JPS614283A - Aging method of photovoltaic device - Google Patents

Aging method of photovoltaic device

Info

Publication number
JPS614283A
JPS614283A JP59125522A JP12552284A JPS614283A JP S614283 A JPS614283 A JP S614283A JP 59125522 A JP59125522 A JP 59125522A JP 12552284 A JP12552284 A JP 12552284A JP S614283 A JPS614283 A JP S614283A
Authority
JP
Japan
Prior art keywords
aging
photovoltaic devices
photovoltaic device
photoelectric conversion
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59125522A
Other languages
Japanese (ja)
Other versions
JP2547533B2 (en
Inventor
Takeo Fukatsu
深津 猛夫
Masaru Takeuchi
勝 武内
Kazuyuki Goto
一幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59125522A priority Critical patent/JP2547533B2/en
Publication of JPS614283A publication Critical patent/JPS614283A/en
Application granted granted Critical
Publication of JP2547533B2 publication Critical patent/JP2547533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Abstract

PURPOSE:To reduce power consumption, by conducting a forward current through an optical active layer in an amorphous semiconductor, performing the stabilized aging of many photovoltaic devices simultaneously for 24hr a day, thereby eliminating conversion loss. CONSTITUTION:Many photovoltaic devices 6 are prepared and accommodated in an aging chamber 7, whose temperature can be adjusted. In this accommodating structure, substrates 1 and 1 of two photovoltaic devices 6 and 6 are overlapped, with photoelectric conversion regions 2 and 2 being arranged outside, and a pair is obtained. A plurality of pairs are stacked in the longitudinal and lateral directions. Many photovoltaic devices 6, 6... are connected to a DC power source 8, which is provided at the outside. Optical active layers 4, 4... in the photoelectric conversion regions 2, 2... are connected in the forward direction and aging is performed.

Description

【発明の詳細な説明】 げ)産業上の利用分野 本発明は光エネルギを電気エネルギに変換する光起電力
装置のエイジング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION G) Industrial Application Field The present invention relates to a method for aging a photovoltaic device that converts light energy into electrical energy.

(ロ)従来技術 光電変換に寄与する電子及びまたは正孔を発生する光活
性層に、非晶質シリコン、非晶質シリコンカーバイド、
非晶質シリコンゲルマニウム、非晶質シリコンナイトラ
イド、非晶質シリコンスズ等の非晶質半導体、更には斯
る非晶質半導体と微結晶半導体との混和半導体、或いは
その他の半導一体とのへテロ接合を含めて、種々の形式
の半導体を用いることが提案されている。
(b) Prior art Amorphous silicon, amorphous silicon carbide,
Amorphous semiconductors such as amorphous silicon germanium, amorphous silicon nitride, and amorphous silicon tin, as well as mixed semiconductors of such amorphous semiconductors and microcrystalline semiconductors, or other integrated semiconductors. It has been proposed to use various types of semiconductors, including heterojunctions.

この様な非晶質半導体を少なくとも光活性層に含む光起
電力装置の特有の問題として特開昭59−54274号
公報等に開示された如く、強い光を長時間照射した場合
の光電変換効率の低下が存在する。
As disclosed in Japanese Unexamined Patent Publication No. 59-54274, etc., a problem specific to photovoltaic devices containing such an amorphous semiconductor at least in the photoactive layer is the photoelectric conversion efficiency when irradiated with strong light for a long time. There is a decrease in

上記公開公報は非晶質半導体そのものの膜質を改良し光
照射によ・る光電変換効率の劣化問題を改善しようとし
ているが、斯i方法に於いても光電変換効率の劣化問題
を完全に解決することができない。
The above publication attempts to improve the film quality of the amorphous semiconductor itself to improve the problem of deterioration of photoelectric conversion efficiency due to light irradiation, but this method also completely solves the problem of deterioration of photoelectric conversion efficiency. Can not do it.

そこで従来にあっては特性劣化の著しい晃起電力装置を
製造後直ちに出荷するのではなく、予め強い光を照射し
て光電変換領域が斯る光照射を受けても大幅に劣化しな
い状態にするエイジングが全数に対し施されている。そ
のエイジングの具体的方法として、光起電力装置を屋外
に敷設し直接太陽光に暴す方法と、ソーラシュミレータ
等を用いて擬似太陽光を照射する方法との2種類の方法
が存在する。
Therefore, in the past, instead of shipping an electromotive force device immediately after manufacturing, which has a significant characteristic deterioration, it is irradiated with strong light in advance to ensure that the photoelectric conversion region does not deteriorate significantly even if it is exposed to such light irradiation. Aging has been applied to all pieces. As specific methods for aging, there are two methods: a method in which a photovoltaic device is installed outdoors and exposed to direct sunlight, and a method in which a solar simulator or the like is used to irradiate simulated sunlight.

