JPS6142814B2 - - Google Patents

Info

Publication number
JPS6142814B2
JPS6142814B2 JP53108555A JP10855578A JPS6142814B2 JP S6142814 B2 JPS6142814 B2 JP S6142814B2 JP 53108555 A JP53108555 A JP 53108555A JP 10855578 A JP10855578 A JP 10855578A JP S6142814 B2 JPS6142814 B2 JP S6142814B2
Authority
JP
Japan
Prior art keywords
liquid supply
cell
turbidity
supply cell
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53108555A
Other languages
Japanese (ja)
Other versions
JPS5535250A (en
Inventor
Haruhiko Ooya
Hiroshi Saito
Reiji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10855578A priority Critical patent/JPS5535250A/en
Publication of JPS5535250A publication Critical patent/JPS5535250A/en
Publication of JPS6142814B2 publication Critical patent/JPS6142814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 この発明は、水処理、純水製造などの水質管理
用の濁度測定装置にかんする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbidity measuring device for water quality control such as water treatment and pure water production.

低濁度の水質を要求される工業用水、膜法によ
る脱塩装置への給液の水質管理は、工業用水試験
方法JISK0101の5乃至7頁に記載されている光
透過法の測定限界以下の濁度が要求されている。
For industrial water that requires low turbidity water quality, water quality control for water supplied to desalination equipment using the membrane method is to ensure that the water quality is below the measurement limit of the light transmission method described on pages 5 to 7 of the industrial water test method JISK0101. Turbidity is required.

このため逆浸透装置への給液の濁度測定には、
光透過法を使用することができず、精密過膜の
目塞りを利用した過法による測定方法が広く利
用されている。この濁度測定方法の一例としては
空気圧力タンク、直径47mmの精密過膜およびそ
れを取付ける過器からなる装定器を使用し、圧
力2.1Kg/cm2Gの下で四定量過する時間を測定
し、つぎの式によつて濁度FI値を求めている。
Therefore, when measuring the turbidity of the liquid supplied to the reverse osmosis device,
Since it is not possible to use a light transmission method, a measurement method based on a transmission method that utilizes the clogging of a precision membrane is widely used. An example of this turbidity measurement method is to use a device consisting of an air pressure tank, a precision filtration membrane with a diameter of 47 mm, and a filtration device to which it is attached. The turbidity FI value is calculated using the following formula.

ここでt1:最初の500mlの過時間 t2:T時間(通常15分)後の500mlの過逆浸
透装置へのFI値は3以下が要求されており、こ
の指標に合うように原液を前処理しているが、原
液が海水のように濁度の時間変動の小さい場合は
よいが、廃水、かん水のように濁度の変動が著じ
るしい場合、また前処理設備の運転状態の変化に
よる濁度の急増などが予想される場合は逆浸透装
置の運転にトラブルを生じるため運転を停止せね
ばならない。
Here, t 1 : Elapsed time for the first 500 ml t 2 : After T time (usually 15 minutes), the FI value of 500 ml into the reverse osmosis device is required to be 3 or less, and the stock solution should be adjusted to meet this index. Pretreatment is fine if the raw solution is seawater where the turbidity changes over time, but if the turbidity changes significantly like wastewater or brine, or if the operating status of the pretreatment equipment is If a sudden increase in turbidity is expected due to changes, trouble will occur in the operation of the reverse osmosis device, and the operation must be stopped.

そこで過膜としてテープ状膜を使用しテープ
を順次送りながら、従来方法と同一操作を自同化
させる試みもなされているが、これは2.1Kg/cm2
Gの定圧下で行い、プロセスラインから測定液を
分離して定圧タンクに入れることの遅れ、また
500mlの計量を高精度で行うことが困難なこと、
給液、排液弁の数が多いこと、過器、配管の洗
浄が手作業であり精度が低下するなどの欠点があ
つた。
Therefore, an attempt has been made to use a tape-like membrane as a membrane and sequentially feed the tape to perform the same operations as the conventional method, but this method has a yield of 2.1Kg/cm 2
G is carried out under constant pressure, resulting in delays in separating the measurement liquid from the process line and putting it into the constant pressure tank
Difficulty measuring 500ml with high precision;
Disadvantages include the large number of liquid supply and drain valves, and the manual cleaning of the filter and piping, which reduces accuracy.

