JPS614287A - Magnetoresistance effect element - Google Patents
Magnetoresistance effect elementInfo
- Publication number
- JPS614287A JPS614287A JP59124508A JP12450884A JPS614287A JP S614287 A JPS614287 A JP S614287A JP 59124508 A JP59124508 A JP 59124508A JP 12450884 A JP12450884 A JP 12450884A JP S614287 A JPS614287 A JP S614287A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- stripe
- magnetic field
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims abstract description 8
- 230000005291 magnetic effect Effects 0.000 claims abstract description 71
- 230000035699 permeability Effects 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000000696 magnetic material Substances 0.000 claims abstract description 3
- 229910000531 Co alloy Inorganic materials 0.000 claims abstract 2
- 229910001313 Cobalt-iron alloy Inorganic materials 0.000 claims abstract 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 claims abstract 2
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 claims abstract 2
- 230000005294 ferromagnetic effect Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 claims 7
- 239000010409 thin film Substances 0.000 claims 5
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 229910000889 permalloy Inorganic materials 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Landscapes
- Hall/Mr Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、エンコーダ、磁気記録装置、磁気バブルメモ
リなどに使用される磁気センサに係シ、特に磁気抵抗効
果により磁界を検出するセンサの高感度化に関する。Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to magnetic sensors used in encoders, magnetic recording devices, magnetic bubble memories, etc. Concerning becoming.
ンコーダや各種の磁気記録装置、それに磁気バブルメモ
リなどの磁気センサとして強磁性合金膜による磁気抵抗
効果を用いた磁気抵抗効果素子が広く用いられるように
なってきた。2. Description of the Related Art Magnetoresistive elements that use the magnetoresistive effect of ferromagnetic alloy films have come to be widely used as magnetic sensors such as encoders, various magnetic recording devices, and magnetic bubble memories.
ところで、この磁気抵抗効果素子における強磁性磁気効
果膜としては、従来から82重量%Ni−18重量%F
e合金であるパーマロイが広く用いられている。そして
、このときの膜厚としては一般に25〜400nmの範
囲のものが用いられているが、この場合、膜厚が30〜
40nmのパーマロイ膜による強磁性磁気効果ΔR/R
は約2.5%であり、膜厚が300〜400nmではΔ
R/Rが約3.5チとなる。By the way, the ferromagnetic magnetic effect film in this magnetoresistive element has conventionally been made of 82%Ni-18%F by weight.
Permalloy, an e-alloy, is widely used. The film thickness at this time is generally in the range of 25 to 400 nm, but in this case, the film thickness is in the range of 30 to 400 nm.
Ferromagnetic magnetic effect ΔR/R due to 40 nm permalloy film
is about 2.5%, and when the film thickness is 300 to 400 nm, Δ
R/R is approximately 3.5 inches.
一方、IEEE Transactfonson M
agne−tics MAG−11、(1975)1
018−1038には、このパーマロイ膜よりも強磁性
磁気抵抗効果の大きい材料として92重素置N1−8重
量%Fe合金、(70〜90)重量%N i −(30
〜10)重ft%c。On the other hand, IEEE Transactfonson M
agne-tics MAG-11, (1975) 1
018-1038 contains a 92-layer N1-8 wt% Fe alloy, (70 to 90) wt% Ni-(30
~10) Weight ft%c.
合金、67重量%Ni−30重量%Co−3重量%Cr
合金などが開示されている。Alloy, 67 wt% Ni-30 wt% Co-3 wt% Cr
Alloys, etc. are disclosed.
ここで、上記した磁気センサなどにおける磁気抵抗効果
膜の一般的な形状について説明すると、それは第2図に
示すようにストライプ1として使用され、これに対して
検出磁界Hxが矢印で示す方向に与えられる。そして、
ストライプ1の膜厚dは2 (1−50nm 、幅Wは
5〜40μm1そして長さLは−100〜30°0″°
程1f”r6D ・ ′″0#L ″れは幅Wに比し
て充分に大きく、しかも幅Wは厚さdに比して充分に大
きくされている。Here, to explain the general shape of the magnetoresistive film in the above-mentioned magnetic sensor etc., it is used as stripe 1 as shown in Figure 2, and the detection magnetic field Hx is applied to it in the direction shown by the arrow. It will be done. and,
The thickness d of the stripe 1 is 2 (1-50 nm, the width W is 5-40 μm1, and the length L is -100-30°0″°
The distance 1f"r6D .'"0#L" is sufficiently larger than the width W, and the width W is also sufficiently larger than the thickness d.