然し乍ら、屋外に於いて直接太陽光に暴す方法は、当然
のことながら太陽光は昼間のみしか得られないので1日
当りに照射される時間が短かく、またその照射時間及び
照射強度も晴天、曇天、雨天等の天候、更には夏と冬等
の季節により大幅に変動するためにエイジング時間を予
め決めるには不確定要素が多く、特に雨天が続けばエイ
ジング時間は長期化する。また擬似太陽光を用いると、
天候及び季節等に関係なくしかも夜間に於いても一定の
照射強度の光照射を付与することができるものの、1つ
のソーラシュミレータに於いて光照射することのできる
光起電力装置の数(面積)に限りがあるために、一度に
多数(大面積→の光起電力装置をエイジングすることは
難しく、更には消費電力の点に於いて問題を含んでいる
。仮に、多数のソーラシュミレータを準備することがで
きたとしても、消費電力の問題を解決することはできず
、また新たにこの様な多数のソーラシュミレータを配置
醒するためのスペースを必要とした。
However, in the method of exposing directly to sunlight outdoors, sunlight is only available during the day, so the amount of time the irradiation is applied per day is short, and the irradiation time and irradiation intensity are similar to those on sunny days. There are many uncertainties in determining the aging time in advance, as the aging time varies greatly depending on the weather, such as cloudy or rainy weather, and the seasons, such as summer and winter.In particular, if the rainy weather continues, the aging time will become longer. Also, when using simulated sunlight,
Although it is possible to provide light irradiation with a constant irradiation intensity regardless of the weather and season, even at night, the number (area) of photovoltaic devices that can irradiate light in one solar simulator Due to the limited capacity, it is difficult to age many (large area) photovoltaic devices at once, and there is also a problem in terms of power consumption. Even if it were possible to do so, the problem of power consumption could not be solved, and additional space would be required to accommodate a large number of such solar simulators.

(/→ 発明の目的 本発明は斯る点に鑑みて為されたものであって、その目
的としたところは、太陽光或いは擬似太陽光の如き光照
射を用いることな(エイジングを施すことにある。
(/→ Purpose of the Invention The present invention has been made in view of the above points, and its purpose is to avoid using light irradiation such as sunlight or simulated sunlight (without aging). be.

に)発明の構成 本発明光起電力装置のエイジング方法は、少なくとも非
晶質半導体を光活性層に含む光起電力装置を準備し、こ
の先゛起電力装置の上記光活性層に順方向電流を通電す
る構成にある。
B) Structure of the Invention The method for aging a photovoltaic device of the present invention involves preparing a photovoltaic device containing at least an amorphous semiconductor in the photoactive layer, and first applying a forward current to the photoactive layer of the device. It is in a configuration that supplies electricity.

(ホ)) 実施例 第1図は本発明エイジング方法に供せられる光起電力装
置の典型例を示し、(1)はガラス、透明セラミックス
、透明耐熱高分子フィルム等の透光性、且つ絶縁性の基
板、+21+21・・・は上記基板(1)の絶縁表面に
一定間隔を隔てて一列配置された複数の光電変換領域で
ある。上記光電変換領域+21+21・・・は、例えば
基板(1)側から、酸化スズ、酸化インジウムスズ等の
透明導電膜(31(31・・・と、その内部に半導体接
成る光活性層(41(41・・・と、該光活性層(41
(41・・・とオーミック接触するアルミニウム等の裏
面電極膜(5051・・・と、が順次積層されたミクロ
ンオーダの膜状を呈する。
(e)) Example Figure 1 shows a typical example of a photovoltaic device used in the aging method of the present invention. The photoelectric conversion regions +21+21 . . . are a plurality of photoelectric conversion regions arranged in a row at regular intervals on the insulating surface of the substrate (1). The photoelectric conversion regions +21+21... are formed, for example, from the substrate (1) side with a transparent conductive film (31 (31...) made of tin oxide, indium tin oxide, etc., and a photoactive layer (41 (31...) with a semiconductor contact therein). 41... and the photoactive layer (41
(41... and back electrode films (5051...) made of aluminum or the like in ohmic contact are sequentially laminated to form a film on the order of microns.