この発明は上記欠点を除去することを目的とす
るもので、給液セルに対して過セルを圧着可能
として相互間で紙を挾持するようにした過セ
ルおよび給液セルからなる過器と、この給液セ
ルに原液を供給するための分岐管に液体供給用定
量ポンプと、バツフアーチヤンバーとを設け、該
バツフアーチヤンバーに過器における圧力損失
を測定する圧力検知手段を接続して有することを
特徴とするものであり、また圧力値を定圧法によ
る濁度指数に変換するための演算手段を設けたこ
とを特徴とするものである。
The present invention aims to eliminate the above-mentioned drawbacks, and includes a supercell consisting of a supercell and a liquid supply cell, which can be pressed against the fluid supply cell so as to sandwich paper between them; A metering pump for liquid supply and a buffer arch yambar are provided in the branch pipe for supplying the stock liquid to the liquid supply cell, and a pressure detection means for measuring the pressure loss in the buffer is connected to the buffer arch yambar. The present invention is characterized in that it has a calculation means for converting a pressure value into a turbidity index based on a constant pressure method.

第1図および第2図に基づき本発明の一実施例
を説明する。
An embodiment of the present invention will be described based on FIGS. 1 and 2.

原液の流路1に原液の一部を流すための分岐管
2を設け、定量ポンプ3を介して、円筒状の給液
セル7の底部に接続させている。定量ポンプ3の
下流側にはバツフアチヤンバー23を設けるとと
もに、圧力計22(圧力伝送器)を接続させてい
る。また上記分岐管2は、給液セル7側で洗浄水
管5と分岐され、バルブ4,6の切換により給液
セル中に清浄液を導入するようになつている。
過セル9は給液セル7と同様円筒状であり、給液
セル7上に載置することにより両セルで円筒体の
過器24を形成する。過セル9の底部には
紙支持板10が取付けられている。この支持板1
0はガラス製過板とするのが好ましい。給液セ
ル7の内縁周部には0リング8が嵌め込まれ、
過セル9と給液セル7とが圧接する際、液密機能
を呈する。過セル9の上下動はエアーシリンダ
21、コンプレツサ19の組合せにより行なう。
過セル9にはその内室と連通する液管11が
設けられている。過セル9と給液セル7との間
には紙16が狭持されるようになつている。
紙16の一端は紙カートリツジ15に他端は巻
き取りロール17に巻き付けられている。紙1
6の送りは、ローラー18により行う。過セル
9の周囲には洗浄排液受皿13が設けられてお
り、底部に洗浄排液出口14が接続されている。
A branch pipe 2 for flowing a part of the stock solution is provided in the flow path 1 for the stock solution, and is connected to the bottom of a cylindrical liquid supply cell 7 via a metering pump 3. A buffer chamber 23 is provided downstream of the metering pump 3, and a pressure gauge 22 (pressure transmitter) is connected thereto. Further, the branch pipe 2 is branched into a cleaning water pipe 5 on the liquid supply cell 7 side, and the cleaning liquid is introduced into the liquid supply cell by switching valves 4 and 6.
The overcell 9 is cylindrical like the liquid supply cell 7, and by being placed on the liquid supply cell 7, both cells form a cylindrical overcontainer 24. A paper support plate 10 is attached to the bottom of the overcell 9. This support plate 1
0 is preferably a glass pass plate. An O-ring 8 is fitted around the inner edge of the liquid supply cell 7,
When the overcell 9 and the liquid supply cell 7 come into pressure contact, a liquid-tight function is exhibited. The vertical movement of the overcell 9 is performed by a combination of an air cylinder 21 and a compressor 19.
The overcell 9 is provided with a liquid pipe 11 communicating with its inner chamber. A paper 16 is held between the overcell 9 and the liquid supply cell 7.
One end of the paper 16 is wound around a paper cartridge 15 and the other end is wound around a take-up roll 17. paper 1
The feeding of 6 is performed by rollers 18. A cleaning drainage liquid receiving tray 13 is provided around the overcell 9, and a cleaning drainage liquid outlet 14 is connected to the bottom thereof.