ところで、このような磁気抵抗効果素子に使用する磁気
抵抗効果膜としては、その強磁性磁気抵抗効果が大きい
ことが望ましいのは勿論のことであるが、それだけでは
なくて次に示す2つの要件を満していることが望ましい
。By the way, it goes without saying that it is desirable for the magnetoresistive film used in such a magnetoresistive element to have a large ferromagnetic magnetoresistive effect, but in addition to this, the following two requirements must also be met. It is desirable that the requirements are met.
(1)磁気感度が良いこと。即ち、検出すべき磁界Hx
が小さくても充分な強磁性抵抗効果を示すものであるこ
と。(1) Good magnetic sensitivity. That is, the magnetic field Hx to be detected
Even if the ferromagnetic resistance is small, it should exhibit a sufficient ferromagnetic resistance effect.
(2)磁界Hxに対するヒステリシス現象が少ないこと
。即ち、長さL方向を磁化容易軸とする一軸磁気異方性
を有するものであること。(2) There is little hysteresis phenomenon with respect to the magnetic field Hx. That is, it must have uniaxial magnetic anisotropy with the length L direction as the axis of easy magnetization.
しかしながら、上記した従来の磁気抵抗効果膜には、こ
れらの要件を充分に満すものがなく、このため、磁気抵
抗効果素子の構造を工夫してこれらの要件を満足させよ
うとする提案が、例えば特開昭56−905−77号公
報などによって掃案されており、この提案されている素
子の構造を第3図によって説明する。However, none of the conventional magnetoresistive films described above satisfies these requirements, and for this reason, there have been proposals to devise the structure of magnetoresistive elements to satisfy these requirements. For example, this has been proposed in Japanese Unexamined Patent Publication No. 56-905-77, and the structure of this proposed device will be explained with reference to FIG.
この第3図において、1は磁気抵抗効果膜のストライプ
、2.2’、 4.4’は高透磁率磁性膜、3は非磁性
絶縁層、5は基板である。 ′高透磁率磁性膜2.2′
はストライプ1に対して検出磁界HxX方向所定のギャ
ップGf保って隣接並設されている。In FIG. 3, 1 is a stripe of a magnetoresistive film, 2.2' and 4.4' are high permeability magnetic films, 3 is a nonmagnetic insulating layer, and 5 is a substrate. 'High permeability magnetic film 2.2'
are arranged adjacent to the stripe 1 with a predetermined gap Gf maintained in the detection magnetic field HxX direction.
非磁性絶縁層3は基板50表面にストライプ1及び高透
磁率磁性膜2.2’i形成したあと、こtLらとギャッ
プGを覆うようにして設けである。The nonmagnetic insulating layer 3 is provided so as to cover the stripes 1 and the high permeability magnetic films 2.2'i on the surface of the substrate 50, and then cover the gaps G with the stripes 1.
高透磁率磁性膜4.4′はストライプ1と高透磁率磁性
膜2,2′との間にまたがってギャップGを覆うように
して非磁性絶縁層3の上に設けられている。The high permeability magnetic film 4,4' is provided on the nonmagnetic insulating layer 3 so as to span the stripe 1 and the high permeability magnetic films 2, 2' and cover the gap G.
この構造によれば、スト2イブ1に隣接した高透磁率磁
性膜2.2’、 4.4’によって、ストライプ1内の
反磁場が小さくされ、この結果、ストライプ1の幅方向
(X方向)に加えられる検出磁界Hxに対する検出感度
を高めることができる。According to this structure, the demagnetizing field within the stripe 1 is reduced by the high magnetic permeability magnetic films 2.2' and 4.4' adjacent to the stripe 1, and as a result, the demagnetizing field within the stripe 1 is reduced in the width direction (X direction). ) The detection sensitivity to the detection magnetic field Hx applied to the magnetic field Hx can be increased.
