JPH10148610A - Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same - Google Patents

Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same

Info

Publication number
JPH10148610A
JPH10148610A JP8323531A JP32353196A JPH10148610A JP H10148610 A JPH10148610 A JP H10148610A JP 8323531 A JP8323531 A JP 8323531A JP 32353196 A JP32353196 A JP 32353196A JP H10148610 A JPH10148610 A JP H10148610A
Authority
JP
Japan
Prior art keywords
fine particles
turbidity
liquid
raw water
ultrafiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8323531A
Other languages
Japanese (ja)
Inventor
Masakazu Shinagawa
雅一 品川
Takashi Akiyama
隆 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP8323531A priority Critical patent/JPH10148610A/en
Publication of JPH10148610A publication Critical patent/JPH10148610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a liquid in real time without sampling it by measuring the number of fine particles based on the turbidity of the liquid and controlling raw water turgidity while operating an ultrafiltration membrane module device. SOLUTION: The number of fine particles in a liquid is mutually related to a turbidity measured by a high-sensitivity turbidity meter. The correlation can be easily obtained by measuring the turbidity of a liquid whose number of fine particles is known and can be expressed by a logarithmic graph. Therefore, the turbidity of a liquid whose number of fine particles is unknown is measured, and the number of fine particles liquid can be determined by the value of the number of fine particles corresponding to the tubidity. An optical means can be adopted to measured the turbidity. Also, by controlling a raw water turbidity while operating an ultrafiltration membrane module device, the number of fine particles can be measured simply by arranging a turbidity meter at a raw water supply line. Especially, the number of fine particles corresponding to the change in the raw water characteristics can be measured in real time especially online.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、液中の微粒子数
を計測する方法及びその方法を利用した限外ろ過膜モジ
ュールの運転方法に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the number of fine particles in a liquid and a method for operating an ultrafiltration membrane module using the method.

【0002】[0002]

【従来の技術】限外ろ過膜モジュールの運転において、
処理原水中の0.4μm前後の微粒子が膜の目詰まりに
影響を与えることが知られている。これはケークろ過理
論でも確認されている。従って、限外ろ過膜の汚染を防
止するためには、処理原水中の微粒子数を計り、ケーク
ろ過理論などにより膜寿命や膜汚染を推測する必要があ
る。
2. Description of the Related Art In operation of an ultrafiltration membrane module,
It is known that fine particles of about 0.4 μm in raw water for treatment affect clogging of a film. This has been confirmed in cake filtration theory. Therefore, in order to prevent the ultrafiltration membrane from being contaminated, it is necessary to measure the number of fine particles in the raw water to be treated and to estimate the membrane life and membrane contamination by cake filtration theory or the like.

【0003】従来、液中の微粒子の計数手段として、直
接検視法及びパーティクルカウンターによる機器分析法
の2つが知られていた。直接検視法は、分離粒径0.2
μmの精密ろ過膜(MF)に限外ろ過膜の処理原水を通
し、顕微鏡視野下でMFの膜面に捕捉された微粒子を計
数する方法である。パーティクルカウンターによる機器
分析法は、例えば現在市販のレーザー散乱式の場合、処
理原水にレーザーを照射し、一定長さのレーザー光線上
の微粒子数を数える方法である。
Conventionally, two methods of counting fine particles in a liquid have been known: a direct visual inspection method and an instrumental analysis method using a particle counter. The direct autopsy method has a particle size of 0.2
This is a method in which raw water treated with an ultrafiltration membrane is passed through a microfiltration microfiltration membrane (MF) to count fine particles trapped on the MF membrane surface under a microscope visual field. An instrumental analysis method using a particle counter is a method in which, for example, in the case of a currently commercially available laser scattering system, a laser beam is irradiated on raw water to be treated, and the number of fine particles on a laser beam having a certain length is counted.

【0004】[0004]

【発明が解決しようとする課題】しかし、直接検視法
は、バッチサンプリングによる分析であるから、そのサ
ンプリングした時点での原水性状しか把握できない。即
ち、サンプリングしていないときに生ずる変動や非定常
的な変動を把握することはできない。従って、サンプリ
ングした水の性状が良好でも、急激に限外ろ過膜の処理
性能が劣化する場合がある。また、直接検視法は作業者
の熟練度を要する。
However, since the direct autopsy method is an analysis based on batch sampling, only the raw water state at the time of sampling can be grasped. That is, it is not possible to grasp the fluctuation or the non-stationary fluctuation that occurs when sampling is not performed. Therefore, even if the properties of the sampled water are good, the treatment performance of the ultrafiltration membrane may suddenly deteriorate. In addition, the direct autopsy method requires the skill of an operator.