これら各要素からなる過装置30はコンピユ
ータ25に接続され、圧力値を一般的な定圧測定
法使用される値に演算した後記憶したりまた表示
盤26にて表示するとともに、コンピユータ内の
プログラムに従い過器24のバルブ開閉、過
セルの上下作動、洗浄水の給液、紙テープの移
動等の各作業の指令が各装置および部分に与えら
れる。
The pressure control device 30 consisting of each of these elements is connected to the computer 25, and after calculating the pressure value to the value used in the general constant pressure measurement method, stores it and displays it on the display panel 26, and also according to the program in the computer. Commands for various operations such as opening and closing the valve of the filter unit 24, moving the filter cell up and down, supplying cleaning water, and moving the paper tape are given to each device and part.

濁度測定に当つて、給液セル7および過セル
9が紙16を狭みつけるように過セル9をエ
アーシリンダ21の空気圧によつて押し下げてお
り、両セル間からの水洩れがないようにしてお
く。エアーシリンダ21にはコンプレツサ19か
ら出た加圧空気が入るが、一般には計装用空気が
使用され、コンプレツサ19はこの場合不要であ
る。
When measuring turbidity, the liquid supply cell 7 and the overcell 9 squeeze the paper 16, and the overcell 9 is pushed down by the air pressure of the air cylinder 21 to prevent water from leaking between the two cells. I'll keep it. The air cylinder 21 receives pressurized air from the compressor 19, but instrument air is generally used and the compressor 19 is not needed in this case.

まずバルブ4を開き、バルブ6を閉じ、定量ポ
ンプ3によつて給液され過が開始される。ここ
で定量ポンプは2Kg/cm2程度の圧力で流量変化を
生じないものが好ましく、またバツフアチヤンバ
ー23が存在するため脱気した後原液を過器2
4に供給することになる。
First, valve 4 is opened, valve 6 is closed, and liquid is supplied by metering pump 3 to start filtration. Here, it is preferable that the metering pump is one that does not cause a change in flow rate at a pressure of about 2 kg/cm2, and since there is a buffer chamber 23, the stock solution is transferred to the filter chamber 23 after degassing.
It will be supplied to 4.

過直後から上昇する過圧力は圧力計又は圧
力伝送器22により検知され、コンピユータに伝
送され、換算に必要なデータが充分な精度で得ら
れるまで演算され、第1回の測定が完了する。
The overpressure that increases immediately after the overpressure is detected by the pressure gauge or pressure transmitter 22, is transmitted to the computer, and is calculated until the data necessary for conversion is obtained with sufficient accuracy, completing the first measurement.

この演算の一例を示すと、 FI=αKiQ/1+TkiQ×6000 ここで Ki:過特性曲線から得られた定数 Qp:初期流量、通常10乃至20ml/sec T:時間、通常900sec α:修正係数 の式に、測定圧力値から計算されるKiを入れFI
値を求める。
An example of this calculation is: FI=αKiQ p /1+TkiQ p ×6000 where Ki: constant obtained from the overcharacteristic curve Q p : initial flow rate, usually 10 to 20 ml/sec T: time, usually 900 sec α: correction Insert Ki calculated from the measured pressure value into the coefficient formula and enter FI
Find the value.