各光活性層(4)(41・・・は、その内部に例えば膜
面に平行なPIN接合を形成すべく受光面側から厚み程
度の■型(真性)層及び300〜600λ 程度のN型
層が順次積層被着され、従って基板(1)及び透明導電
膜(31(31・・・を透過して光入射があると、主に
I型層に於いて自由状態の電子及び正孔が発生し、斯る
電子及び正孔は上記各層が形成するPIN接合電界に引
かれて灸透明導電膜(31+31・・・及び裏面電極膜
(51(51・・・昏こ集電され、隣接する光電変換領
域(2)(2)・・の透明導電膜+31 (31・・・
と裏面電極膜(51(51・・・との重畳により電気的
に相加された電力が取り出される。
Each of the photoactive layers (4) (41...) includes, for example, a ■-type (intrinsic) layer with a thickness of about 300 to 600λ from the light-receiving surface side and an N-type layer with a thickness of about 300 to 600λ to form a PIN junction parallel to the film surface. The layers are sequentially deposited, so that when light is incident through the substrate (1) and the transparent conductive film (31 (31...), free-state electrons and holes are generated mainly in the I-type layer. The generated electrons and holes are attracted by the PIN junction electric field formed by the above-mentioned layers, and are collected by the moxibustion transparent conductive film (31+31... and the back electrode film (51 (51...), and the adjacent Transparent conductive film of photoelectric conversion area (2) (2)...+31 (31...
The electrically added power is taken out by superimposing the and the back electrode film (51 (51...).

第2図は本発明エイジング方法を説明するための模式図
、第3図はその等価回路図である。即ち、本発明エイジ
ング方法は光起電力装置の光活性層(41(41・・・
に順方向電流を通電すると、光照射と同じく光電変換効
率が劣化する現雫に基づいている。
FIG. 2 is a schematic diagram for explaining the aging method of the present invention, and FIG. 3 is an equivalent circuit diagram thereof. That is, the aging method of the present invention is applied to the photoactive layer (41 (41...) of a photovoltaic device.
This is based on the fact that when a forward current is applied to a photovoltaic device, the photoelectric conversion efficiency deteriorates as with light irradiation.

先ず、第1図に詳記した光起電力装置(6)を多数用意
し、温度調整可能なエイジング室(7)に収納する。
First, a large number of photovoltaic devices (6) detailed in FIG. 1 are prepared and housed in an aging chamber (7) whose temperature can be adjusted.

収納構造は従来のように光の照射を必要としない点から
第2図の如く、2つの光起電力装置(61(61・・・
の各基板(11(11・・・を、各々の光電変換領域+
2H2+・・・が外側に配置した状態で重ね合せたもの
を一組とし、それらを複数組縦力向棹び横方向に積み重
ねている。そして、それら多数の光起電力装[(61(
61・・・はエイジング室(7)の外部に設けられた直
呼電源(8)に第3図に示す如く、各光電変換領域+2
1(21・・・に於ける光活性層(41(41・・・が
順方向となるべく接続されている。
Since the storage structure does not require light irradiation like the conventional one, it has two photovoltaic devices (61 (61...
each substrate (11 (11...), each photoelectric conversion region +
2H2+... are placed on the outside to form a set, and a plurality of sets are stacked vertically and horizontally. And a large number of these photovoltaic devices [(61(
61... is connected to a direct power supply (8) provided outside the aging chamber (7) as shown in FIG.
1 (21...) and the photoactive layer (41 (41...) are connected as much as possible in the forward direction.

第4図は初期値で規格化した光電変換効率とエイジング
時間との関係を示しており、曲線Aは本発明方法による
ものであり、曲線Bはソーラシュミレータを用いた従来
方法の結果である。
FIG. 4 shows the relationship between photoelectric conversion efficiency normalized to an initial value and aging time, where curve A is the result of the method of the present invention and curve B is the result of the conventional method using a solar simulator.

エイジングに供せられた光起電力装置は本発明方法及び
従来方法とも基本的に第1図のそれと同一であり、本発
明方法に於いては5QmA/dの電流密度の順方向電流
が直流電源(8)から供給された。
The photovoltaic device used for aging is basically the same as that shown in FIG. 1 for both the method of the present invention and the conventional method. Supplied from (8).