【0005】他方、レーザー散乱式のパーティクルカウ
ンターでは4×103個/ml程度が測定個数の上限で
ある。これ以上微粒子の多い原水サンプルを分析して
も、重複して検出したり実際と異なるサイズとして検出
されるなど精度に信頼性が無くなることが分かってい
る。従って、微粒子数の多い原水、例えば水道水(微粒
子数=104−105個/ml)の場合、サンプリングし
た後、微粒子のほとんど含まれない超純水で希釈して分
析する必要があった。
On the other hand, in a laser scattering type particle counter, about 4 × 10 3 / ml is the upper limit of the number of measurement. It has been found that even when a raw water sample containing more fine particles is analyzed, the accuracy is not reliable, for example, detection is performed repeatedly or as a size different from the actual size. Therefore, in the case of raw water having a large number of fine particles, for example, tap water (the number of fine particles = 10 4 -10 5 / ml), after sampling, it is necessary to dilute with ultrapure water containing almost no fine particles for analysis. .

【0006】更に、上記2つの方法ではいずれもリアル
タイムで精度の良い分析は不可能乃至困難であるから、
原水の予測できない性状変化などにより、限外ろ過膜が
酷く汚れて、多大の負荷が加わり、洗浄しても性能が回
復しない状態、あるいは膜破損に至ることがあった。
[0006] Further, in both of the above two methods, it is impossible or difficult to perform accurate analysis in real time.
The ultrafiltration membrane was severely contaminated due to an unpredictable change in properties of the raw water, and a large load was applied. In some cases, the performance did not recover even after washing, or the membrane was damaged.

【0007】この発明は、これらの課題を解決するため
になされたもので、その一つの目的は従来方法と全く相
違する微粒子数計測方法を提供することである。他の目
的は、限外ろ過膜に供給される原水性状を連続的に管理
し安定した運転を行うことにある。
The present invention has been made to solve these problems, and one object of the present invention is to provide a method for counting the number of fine particles which is completely different from the conventional method. Another object is to continuously control the raw water state supplied to the ultrafiltration membrane and perform a stable operation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する微粒
子数計測方法は、液中の微粒子数をその液体の濁度に基
づいて計測することを特徴とする。これは、液中の微粒
子数と高感度濁度計によって測定される濁度に相関関係
があるという発明者らの知見に基づく。この相関関係
は、微粒子数が既知の液体の濁度を測定することにより
容易に求めることができ、図1のように対数グラフで表
すことができる。従って、微粒子数が未知の液体の濁度
を測定し、その濁度に対応する微粒子数の値をもって液
中の微粒子数であると決定できる。濁度の測定手段は限
定されないが、光学的手段を採用することができるの
で、この方法によれば、液体が静水でも流水でも計測で
きる。
A method for counting the number of fine particles for achieving the above object is characterized in that the number of fine particles in a liquid is measured based on the turbidity of the liquid. This is based on the inventors' finding that there is a correlation between the number of fine particles in the liquid and the turbidity measured by a high-sensitivity turbidimeter. This correlation can be easily obtained by measuring the turbidity of a liquid having a known number of fine particles, and can be represented by a logarithmic graph as shown in FIG. Therefore, the turbidity of a liquid whose number of fine particles is unknown is measured, and the value of the number of fine particles corresponding to the turbidity can be determined as the number of fine particles in the liquid. The means for measuring the turbidity is not limited, but an optical means can be employed. Therefore, according to this method, it is possible to measure whether the liquid is still water or flowing water.

【0009】上記目的を達成する限外ろ過膜モジュール
の運転方法は、限外ろ過膜モジュール装置において、運
転中に原水濁度を管理することを特徴とする。この方法
によれば、原水供給ラインに濁度計を配置するだけで、
微粒子数を計測することができる。特に管理をオンライ
ンで行うときは、原水性状の変化に即応して微粒子数を
リアルタイムで計測することができる。
A method of operating an ultrafiltration membrane module that achieves the above object is characterized in that in an ultrafiltration membrane module device, raw water turbidity is managed during operation. According to this method, simply placing a turbidity meter in the raw water supply line,
The number of fine particles can be measured. In particular, when the management is performed online, the number of fine particles can be measured in real time in response to a change in the raw water state.