ここで圧力計22はバツフアチヤンバー23に
取付けられているため、液接触がなく、腐食が生
じない。測定完了直後、定量ポンプ3を停止し、
バルブ4を閉じ、エアーシリンダ21内の空気抜
出しによるセル9の押し上げがコンピユータの指
令により操作され、さらにバルブ6開により洗浄
水5が給液セル7に入り、紙テープ16を押し
上げながら溢流したのち洗浄水の供給を停める
と、給液セル7の水がバルブ6より流出し、洗浄
が完了する。紙テープ16が所定距離移動した
あとセル9が押下げられ、第2回の測定が前述と
同様な方法で開始される。過量、過時間は濁
度レベルにより変化するが、1回の測定時間は5
乃至10分程度で充分である。
Here, since the pressure gauge 22 is attached to the buffer chamber 23, there is no liquid contact and no corrosion occurs. Immediately after completing the measurement, stop the metering pump 3,
The valve 4 is closed and the air in the air cylinder 21 is evacuated to push up the cell 9 according to a command from the computer. Furthermore, the valve 6 is opened so that the cleaning water 5 enters the liquid supply cell 7 and overflows while pushing up the paper tape 16. When the supply of cleaning water is stopped, the water in the liquid supply cell 7 flows out from the valve 6, and cleaning is completed. After the paper tape 16 has moved a predetermined distance, the cell 9 is pressed down and a second measurement is started in the same manner as described above. Overload and overtime vary depending on the turbidity level, but one measurement time is 5
About 10 minutes is sufficient.

以上のように、この発明によれば光透過法の濁
度測定限度を超えるような原水の濁度を高精度で
連続的に測定し、一般的な定圧法による濁度指数
として表示し、これにもとずき濁度除去装置ある
いは造水装置等を自動管理することが可能とな
る。
As described above, according to the present invention, the turbidity of raw water that exceeds the turbidity measurement limit of the light transmission method is continuously measured with high precision, and is displayed as a turbidity index using the general constant pressure method. It becomes possible to automatically manage Momotozuki turbidity removal equipment, freshwater generation equipment, etc.

また従来の定圧法自動濁度指数計と比較して、
計装機器の数が少なく、極めて単純なため、総合
誤差が少くなり、高精度の測定値が得られる。
Also, compared to the conventional constant pressure automatic turbidity index meter,
Because the number of instrumentation devices is small and extremely simple, the overall error is small and highly accurate measurements are obtained.

このようにこの発明によれば、造水および水処
理装置等を安全かつ容易に運転することが可能と
なる効果を奏するものである。
As described above, according to the present invention, it is possible to safely and easily operate a water generation and water treatment apparatus, etc.

なお上記定圧法濁度指数としては上記のFI値
以外の指数も使用でき、また圧力値をそのまま濁
度指数として使用できることも云うまでもない。
Note that as the constant pressure method turbidity index, an index other than the above-mentioned FI value can be used, and it goes without saying that the pressure value can also be used as it is as the turbidity index.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の一実施例を示
す概略図およびブロツク図である。 7……給液セル、9……過セル、22……圧
力計、23……バツフアチヤンバー、24……
過器、25……コンピユータ、26……定圧法濁
度表示盤。
1 and 2 are a schematic diagram and a block diagram showing one embodiment of the present invention. 7... Liquid supply cell, 9... Over cell, 22... Pressure gauge, 23... Buff chamber, 24...
25...computer, 26...constant pressure method turbidity display panel.

Claims (1)

【特許請求の範囲】 1 給液セルに対して過セルを圧着加能として
相互間で紙を挾持するようにした過セルおよ
び給液セルからなる過器と、該給液セル原液を
供給するための分岐管に液体供給用定量ポンプ
と、バツフアチヤンバーとを設け、該バツフアチ
ヤンバーに過器における圧力損失を測定する圧
力検知手段を接続して有することを特徴とする濁
度測定装置。 2 液セルに対して過セルを圧着可能として相
互間で紙を挾持するようにした過セルおよび
給液セルからなる過器と、該給液セルに原液を
供給するための分岐管に液体供給用定量ポンプ
と、バツアフーチヤンバーとを設け、該バツフア
ーチヤンバーに過器における圧力損失を測定す
る圧力検知手段を接続し、この圧力検知手段より
得られる圧力値を定圧法による濁度指数に変換す
るための演算手段とを有することを特徴とする濁
度測定装置。
[Scope of Claims] 1. A sieve device consisting of an overcell and a liquid supply cell, which are configured to press the overcell against the liquid supply cell and sandwich paper therebetween, and supply the liquid supply cell with stock solution. Turbidity measurement characterized in that a metering pump for liquid supply and a buffer chamber are provided in a branch pipe for liquid supply, and a pressure detection means for measuring pressure loss in the buffer chamber is connected to the buffer chamber. Device. 2. A supercell consisting of a supercell and a liquid supply cell, which can be pressed against the liquid cell to sandwich paper between them, and a liquid supply to a branch pipe for supplying the stock solution to the liquid supply cell. A metering pump and a butafu chamber are provided, and a pressure detection means for measuring the pressure loss in the excess chamber is connected to the buffer chamber. A turbidity measuring device characterized by having a calculation means for converting into.
JP10855578A 1978-09-06 1978-09-06 Turbidimeter Granted JPS5535250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10855578A JPS5535250A (en) 1978-09-06 1978-09-06 Turbidimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10855578A JPS5535250A (en) 1978-09-06 1978-09-06 Turbidimeter

