JPS6142553B2 - - Google Patents

Info

Publication number
JPS6142553B2
JPS6142553B2 JP56114414A JP11441481A JPS6142553B2 JP S6142553 B2 JPS6142553 B2 JP S6142553B2 JP 56114414 A JP56114414 A JP 56114414A JP 11441481 A JP11441481 A JP 11441481A JP S6142553 B2 JPS6142553 B2 JP S6142553B2
Authority
JP
Japan
Prior art keywords
tryptophan
bacterial cells
tryptophan synthetase
enzyme
synthetase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56114414A
Other languages
Japanese (ja)
Other versions
JPS5816676A (en
Inventor
Nobuyoshi Makiguchi
Nobuhiro Fukuhara
Toshio Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56114414A priority Critical patent/JPS5816676A/en
Publication of JPS5816676A publication Critical patent/JPS5816676A/en
Publication of JPS6142553B2 publication Critical patent/JPS6142553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、トリプトフアン・シンセターゼ(イ
ンドールとL−セリンとからL−トリプトフアン
を合成する反応を触媒する酵素)を含有する、エ
ツシエリヒア(Escherichia coli)に属する微生
物菌体を、0.0001%以上のピリドキサールリン酸
水溶液中に懸濁させてのち凍結することによつ
て、菌体内に含まれるトリプトフアン・シンセタ
ーゼの活性を低下させることなく保存するトリプ
トフアン・シンセターゼの保存方法に関するもの
である。 近年、L−トリプトフアンは医薬用のみならず
飼料用としての効果が世の注目を集めるに至り、
工業的規模による安価な本物質生産の期待が高ま
つてきている。L−トリプトフアンを製造する方
法の中で非常に有望視されている方法の1つにイ
ンドールとL−セリンとからL−トリプトフアン
を製造する酵素的生産方法がある。該反応を触媒
する酵素がトリプトフアン・シンセターゼであり
主として遺伝的に改良されたエツシエリヒア属に
属する微生物の菌体内に大量に生産される。本酵
素は菌体内に生産されるので菌体そのものを酵素
源として利用するのが工業的に有利であるが、こ
の酵素を商業的規模で使用しうるためには、酵素
活性(単位時間、単位菌体量当りのL−トリプト
フアン合成能)を低下させることなく、本酵素を
含む菌体を長時間保存する保存方法の確立がなけ
ればならない。 従来、一般的に酵素を含む菌体を凍結保存する
ことは知られているが、トリプトフアン・シンセ
ターゼを含む菌体の場合は、その保存方法が殆ん
ど知られておらず、本発明者らの試験によれば単
に湿菌体を凍結して保存するだけでは解凍後の菌
体の酵素活性の低下が著しく実用的な保存方法と
は言い難かつた。 本発明者らは、トリプトフアン・シンセターゼ
を含有する菌体を、その酵素活性の低下がなく、
長時間保存する方法を種々検討した結果、該菌体
を0.0001%以上のピリドキサールリン酸水溶液中
に懸濁させて後凍結することにより、湿菌体をそ
のまま凍結した場合に比して、酵素活性の低下が
著しく少なく長時間保存できることを見出し、本
発明を完成した。 本発明に使用するトリプトフアン・シンセター
ゼを菌体内に多量に生産する微生物としては、エ
ツシエリヒア・コリに属する微生物、例えばエツ
シエリヒア・コリMT−10232(FERM BP−
19)、エツシエリヒア・コリMT−10242(FERM
BP−20)などが用いられる。 ピリドキサールリン酸の濃度は0.0001%以上、
好ましくは0.001〜0.1%で使用され、懸濁する際
の菌体濃度としては、乾燥菌体濃度として5−
200g/、好ましくは30〜100g/の範囲であ
り、更に菌体をピリドキサールリン酸水溶液に懸
濁させた後、この懸濁液のPHを7〜9の範囲に調
整するのが望ましい。 菌体懸濁液を凍結する温度としては、−5〜−
50℃、好ましくは−10〜−30℃の範囲であり、凍
結した菌体懸濁液を融解するときの温度として
は、5〜50℃、好ましくは15〜40℃の範囲が使用
される。 本発明の保存方法によれば、菌体内に含まれる
トリプトフアン・シンセターゼを、その酵素活性
の低下も少なくしかも長時間保存することができ
るので、本発明はトリプトフアン・シンセターゼ
の工業的使用に大いに貢献するものと思われる。 以下、実施例により本発明を更に詳細に説明す
る。 実施例 1 トリプトフアン・シンセターゼ生産菌であるエ
ツシエリヒア・コリMT−10232(FERM BP−
19)を500mlの坂口フラスコ中の第1表に示す組
成の培地100mlに接種し、30℃で24時間培養し
た。この培養液200ml(フラスコ2本)を30の
ジヤーフアーメンター中の第2表に示す組成の培
地15に接種し、30℃、PH6.8(28%アンモニア
水でコントロール)で培養した。培養終了後、遠
心して集菌し、170gの湿菌体(乾燥菌体で36
g)を得た。この湿菌体3gを各試験区の濃度の
ピリドキサールリン酸水溶液で10mlになるように
懸濁し、PHを8.5に調整後、−15℃で各試験区の期
間だけ凍結保存した。この凍結保存物を20℃で解