【0010】[0010]

【実施例】下記の仕様の水処理装置を準備し、イオン交
換樹脂の透過側と限外ろ過膜モジュールの供給側を連結
して、下記の条件で運転し、一定時間経過後にイオン交
換樹脂を再生した。運転中、定期的に原水をサンプリン
グし、濁度計で濁度を測定し、モニターに表示した。
EXAMPLE A water treatment apparatus having the following specifications was prepared, the permeation side of the ion exchange resin was connected to the supply side of the ultrafiltration membrane module, and the operation was carried out under the following conditions. Replayed. During operation, raw water was sampled periodically, turbidity was measured with a turbidity meter, and displayed on a monitor.

【0011】[装置の仕様] イオン交換樹脂:再生式ミックスベッドイオン交換樹脂 限外ろ過膜モジュール:キャピラリー型(日東電工株式
会社製 NTU-3050-C3H) 濁度計:ハック(HACH)社製低レンジ濁度計Rat
io/XR
[Specifications of Apparatus] Ion exchange resin: Regeneration type mixed bed ion exchange resin Ultrafiltration membrane module: Capillary type (NTU-3050-C3H manufactured by Nitto Denko Corporation) Turbidity meter: Low manufactured by Hach (HACH) Range turbidity meter Rat
io / XR

【0012】[限外ろ過膜モジュールの運転条件] 入口圧力:1Kg/cm2 回収率:90% 水温:20℃ 原水:イオン交換水(再生前の微粒子数2×104個/
ml>0.2μm)
[Operating conditions of ultrafiltration membrane module] Inlet pressure: 1 kg / cm 2 Recovery rate: 90% Water temperature: 20 ° C. Raw water: ion-exchanged water (the number of fine particles before regeneration is 2 × 10 4 particles /
ml> 0.2 μm)

【0013】その結果、通常0.02前後であった濁度
がイオン交換樹脂再生直後、放流しているにもかかわら
ず0.05に増加するとともに、透過水量が低下した。
このときの原水を100倍に希釈して液中の微粒子数を
パーティクルカウンターで計測したところ、5×105
個/mlであった。これは、再生時に脱落したイオン交
換樹脂が限外ろ過膜に付着したことによると考えられ
る。そこで、限外ろ過膜モジュールの透過側を閉、濃縮
側を全開にし、入口流量3m3/hで流通させる、いわ
ゆるフラッシングを行った後、運転を再開したところ、
濁度が0.02前後に復帰するとともに透過水量も回復
した。
As a result, the turbidity, which was usually around 0.02, increased to 0.05 immediately after the ion exchange resin was regenerated, despite being discharged, and the amount of permeated water decreased.
When the number of fine particles in the liquid was measured with a particle counter raw water at this time was diluted 100-fold, 5 × 10 5
Pcs / ml. This is considered to be due to the fact that the ion-exchange resin that had fallen off during regeneration adhered to the ultrafiltration membrane. Therefore, the permeation side of the ultrafiltration membrane module was closed, the concentration side was fully opened, and the flow was performed at an inlet flow rate of 3 m 3 / h.
The turbidity returned to around 0.02 and the amount of permeated water also recovered.

【0014】[0014]

