element. However, if this distance is made smaller, the dielectric breakdown voltage between the light emitting element and the light receiving element will decrease, so a highly insulating material must be used for the transparent insulating layer between the light emitting element and the light receiving element. However, highly insulating materials have a dielectric constant ε
is large and the inter-element path 1i11d becomes small, the coupling capacitance C becomes larger according to the following equation.

CcCgS/d なお、Sは対向面積である。CcCgS/d Note that S is the opposing area.

一般に、ホトカプラは、異なる電位をもつ2つの回路の
間を電気的に絶縁しつつ信号を光によって伝達する用途
に使われる。しかるに、結合容量が大きい場合には、第
7図に示すように、入力回路105に進入したノイズは
、ホトカプラの発光ダイオード101から結合容量Cを
通してホl−)ランジスタ102に伝達し、ホトトラン
ジスタ102のベースに電流Ibが流れ、この電流Ib
を電流増幅率hfe倍した電流Ic=IbXhfeがホ
トトランジスタ102のコレクタに流れる。そして、ホ
トトランジスタ102のコレクタが接続された出力回路
106は、ノイズによる誤動作を起こす。
In general, photocouplers are used to electrically insulate two circuits with different potentials while transmitting signals using light. However, when the coupling capacitance is large, as shown in FIG. A current Ib flows through the base of the current Ib
A current Ic=IbXhfe, which is obtained by multiplying the current amplification factor hfe by the current amplification factor hfe, flows to the collector of the phototransistor 102. The output circuit 106 to which the collector of the phototransistor 102 is connected malfunctions due to noise.

この結合容量によるノイズの伝達を防止するためには、
第8図に示すように、ホトカプラの発光ダイオード10
1とホトトランジスタ102との間の結合容fCに静電
遮蔽(シールド)Sを施す必要がある。
In order to prevent noise transmission due to this coupling capacitance,
As shown in FIG. 8, a photocoupler light emitting diode 10
It is necessary to provide an electrostatic shield S to the coupling capacitance fC between the phototransistor 1 and the phototransistor 102.

〈発明の目的〉 本発明は上記事情に鑑みてなされたものであり、その目
的は、静電遮蔽を行なった高耐ノイズ及び高感度なホト
カプラを提供することである。
<Objective of the Invention> The present invention has been made in view of the above circumstances, and its object is to provide a highly noise-resistant and highly sensitive photocoupler that is electrostatically shielded.

〈発明の構成〉 本発明においては、回路間を電気的に絶縁して発光素子
と受光素子とにより信号を光によって伝達するようにし
た光結合素子において、上記受光素子が透光性絶縁層と
透光性導電層とからなる複合層を備えたことを特徴とす
る。
<Structure of the Invention> In the present invention, in an optical coupling device in which circuits are electrically insulated and signals are transmitted by light using a light emitting element and a light receiving element, the light receiving element is formed with a light-transmitting insulating layer. It is characterized by comprising a composite layer consisting of a light-transmitting conductive layer.

〈実施例〉 以下本発明の一実施例を説明する。<Example> An embodiment of the present invention will be described below.

第1図はホトカプラの受光素子の構造を示す。FIG. 1 shows the structure of a photocoupler light receiving element.

ホトトランジスタ1はエミッタ領域2.ベース領域3及
びコレクタ領域4からなる。このホトトランジスタ1の
エミッタ領域2の表面にアルミ電極5が形成されるとと
もに、ホトトランジスタ1のベース領域3を覆うように
且つアルミ電極5の一部分を除いて、透光性絶縁層6.
透光性導電層7及び透光性絶縁層8からなる3層の複合
層が形成される。この透光性導電層7により、ベース領
域3の上に静電遮蔽膜が形成される。
The phototransistor 1 has an emitter region 2. It consists of a base region 3 and a collector region 4. An aluminum electrode 5 is formed on the surface of the emitter region 2 of the phototransistor 1, and a transparent insulating layer 6.
A three-layer composite layer consisting of a transparent conductive layer 7 and a transparent insulating layer 8 is formed. This transparent conductive layer 7 forms an electrostatic shielding film on the base region 3 .

以下、上述の受光素子の製造方法を説明する。Hereinafter, a method for manufacturing the above-mentioned light receiving element will be explained.