尚、従来方法にあってはソーラシュミレータにより赤道
直下の太陽光に指摘するAM−1、照射強度1oomW
/dの擬似太陽光が照射された。
In addition, in the conventional method, AM-1 is used to point out the sunlight directly below the equator using a solar simulator, and the irradiation intensity is 1oomW.
/d of simulated sunlight was irradiated.

斯る実験の結果、本発明方法の光電変換効率の劣化は従
来方法のそれに比して著しいことが判明した。例えば光
電変換効率が20%劣化するまでに要するエイジング時
間は本発明方法にあっては約20時間であるのに対し、
従来方法にあっては4      +0゛引″′″″″
″6#100時間″r″′!、!計ると、20%劣化し
た時点をエイジングの終了としたと、本発明方法あって
は従来の15の20時間で済むと云うことである。
As a result of such experiments, it was found that the photoelectric conversion efficiency of the method of the present invention deteriorated more significantly than that of the conventional method. For example, the aging time required for the photoelectric conversion efficiency to deteriorate by 20% is about 20 hours in the method of the present invention, whereas
In the conventional method, 4 + 0゛minus''''''''
``6#100 hours''r''!, ! If we measure the aging process at the point of 20% deterioration, the method of the present invention can be completed in 20 hours instead of the conventional 15 hours.

一方、第5図は本発明方法に於ける温度依存性を調べた
ものである。即ち、多数の光起電力装置(6)+61・
・・が収納されるエイジング室(7)を空調設備により
40℃、20℃、0℃に設定して夫々に50mA/dの
順方向電流を通電せしめたところ、曲線C1°D、Hの
ように低温度の方が、劣化の進行度合は早く、従って冷
却状態に於いてエイジングを施すことによって、そのエ
イジング時間が短縮されることが判明し7た。
On the other hand, FIG. 5 shows an investigation of temperature dependence in the method of the present invention. That is, a large number of photovoltaic devices (6) + 61.
When the aging chamber (7) where ... is stored is set to 40℃, 20℃, and 0℃ using air conditioning equipment and a forward current of 50mA/d is applied to each, curves C1°D and H appear. It has been found that the rate of deterioration progresses faster at lower temperatures, and therefore, by performing aging in a cooled state, the aging time can be shortened.

(へ)発明の効果 本発明エイジング方法は以上の説明から明らかな如く、
光活性層に順方向電流を通電するので、昼夜を問わず一
日中安定したエイジングを一度に多数(大面積)の光起
電力装置に対し施すことができると共にソーラシュミレ
ータ利用の従来方法の如く1旦電気エネルギを光エネル
ギに変換することなく電気エネルギの形で直接供給する
ために変換ロス及び斯る光の吸収ロスがなく消費電力の
低減が図れる。特に実施例の如く冷却状態或いは多段に
積み重ねられた状態に於いてエイジングを施せば、エイ
ジング時間のより一層の短縮孔及び大量の処理を一度に
実行することができ極めて有益である。
(f) Effects of the invention As is clear from the above description, the aging method of the present invention has the following effects:
Since a forward current is applied to the photoactive layer, stable aging can be applied to many (large area) photovoltaic devices at once all day long, day and night. Since electrical energy is directly supplied in the form of electrical energy without converting it into optical energy, there is no conversion loss or absorption loss of such light, and power consumption can be reduced. In particular, if the aging is performed in a cooled state or in a state where the materials are stacked in multiple stages as in the embodiment, the aging time can be further shortened and a large amount of processing can be performed at once, which is extremely beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法が施される典型的な光起電力装置の
要部を示す斜視図、第2図は本発明方法を説明するため
の模式図、第3図は第2図の電気的等価回路図、第4図
は光電変換効率とエイジング時間との関係を示す曲線図
、第5図は本発明方法に於けるエイジング時間の温度依
存性を示す曲線図である。 (2)・・・光電変換領域、(4)・・・光活性層、(
6)・・・光起電力装置、(7)・・・エイジング室、
(8)−・・直流電源。
FIG. 1 is a perspective view showing the main parts of a typical photovoltaic device to which the method of the present invention is applied, FIG. 2 is a schematic diagram for explaining the method of the present invention, and FIG. FIG. 4 is a curve diagram showing the relationship between photoelectric conversion efficiency and aging time, and FIG. 5 is a curve diagram showing the temperature dependence of aging time in the method of the present invention. (2)...Photoelectric conversion region, (4)...Photoactive layer, (
6)...Photovoltaic device, (7)...Aging chamber,
(8)--DC power supply.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも非晶質半導体を光活性層に含む光起電
力装置を準備し、この光起電力装置の上記光活性層の順
方向電流を通電することを特徴とした光起電力装置のエ
イジング方法。
(1) Aging of a photovoltaic device characterized by preparing a photovoltaic device containing at least an amorphous semiconductor in the photoactive layer, and passing a forward current through the photoactive layer of the photovoltaic device. Method.
(2)上記順方向電流の通電は光起電力装置の冷却状態
に於いて施されることを特徴とした特許請求の範囲第1
項記載の光起電力装置のエイジング方法。
(2) Claim 1, characterized in that the forward current is applied while the photovoltaic device is in a cooling state.
A method for aging a photovoltaic device as described in Section 1.
(3)上記順方向電流は多数の光起電力装置が多段に積
み重ねられた状態に於いて施されることを特徴とした特
許請求の範囲第1項若しくは第2項記載の光起電力装置
の製造方法。
(3) The photovoltaic device according to claim 1 or 2, wherein the forward current is applied in a state in which a large number of photovoltaic devices are stacked in multiple stages. Production method.
JP59125522A 1984-06-18 1984-06-18 Aging method for photovoltaic device Expired - Lifetime JP2547533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125522A JP2547533B2 (en) 1984-06-18 1984-06-18 Aging method for photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125522A JP2547533B2 (en) 1984-06-18 1984-06-18 Aging method for photovoltaic device