凍した後、第3表の組成の反応液を使用して、ト
リプトフアン・シンセターゼ活性を測定した。
尚、トリプトフアン・シンセターゼ活性の測定
は、活性測定用反応液を35℃で1時間反応させ、
生成されたL−トリプトフアンの量を液体クロマ
トグラフイーで測定し、酵素活性は単位時間、単
位菌体量当りのL−トリプトフアン生成量で表示
した。得られた結果を第4表に示した。 第 1 表 エールリツヒ肉エキス 10g ポリペプトン 10g NaCl 5g 蒸留水で1に希釈して使用(PH6.8) 第 2 表 グルコース 10 g (NH42SO4 1 g KH2PO4 0.5g K2HPO4 0.5g MgSO4・7H2O 1 g ポリペプトン 0.5g 酵母エキス 0.5g L−トリプトフアン 0.1g アデカノールLG805 3 g 蒸留水で1に希釈して使用(PH6.8) 第 3 表 インドール 2 % L−セリン 1.8 % トリトンX−100 5 % ピリドキサールリン酸 0.001% (NH42SO4 2.5 % 菌体解凍液 1 % PH8.5
The present invention uses a microorganism belonging to Escherichia coli containing tryptophan synthetase (an enzyme that catalyzes the reaction of synthesizing L-tryptophan from indole and L-serine) to produce a pyridoxal phosphate containing 0.0001% or more of pyridoxal phosphate. The present invention relates to a method for preserving tryptophan synthetase by suspending it in an aqueous solution and then freezing it to preserve it without reducing the activity of tryptophan synthetase contained within bacterial cells. In recent years, L-tryptophan has attracted attention from the world for its effectiveness not only in medicine but also in feed.
Expectations are increasing for the production of this substance at low cost on an industrial scale. One of the most promising methods for producing L-tryptophan is an enzymatic production method for producing L-tryptophan from indole and L-serine. The enzyme that catalyzes this reaction is tryptophan synthetase, which is mainly produced in large quantities within the cells of genetically improved microorganisms belonging to the genus Escherichia. Since this enzyme is produced within the bacterial body, it is industrially advantageous to use the bacterial body itself as an enzyme source. However, in order to use this enzyme on a commercial scale, the enzyme activity (unit time, unit There is a need to establish a preservation method for preserving bacterial cells containing this enzyme for a long period of time without reducing the L-tryptophan synthesis ability per bacterial cell mass. Conventionally, it has been generally known to cryopreserve bacterial cells containing enzymes, but in the case of bacterial cells containing tryptophan synthetase, little is known about how to preserve them, and the present inventors According to the test, simply freezing and preserving wet bacterial cells resulted in a significant decrease in the enzyme activity of the bacterial cells after thawing, making it difficult to call this a practical preservation method. The present inventors have developed bacterial cells containing tryptophan synthetase without a decrease in their enzymatic activity.