しかしながら、この構造では、ストライプ1が非磁性絶
縁層3で覆われているため、接続端子の取シ出しにこの
非磁性絶縁層3に対する穴あけなどの余分な製造プロセ
スを必要とし、がっ、高透磁率磁性膜が基板50表面と
非磁性絶縁層3の表面に形成されているため、素子の製
造工程が複雑でコストフップになり易いという欠点があ
った。However, in this structure, since the stripe 1 is covered with the non-magnetic insulating layer 3, extra manufacturing processes such as drilling holes in the non-magnetic insulating layer 3 are required to take out the connection terminals, resulting in a high cost. Since the magnetic permeability film is formed on the surface of the substrate 50 and the surface of the nonmagnetic insulating layer 3, there is a drawback that the manufacturing process of the element is complicated and the cost is likely to increase.
本発明の目的は、上記した従来技術の欠点を除き、簡単
な構造で充分に反磁場を抑え、ヒステレシス現象が小さ
くでき、ローコストで高感度の磁気抵抗効果素子を提供
するKある。An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to provide a low-cost, high-sensitivity magnetoresistive element that can sufficiently suppress the demagnetizing field and reduce the hysteresis phenomenon with a simple structure.
この目的を達成するため、本発明は、磁気抵抗効果膜ス
トライプの逆パターンからなる短冊状高透磁率磁性膜の
上に非磁性絶縁層を設け、この絶縁層の上に磁気抵抗効
果膜ストライプを設けることにより、このストライプと
上記短冊状高透磁率磁性膜との間のギャップを確実に制
御された状態で充分に狭くする−ことができるようにし
た点を特徴とする。In order to achieve this object, the present invention provides a non-magnetic insulating layer on a strip-shaped high permeability magnetic film consisting of an inverse pattern of magnetoresistive film stripes, and forms magnetoresistive film stripes on this insulating layer. By providing this, the gap between the stripe and the strip-shaped high permeability magnetic film can be made sufficiently narrow in a controlled manner.
以下、本発明による磁気抵抗効果素子について、図示の
実施例により詳細に説明する。EMBODIMENT OF THE INVENTION Hereinafter, the magnetoresistive effect element according to the present invention will be explained in detail with reference to illustrated embodiments.
第1図は本発明の一実施例で、磁気抵抗効果膜ストライ
プ1、高透磁率磁性膜2.2′、非磁性絶縁層3、基板
5などは第3図の従来例と同じである。なお、高透磁率
磁性膜2.2′は検出磁界を集束する働きをするので、
これらを磁界集束膜と呼ぶO
この第1図の実施例による素子は、例えば以下のように
して製造する。FIG. 1 shows an embodiment of the present invention, in which the magnetoresistive film stripe 1, high permeability magnetic film 2, 2', nonmagnetic insulating layer 3, substrate 5, etc. are the same as in the conventional example shown in FIG. In addition, since the high permeability magnetic film 2.2' functions to focus the detection magnetic field,
These are called magnetic field focusing films. The device according to the embodiment shown in FIG. 1 is manufactured, for example, as follows.
まず、シリコン、セラミック、或いはガラスなどの材料
から表面の滑らかな基板5を作り、その上にパーマロイ
などの高透磁率磁性材料からなる磁性集束膜2.2′を
数μmの厚さに蒸着し、その上に5i02 やAl2
O3などの材料からなる非磁性絶縁層3を数100メン
ゲストロームの厚さに形成する。First, a substrate 5 with a smooth surface is made of a material such as silicon, ceramic, or glass, and a magnetic focusing film 2.2' made of a high permeability magnetic material such as permalloy is deposited on it to a thickness of several μm. , on top of that 5i02 and Al2
A non-magnetic insulating layer 3 made of a material such as O3 is formed to a thickness of several 100 Mengestroms.