Publications (2)

Publication Number Publication Date
JPS5535250A JPS5535250A (en) 1980-03-12
JPS6142814B2 true JPS6142814B2 (en) 1986-09-24

Family

ID=14487789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10855578A Granted JPS5535250A (en) 1978-09-06 1978-09-06 Turbidimeter

Country Status (1)

Country Link
JP (1) JPS5535250A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750642A (en) * 1980-09-12 1982-03-25 Kurita Water Ind Ltd Method and device for monitoring of ultrapure water
JPS58190401U (en) * 1982-06-04 1983-12-17 栗田工業株式会社 Filtration device for measuring particulates in water
JPS59142002U (en) * 1983-03-11 1984-09-22 日本電気株式会社 Line ultrapure water particle measuring device
JPH0643952B2 (en) * 1985-12-03 1994-06-08 オルガノ株式会社 Colloid index measurement method
JPH0718785B2 (en) * 1988-09-19 1995-03-06 株式会社日立製作所 Flow cell device
JPH10148610A (en) * 1996-11-18 1998-06-02 Nitto Denko Corp Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same
EP2570167A1 (en) * 2011-09-13 2013-03-20 Bayer Intellectual Property GmbH Device and method for discontinuous filtration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56223Y2 (en) * 1975-12-16 1981-01-07

Also Published As

Publication number Publication date
JPS5535250A (en) 1980-03-12

Similar Documents

Publication Publication Date Title
TW478949B (en) Water dispensing apparatus with filter integrity testing system and method for testing and operating the same
US10246351B2 (en) Device for producing ultrapure water
GB1155142A (en) Method and Apparatus for Sampling Waste Gas
KR19980703054A (en) Filtration Monitoring and Control System
JPS6142814B2 (en)
US10046988B2 (en) RO installation for flushing solutions
JP4931039B2 (en) Water quality monitoring equipment and water treatment equipment
CN101746847B (en) Device for recycling industrial waste acid or waste alkali by adopting automatic diffusion dialysis
Al-Bastaki et al. Improving the permeate flux by unsteady operation of a RO desalination unit
US10307715B2 (en) Control of an RO installation for flushing solutions
JPS63197596A (en) Method for controlling quality of made water of water making plant
JPH03284323A (en) Method and apparatus for membrane separation
CN210964672U (en) Integrated membrane performance testing device
JPH10156354A (en) Membrane separator for treating water
CN113740386A (en) Measuring device and measuring method for accurately measuring hydrogen conductivity of water
CN214020675U (en) Reation kettle stoste dropwise add device
JPS6142117Y2 (en)
CN215693232U (en) Cleaning device for reverse osmosis membrane
JP3832969B2 (en) Operation method of membrane separator
CN217819403U (en) Water efficiency detection device
JPH0125309Y2 (en)
JPS5985940A (en) Apparatus for measuring concentration of floating material in water
JP2006068634A (en) Filtration membrane fault detection method and apparatus therefor
DE1168123B (en) Device for determining the viscosity of liquids
SU696359A1 (en) Oxygen content determining device