先ず、ホトトランジスタウェハ1に、アルミ電極5を蒸
着及びホトエツチングにより形成する。次に、透光性絶
縁層6を、例えばポリイミド樹脂(住友ベークライト社
CRC−6050)を厚さ10μ程度にコーティングし
前硬化を経てホトエツチングにより形成する。さらに、
この透光性絶縁層6を後硬化させた後、透光性導電層7
を、例えば酸化第2錫(米国ピッツバーグガラス社NE
SA膜)を透光性絶縁層6の上に蒸着及びホトエツチン
グにより所定のパターン形状に形成する。その後、透光
性絶縁N8を、透光性絶縁層6と同様の方法で透光性導
電層7の上に厚さ20μ程度に形成する。
First, an aluminum electrode 5 is formed on a phototransistor wafer 1 by vapor deposition and photoetching. Next, the transparent insulating layer 6 is formed by coating, for example, polyimide resin (CRC-6050, Sumitomo Bakelite Co., Ltd.) to a thickness of about 10 μm, pre-curing, and photoetching. moreover,
After post-curing this translucent insulating layer 6, a translucent conductive layer 7
For example, tin oxide (N.E., Pittsburgh Glass Co., USA)
SA film) is formed in a predetermined pattern shape on the transparent insulating layer 6 by vapor deposition and photoetching. Thereafter, a transparent insulating layer N8 is formed to a thickness of about 20 μm on the transparent conductive layer 7 in the same manner as the transparent insulating layer 6.

なお、本実施例では透光性絶縁層6.8にポリイミド樹
脂を用いたが、これ以外の樹脂または無機物例えば酸化
シリコンや窒化シリコンなどを用いてもよい。また、透
光性導電N7についても、酸化第2錫の他に酸化インジ
ウムなどが利用できる。
In this embodiment, polyimide resin is used for the light-transmitting insulating layer 6.8, but other resins or inorganic materials such as silicon oxide and silicon nitride may also be used. Furthermore, for the light-transmitting conductive N7, indium oxide or the like can be used in addition to stannic oxide.

次に、上述の受光素子を備えたホトカプラについて説明
する。
Next, a photocoupler including the above-mentioned light receiving element will be explained.

第2図はホトカプラの構造を示す。上述のように構成さ
れた受光素子10は、リードフレーム(図示せず)など
に接着される。この受光素子10の透光性絶縁層8の上
に、発光ダイオード11のN領域12が透明接着剤13
により接着される。
Figure 2 shows the structure of a photocoupler. The light receiving element 10 configured as described above is bonded to a lead frame (not shown) or the like. The N region 12 of the light emitting diode 11 is bonded with a transparent adhesive 13 on the light-transmitting insulating layer 8 of the light-receiving element 10.
It is glued by.

したがって、ホトトランジスタ1と発光ダイオード11
との間に透光性絶縁層6と透光性絶縁層8を介して透光
性導電層7で構成された静電遮蔽膜が形成される。その
後、受光素子10のアルミ電極51発光ダイオード11
のP領域14及びN領域12に金線15がそれぞれ接着
される。
Therefore, the phototransistor 1 and the light emitting diode 11
An electrostatic shielding film composed of a light-transmitting conductive layer 7 is formed between the light-transmitting insulating layer 6 and the light-transmitting insulating layer 8. After that, the aluminum electrode 51 of the light receiving element 10 and the light emitting diode 11
Gold wires 15 are bonded to the P region 14 and N region 12, respectively.

上述のように、ホトカプラの発光ダイオード11とホト
トランジスタ1との間に設けられる透光性導電層7をは
さん“だ透光性絶縁N6,8にポリイミド樹脂を用いる
と、このポリイミド樹脂の絶縁破壊強度が100V/μ
以上であるので、光結合素子として充分な絶縁性を備え
る。
As mentioned above, when polyimide resin is used for the light-transmitting insulation N6, 8 that sandwiches the light-transmitting conductive layer 7 provided between the light-emitting diode 11 of the photocoupler and the phototransistor 1, the insulation of this polyimide resin Breaking strength is 100V/μ
As described above, it has sufficient insulation properties as an optical coupling element.

第3図はホトカプラの他の例を示す。この場合、受光素
子10の透光性絶縁層8の上に銀などの蒸着及びホトエ
ツチングにより電極16を形成し、発光ダイオード11
のN領域12を導電性接着剤17によりこの電極16の
上に接着する。その後、電極16に金線15を接着する
FIG. 3 shows another example of a photocoupler. In this case, an electrode 16 is formed on the light-transmitting insulating layer 8 of the light-receiving element 10 by vapor deposition of silver or the like and photoetching, and the electrode 16 is
The N region 12 of is bonded onto this electrode 16 with a conductive adhesive 17. Thereafter, the gold wire 15 is bonded to the electrode 16.