この後、磁気抵抗効果膜ストライプ1と!−でニッケA
/ −コ/< A/ ) 合金、ニッケルーコバA/
) −鉄−合金′どを数N&InL数千′′グ″°−”
0厚さに蒸着する。なお、このときKは、一般に磁界を
加えた状態で蒸着を行゛なう磁界中蒸着法が用いられる
が、このときの磁界として、相互に直交する2方向の磁
界を、交互に所定の周期で切換えて加えるようにする、
いわゆるスイッチング直交磁界中蒸着法を採用すれば、
検出感度をさらに高くすることができる。After this, magnetoresistive film stripe 1! -Nikke A
/ -ko/< A/ ) Alloy, nickel-coba A/
) -Iron-alloy's number N & InL thousands''g''°-''
Deposit to 0 thickness. At this time, K is generally deposited using a magnetic field evaporation method in which evaporation is performed while a magnetic field is applied. toggle and add,
If we adopt the so-called switching orthogonal magnetic field deposition method,
Detection sensitivity can be further increased.
ここで、ストライプ1と磁界集束膜2.2′とは、それ
らの平面形状が相互に補って連続した平面となる、いわ
ゆる逆パターンになっぞい゛る。例えば、このような磁
気抵抗効果素子をエンコーダの磁気センサとして構成し
た場合には、ストライプ1とそれに対する端子を含んだ
部分の平面形状は第4図に示すようになシ、複数のスト
ライプ1が格子状に設けられている。そこで、このとき
のストライプ1と磁界集束膜2.2′との関係は第5図
の(a)と(b)に示すようになシ、これを逆パターン
というのである。Here, the stripe 1 and the magnetic field focusing film 2.2' have a so-called reverse pattern in which their planar shapes complement each other and form a continuous plane. For example, when such a magnetoresistive element is configured as a magnetic sensor of an encoder, the planar shape of the portion including the stripe 1 and its corresponding terminal is as shown in FIG. It is arranged in a grid pattern. Therefore, the relationship between the stripe 1 and the magnetic field focusing film 2.2' at this time is as shown in FIGS. 5(a) and 5(b), and this is called a reverse pattern.
第6図は第1図に示した実施例の特性を示したもので、
検出磁界Hxに対する磁気抵抗効果ストライプ1の抵抗
変化率ΔR/ΔRmax特性を実線Aで示し、破線Bで
は磁界集束膜2.2′を除いた場合の特性を比較のため
に示しである。ことで、ストライプ1の厚さは0.04
μm1非磁性絶縁層3の厚さ−U0.4μm、磁界集束
膜の厚さは2μmとなっている。Figure 6 shows the characteristics of the embodiment shown in Figure 1.
The solid line A shows the resistance change rate ΔR/ΔRmax characteristic of the magnetoresistive stripe 1 with respect to the detected magnetic field Hx, and the broken line B shows the characteristic when the magnetic field focusing film 2.2' is removed for comparison. Therefore, the thickness of stripe 1 is 0.04
The thickness of the nonmagnetic insulating layer 3 is 0.4 μm, and the thickness of the magnetic field focusing film is 2 μm.
この第6図から明らかなように、本発明の実施例による
特性Aでは、牛幅値ΔR/ΔRmax = 0.5とな
る磁界HxO値が特性Bの場合の約50%であシ、著し
い感度の上昇を得ることができる。As is clear from FIG. 6, in characteristic A according to the embodiment of the present invention, the magnetic field HxO value at which the width value ΔR/ΔRmax = 0.5 is about 50% of that in characteristic B, resulting in remarkable sensitivity. You can get an increase in
ここで、本発明の実施例により高感度が得られる理由に
ついて考えてみると、本発明の実施例では第1図に示す
ようにストライプ1と磁界集束膜2.2′との間のギャ
ップgを極めて小さく、11とんど非磁性絶縁層3の厚
さに近くすることができ、磁界集束膜2.2′からスト
ライプ1への磁束の流れに対する抵抗が充分に小さくな
ることによるものと思われる。Now, considering the reason why high sensitivity can be obtained by the embodiment of the present invention, in the embodiment of the present invention, as shown in FIG. This is thought to be due to the fact that the thickness of the magnetic field focusing film 2.2' can be made extremely small, close to the thickness of the nonmagnetic insulating layer 3, and the resistance to the flow of magnetic flux from the magnetic field focusing film 2.2' to the stripe 1 is sufficiently small. It will be done.