【発明の効果】この発明の微粒子計測方法によれば、液
体をサンプリングすることなく、リアルタイムで計測す
ることができる。この発明の限外ろ過膜モジュール運転
方法によれば、作業者の熟練度や原水の微粒子濃度に依
存することなく、原水中の微粒子数を計測することがで
きるので、原水をリアルタイムで精度良く管理し、膜洗
浄あるいはフラッシング等の時期を正確に判断すること
ができる。また、管理をオンラインで行うことにより、
原水の異常な変動に対して、自動停止、自動警告あるい
は運転条件の自動変更などの措置を採りうる。
According to the fine particle measuring method of the present invention, the liquid can be measured in real time without sampling. According to the method for operating an ultrafiltration membrane module of the present invention, the number of fine particles in raw water can be measured without depending on the skill of the worker and the concentration of fine particles in raw water, so that raw water can be accurately managed in real time. Then, it is possible to accurately determine the timing of film cleaning or flushing. Also, by managing online,
For abnormal fluctuation of raw water, measures such as automatic stop, automatic warning or automatic change of operating conditions can be taken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水中の濁度と微粒子数の相関を示すグラフであ
る。
FIG. 1 is a graph showing the correlation between turbidity in water and the number of fine particles.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】液中の微粒子数をその液体の濁度に基づい
て計測することを特徴とする液中の微粒子数計測方法。
1. A method for measuring the number of fine particles in a liquid, the method comprising measuring the number of fine particles in the liquid based on the turbidity of the liquid.
【請求項2】限外ろ過膜モジュール装置において、運転
中に原水濁度を管理することを特徴とする限外ろ過膜モ
ジュールの運転方法。
2. A method for operating an ultrafiltration membrane module in an ultrafiltration membrane module device, wherein raw water turbidity is managed during operation.
【請求項3】前記管理がオンラインでなされる請求項2
に記載の運転方法。
3. The method according to claim 2, wherein the management is performed online.
Driving method described in.
JP8323531A 1996-11-18 1996-11-18 Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same Pending JPH10148610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323531A JPH10148610A (en) 1996-11-18 1996-11-18 Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323531A JPH10148610A (en) 1996-11-18 1996-11-18 Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same

Publications (1)

Publication Number Publication Date
JPH10148610A true JPH10148610A (en) 1998-06-02

Family

ID=18155746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323531A Pending JPH10148610A (en) 1996-11-18 1996-11-18 Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same

Country Status (1)

Country Link
JP (1) JPH10148610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222566A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Microorganism measuring method and system
CN102221517A (en) * 2011-04-08 2011-10-19 中国船舶重工集团公司第七○二研究所 Ecological desilting diffusion measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535250A (en) * 1978-09-06 1980-03-12 Sumitomo Heavy Ind Ltd Turbidimeter
JPH07203945A (en) * 1994-01-12 1995-08-08 Hitachi Ltd Apparatus for culturing cell of living body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535250A (en) * 1978-09-06 1980-03-12 Sumitomo Heavy Ind Ltd Turbidimeter
JPH07203945A (en) * 1994-01-12 1995-08-08 Hitachi Ltd Apparatus for culturing cell of living body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222566A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Microorganism measuring method and system
CN102221517A (en) * 2011-04-08 2011-10-19 中国船舶重工集团公司第七○二研究所 Ecological desilting diffusion measuring device

Similar Documents

Publication Publication Date Title
US3964999A (en) Determination of sodium form water softener breakthrough
JP5358894B2 (en) Water purifier
EP1286239A2 (en) Method and system for controlling the concentration of a component in a composition with absorption spectroscopy
US3898042A (en) Method and apparatus for continuously determining total copper in an aqueous stream
KR20170102357A (en) Devices to maintain sensor accuracy
KR20170102545A (en) Apparatus, system and method for maintaining sensor accuracy
CN105051519A (en) Particulate-measuring method, particulate-measuring system, and system for manufacturing ultrapure water
WO2006043900A1 (en) A water quality testing system
US5351523A (en) Apparatus and process for determining filter efficiency in removing colloidal suspensions
US4786473A (en) Apparatus for measuring impurities in pure water
JPH0323858B2 (en)
JPH08252440A (en) Method for detecting breakage of membrane and device therefor
JPH10148610A (en) Method for measuring number of particles in liquid, and method for operating ultrafiltration membrane module utilizing the same
KR102218025B1 (en) Method and apparatus for inspection of polymeric membrane aging in water treatment process
JP2907269B2 (en) Automatic calibration method of automatic analyzer
US6420185B1 (en) Water contamination concentration apparatus and process
CN107308823B (en) Method and apparatus for determining damage of membrane element
NL1028474C2 (en) Device for on-line monitoring of membrane fouling during a filtration process comprises a membrane whose edges are clamped between top and bottom plates
JP2001153854A (en) Monitoring method and system for impurity concentration
US11307138B2 (en) Testing method for residual organic compounds in a liquid sample
JPH10128086A (en) Detection of abnormality in membrane treating system and control method therefor
Hong et al. Assessing pathogen removal efficiency of microfiltration by monitoring membrane integrity
JP7139301B2 (en) Pure water production control system and pure water production control method
JP3120525B2 (en) Anaerobic digester monitoring device
KR100539308B1 (en) A method for real time monitoring the operation of a rapid filter and alerting a operator of the rapid filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510