Publications (2)

Publication Number Publication Date
JPS614283A true JPS614283A (en) 1986-01-10
JP2547533B2 JP2547533B2 (en) 1996-10-23

Family

ID=14912239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125522A Expired - Lifetime JP2547533B2 (en) 1984-06-18 1984-06-18 Aging method for photovoltaic device

Country Status (1)

Country Link
JP (1) JP2547533B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139791A1 (en) * 2008-05-12 2009-11-19 Translucent Photonics, Inc. Thin film semiconductor-on-glass solar cell devices
JP2018182293A (en) * 2017-04-19 2018-11-15 常州時創能源科技有限公司Changzhou Shichuang Energy Technology Limited Corporation Method for removing metal complex in polycrystalline silicon cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139791A1 (en) * 2008-05-12 2009-11-19 Translucent Photonics, Inc. Thin film semiconductor-on-glass solar cell devices
JP2018182293A (en) * 2017-04-19 2018-11-15 常州時創能源科技有限公司Changzhou Shichuang Energy Technology Limited Corporation Method for removing metal complex in polycrystalline silicon cell

Also Published As

Publication number Publication date
JP2547533B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US4253882A (en) Multiple gap photovoltaic device
US4341918A (en) High voltage planar multijunction solar cell
US4879251A (en) Method of making series-connected, thin-film solar module formed of crystalline silicon
US4849029A (en) Energy conversion structures
Wenham et al. Buried contact silicon solar cells
US20060266409A1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US4914044A (en) Method of making tandem solar cell module
Arbuzov et al. Spectral characteristics of cascade photoelectric converters on the base of idealized tunnel homogeneous semiconductor structures
US20090308429A1 (en) Thin-film solar module
JPS614283A (en) Aging method of photovoltaic device
JPH0661516A (en) Manufacture of solar battery
JPH06204529A (en) Solar cell
JPS6111475B2 (en)
Arai et al. A single pin junction amorphous-silicon solar cell with conversion efficiency of 12.65%
KR101760801B1 (en) Method for producing a light concentrating photovoltaic system
WO2020158023A1 (en) Solar battery cell, method for manufacturing same, and solar battery module
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
JPS60235442A (en) Photovoltaic unit
JPS61135167A (en) Thin-film solar cell
JP3209701B2 (en) Photovoltaic device
CN109755348A (en) A kind of cadmium-Te solar battery series connection integrated technique for low-concentration component
Caselli et al. CdSe nanowire solar cells
KR930009596B1 (en) Silicon solar cell and manufacturing method thereof
US20100018575A1 (en) Solar cell of quantum well store and method of preparation thereof
CN117615595A (en) Four-terminal three-glass efficient film laminated power generation assembly and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term