なお、このときに重要なことは、磁界集束膜2゜−2′
の厚さの選定で、第7図に示すように、磁界集束膜2,
2′の厚さをストライプ1の厚さとあまシ変らない厚さ
としたのでは、はとんど感度の上昇がみられない。従っ
て、この磁界集束膜2.2′の厚さをストライプ1の厚
さよシも太きく選ぶのが望ましく、少くともストライプ
1の厚さと非磁性絶縁N3の厚さとの和以上にするのが
よい。What is important at this time is that the magnetic field focusing film 2°-2'
By selecting the thickness of the magnetic field focusing film 2, as shown in FIG.
If the thickness of stripe 2' is the same as the thickness of stripe 1, no increase in sensitivity will be observed. Therefore, it is desirable to select the thickness of the magnetic field focusing film 2.2' to be thicker than the thickness of the stripe 1, and preferably to be at least the sum of the thickness of the stripe 1 and the thickness of the non-magnetic insulator N3. .
また、上記実施例においては、磁気抵抗効果膜ストライ
プ1がスイッチング直交磁界中蒸着法によって形成され
ているため、これによる感度上昇も得られるため、極め
て高い感度の素子とすることが可能、になる。In addition, in the above embodiment, since the magnetoresistive film stripe 1 is formed by the deposition method in a switching orthogonal magnetic field, an increase in sensitivity can be obtained thereby, making it possible to obtain an element with extremely high sensitivity. .
以上親切したように、本発明によれは、端子の引出しを
要する磁気抵抗効果膜ストライプを表面に露出させるこ
とができるから、従来技術の欠点を除き、製造プロセス
が複雑化する虞れがなく、高感度でローコIストの磁気
抵抗効果素子を容易に提供f6員必斗きる。As mentioned above, according to the present invention, since the magnetoresistive film stripe that requires the terminal to be drawn out can be exposed on the surface, the drawbacks of the prior art are eliminated, and there is no risk of complicating the manufacturing process. It is easy to provide a magnetoresistive element with high sensitivity and low cost.
第1図は本発明による磁気抵抗効果素子の一実施例を示
す断面図、第2図は磁気抵抗効果素子の基本的な素子形
状の説明図、第3図は磁気抵抗効果素子の従来例を示す
断面図、第4図は磁気抵抗効果素子を用いた磁気センサ
の一例を示す説明図、第5図(a) 、 (b)は逆パ
ターンの説明図、第6図は本発明の詳細な説明するだめ
の特性曲線図、第7図はストライプと磁界集束膜の厚さ
の関係を示す説明図である。
l・・・・・・磁気抵抗効果膜ストライプ、2.2′・
・・・・・磁界集束膜、3・・・・・・非磁性絶縁層、
5・・・・・・基板。
第1図
q::二二少
Hχ
第3図
仁=:づ
lv
第5囚
(b)
第6図
第7図FIG. 1 is a sectional view showing an embodiment of the magnetoresistive element according to the present invention, FIG. 2 is an explanatory diagram of the basic element shape of the magnetoresistive element, and FIG. 3 is a conventional example of the magnetoresistive element. 4 is an explanatory diagram showing an example of a magnetic sensor using a magnetoresistive element, FIGS. 5(a) and (b) are explanatory diagrams of the reverse pattern, and FIG. 6 is a detailed diagram of the present invention. FIG. 7 is an explanatory diagram showing the relationship between the stripe and the thickness of the magnetic field focusing film. l... Magnetoresistive film stripe, 2.2'.