〈発明の効果〉 以上説明したように、本発明においては、受光素子が透
光性絶縁層と静電遮蔽膜となる透光性導電層からなる複
合層を備えるようにしたから、発光素子と受光素子との
間の結合容量を通してレイズが進入することを防止でき
、素子間の距離を短くするとともに、高絶縁性材料で素
子間の絶縁を行なうことができ、光結合素子の耐ノイズ
性と感度の向上を達成することができる。また、絶縁層
及び静電遮蔽膜がウニハエ程にて形成されるため、量産
性に優れるとともに、特性のバラツキも少ない。
<Effects of the Invention> As explained above, in the present invention, since the light-receiving element is provided with a composite layer consisting of a light-transmitting insulating layer and a light-transmitting conductive layer serving as an electrostatic shielding film, it can be combined with a light-emitting element. It is possible to prevent radiation from entering through the coupling capacitance between the photo-receiving element, shorten the distance between the elements, and insulate the elements with a highly insulating material, improving the noise resistance of the optical coupling element. An improvement in sensitivity can be achieved. Furthermore, since the insulating layer and the electrostatic shielding film are formed in a process similar to that of a sea urchin fly, mass productivity is excellent and variations in characteristics are small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の受光素子の断面図、第2図は本
発明実施例のホトカブラの断面図、第3図は本発明の他
の実施例のホトカブラの断面図、第4図と第5図はホト
カブラの従来例の断面図、第6図と第7図はホトカブラ
の等価回路の回路図、第゛8図は静電遮蔽を施したホト
カブラの等価回路の回路図である。 1−ホトトランジスタ 6.8−透光性絶縁層7・−・
・・透光性導電層   10・−・−・受光素子11−
・発光ダイオード
FIG. 1 is a cross-sectional view of a photodetector according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a photocoupler according to an embodiment of the present invention, FIG. 3 is a cross-sectional view of a photocoupler according to another embodiment of the present invention, and FIG. FIG. 5 is a sectional view of a conventional photocoupler, FIGS. 6 and 7 are circuit diagrams of an equivalent circuit of the photocoupler, and FIG. 8 is a circuit diagram of an equivalent circuit of a photocoupler provided with electrostatic shielding. 1-Phototransistor 6.8-Transparent insulating layer 7...
・・Transparent conductive layer 10・−・−・Light receiving element 11−
・Light-emitting diode

Claims (2)

【特許請求の範囲】[Claims] (1)回路間を電気的に絶縁して発光素子と受光素子と
により信号を光によって伝達するようにした光結合素子
において、上記受光素子が透光性絶縁層と透光性導電層
とからなる複合層を備えたことを特徴とする光結合素子
(1) In an optical coupling device in which circuits are electrically insulated and signals are transmitted by light using a light emitting element and a light receiving element, the light receiving element is made of a light transmitting insulating layer and a light transmitting conductive layer. An optical coupling device characterized by comprising a composite layer.
(2)上記受光素子の複合層の上に発光素子を設置した
特許請求の範囲第1項記載の光結合素子。
(2) The optical coupling device according to claim 1, wherein a light emitting device is provided on the composite layer of the light receiving device.
JP59164681A 1984-08-06 1984-08-06 Photocoupled element Pending JPS6142974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164681A JPS6142974A (en) 1984-08-06 1984-08-06 Photocoupled element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164681A JPS6142974A (en) 1984-08-06 1984-08-06 Photocoupled element

Publications (1)

Publication Number Publication Date
JPS6142974A true JPS6142974A (en) 1986-03-01

Family

ID=15797825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164681A Pending JPS6142974A (en) 1984-08-06 1984-08-06 Photocoupled element

Country Status (1)

Country Link
JP (1) JPS6142974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513070U (en) * 1991-07-29 1993-02-19 シヤープ株式会社 Optically coupled semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513070U (en) * 1991-07-29 1993-02-19 シヤープ株式会社 Optically coupled semiconductor device

Similar Documents

Publication Publication Date Title
JP2557324B2 (en) Reflected light barrier and method of manufacturing the same
US4112308A (en) Optical coupling system
JPS6142974A (en) Photocoupled element
JP3816114B2 (en) Optical coupling device
US6531333B2 (en) Chip photoelectric sensor assembly and method for making same
US4996578A (en) Semiconductor device
JP3416697B2 (en) Optical coupling device
JPH09126883A (en) Infrared detector
JPH0222872A (en) Optical sensor device
JPH02137275A (en) Photo coupler
JPS5937448B2 (en) Room temperature infrared detector
JPS5819030A (en) Optical coupling semiconductor device
JP2603384Y2 (en) Pyroelectric infrared detector
JPH08125213A (en) Photodetector
JPS5858819B2 (en) Hikariketsugo handoutaisouchi
JP3021952B2 (en) Light receiving element
KR20000007482A (en) Method of fabricating thermal detector device
JP2002329883A (en) Light-receiving element and apparatus thereof
JPH05315626A (en) Semiconductor device
JPS6020956Y2 (en) Semiconductor photodetector
JPS5898962A (en) Photosemiconductor device
JP3437363B2 (en) Optical coupling device
JPS6133644Y2 (en)
JPS6085571A (en) Photoelectric conversion semiconductor device
JPH07169990A (en) Optical receiver