...Magnetic field focusing film, 3...Nonmagnetic insulating layer,
5... Board. Fig. 1 q::22 Sho Hχ Fig. 3 Ren=:zulv 5th prisoner (b) Fig. 6 Fig. 7
Claims (1)
磁界方向に沿つて隣接並置した短冊状高透磁率磁性体か
らなる磁界集束膜を備えた磁気抵抗効果素子において、
上記磁界集束膜が基板面に形成され、上記強磁性薄膜ス
トライプが、上記磁界集束膜が形成されている基板面に
この磁界集束膜を覆つて設けられている非磁性絶縁層の
上に形成されていることを特徴とする磁気抵抗効果素子
。 2、特許請求の範囲第1項において、上記磁界集束膜の
厚さが、上記強磁性薄膜ストライプの厚さと上記非磁性
絶縁層の厚さの和以上となるように構成したことを特徴
とする磁気抵抗効果素子。 3、特許請求の範囲第1項又は第2項において、上記強
磁性薄膜ストライプが、ニッケル−コバルト合金膜又は
ニッケル−コバルト−鉄合金膜で構成されていることを
特徴とする磁気抵抗効果素子。 4、特許請求の範囲第1項ないし第3項のいずれかにお
いて、上記強磁性薄膜ストライプが、スイッチング直交
磁界中蒸着法により形成されていることを特徴とする磁
気抵抗効果素子。[Scope of Claims] 1. Detection of ferromagnetic thin film stripes having magnetoresistive effect In a magnetoresistive element including a magnetic field focusing film made of strip-shaped high magnetic permeability magnetic material arranged adjacently in parallel along the magnetic field direction,
The magnetic field focusing film is formed on a substrate surface, and the ferromagnetic thin film stripe is formed on a nonmagnetic insulating layer provided on the substrate surface on which the magnetic field focusing film is formed, covering the magnetic field focusing film. A magnetoresistive element characterized by: 2. Claim 1 is characterized in that the thickness of the magnetic field focusing film is greater than or equal to the sum of the thickness of the ferromagnetic thin film stripe and the thickness of the nonmagnetic insulating layer. Magnetoresistive element. 3. The magnetoresistive element according to claim 1 or 2, wherein the ferromagnetic thin film stripe is composed of a nickel-cobalt alloy film or a nickel-cobalt-iron alloy film. 4. A magnetoresistive element according to any one of claims 1 to 3, characterized in that the ferromagnetic thin film stripe is formed by a deposition method in a switching orthogonal magnetic field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59124508A JPS614287A (en) | 1984-06-19 | 1984-06-19 | Magnetoresistance effect element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59124508A JPS614287A (en) | 1984-06-19 | 1984-06-19 | Magnetoresistance effect element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS614287A true JPS614287A (en) | 1986-01-10 |
Family
ID=14887219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59124508A Pending JPS614287A (en) | 1984-06-19 | 1984-06-19 | Magnetoresistance effect element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS614287A (en) |
-
1984
- 1984-06-19 JP JP59124508A patent/JPS614287A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4630544B2 (en) | A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element | |
US7046490B1 (en) | Spin valve magnetoresistance sensor and thin film magnetic head | |
US6191577B1 (en) | Magnetic sensor exhibiting large change in resistance at low external magnetic field | |
US5910344A (en) | Method of manufacturing a magnetoresistive sensor | |
US5742162A (en) | Magnetoresistive spin valve sensor with multilayered keeper | |
KR950015410A (en) | Magnetoresistive Sensor and Manufacturing Method of Magnetoresistive Sensor | |
JPH04360009A (en) | Magnetic reluctance sensor | |
US20040196595A1 (en) | Magnetoresistive sensor with magnetostatic coupling of magnetic regions | |
GB2146482A (en) | Thin film magnetic head | |
JPH0212610A (en) | Magnetoresistance reader/converter | |
US7336452B2 (en) | Patterned exchange bias GMR using metallic buffer layer | |
JPS6331116B2 (en) | ||
JP3035836B2 (en) | Magnetoresistive element | |
JP3035838B2 (en) | Magnetoresistance composite element | |
JPS614287A (en) | Magnetoresistance effect element | |
KR20010033533A (en) | Magnetoresistant device and a magnetic sensor comprising the same | |
JPS6064484A (en) | Ferromagnetic magnetoresistance effect alloy film | |
US7170720B2 (en) | CPP read head for high density and shield noise suppression | |
JP3047607B2 (en) | Ferromagnetic magnetoresistive element | |
JP2806549B2 (en) | Magnetoresistance effect element | |
KR100462792B1 (en) | The fabrication method of magnetic sensor using exchange-biased spin valves | |
JP3624355B2 (en) | Magnetoresistive sensor | |
JP2850584B2 (en) | Method of manufacturing magnetoresistive element | |
JP3028585B2 (en) | Magnetoresistive element | |
JP2504234B2 (en) | Magnetoresistive thin film and method of manufacturing the same |