As a result of examining various methods for long-term storage, we found that by suspending the bacterial cells in an aqueous solution of pyridoxal phosphate of 0.0001% or more and then freezing them, the enzyme activity was improved compared to when the wet bacterial cells were frozen directly. The present invention was completed based on the discovery that the decrease in the amount of water was significantly reduced and the product could be stored for a long period of time. Microorganisms that produce a large amount of tryptophan synthetase used in the present invention include microorganisms belonging to E. coli, such as E. coli MT-10232 (FERM BP-
19), Etzierihia coli MT-10242 (FERM
BP-20) etc. are used. The concentration of pyridoxal phosphate is 0.0001% or more,
It is preferably used at a concentration of 0.001 to 0.1%, and the bacterial cell concentration when suspended is 5-5% as a dry bacterial cell concentration.
The amount is 200g/, preferably 30 to 100g/, and after suspending the bacterial cells in an aqueous pyridoxal phosphate solution, it is desirable to adjust the pH of this suspension to a range of 7 to 9. The temperature for freezing the bacterial cell suspension is -5 to -
The temperature is 50°C, preferably -10 to -30°C, and the temperature used for thawing the frozen bacterial cell suspension is 5 to 50°C, preferably 15 to 40°C. According to the preservation method of the present invention, the tryptophan synthetase contained within the bacterial cells can be preserved for a long time with little decrease in its enzyme activity, so the present invention greatly contributes to the industrial use of tryptophan synthetase. It seems to be. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Tryptophan synthetase producing bacterium E. coli MT-10232 (FERM BP-
19) was inoculated into 100 ml of a medium having the composition shown in Table 1 in a 500 ml Sakaguchi flask, and cultured at 30°C for 24 hours. 200 ml (2 flasks) of this culture solution was inoculated into medium 15 having the composition shown in Table 2 in a 30 jar fermenter, and cultured at 30°C and pH 6.8 (controlled with 28% aqueous ammonia). After culturing, collect the bacteria by centrifugation and collect 170g of wet bacteria (36g of dry bacteria).
g) was obtained. 3 g of this wet bacterial body was suspended in a pyridoxal phosphate aqueous solution having the concentration of each test group to a total volume of 10 ml, and after adjusting the pH to 8.5, it was stored frozen at -15°C for the period of each test group. After thawing this frozen product at 20°C, tryptophan synthetase activity was measured using a reaction solution having the composition shown in Table 3.
To measure tryptophan synthetase activity, react the reaction solution for activity measurement at 35°C for 1 hour.
The amount of L-tryptophan produced was measured by liquid chromatography, and the enzyme activity was expressed as the amount of L-tryptophan produced per unit time and unit amount of bacterial cells. The results obtained are shown in Table 4. Table 1 Ehrlitsug meat extract 10g Polypeptone 10g NaCl 5g Diluted to 1 with distilled water (PH6.8) Table 2 Glucose 10g (NH 4 ) 2 SO 4 1g KH 2 PO 4 0.5g K 2 HPO 4 0.5g MgSO 4・7H 2 O 1g Polypeptone 0.5g Yeast extract 0.5g L-tryptophan 0.1g Adekanol LG805 3g Diluted to 1 with distilled water (PH6.8) Table 3 Indole 2% L-serine 1.8 % Triton _

【表】 実施例 2 トリプトフアン・シンセターゼ生産菌であるエ
ツシエリヒア・コリMT−10242(FERM BP−
20)を用いて、実施例1と同様の操作を行なつ
た。得られた結果を第5表に示した。
[Table] Example 2 Tryptophan synthetase producing bacterium E. coli MT-10242 (FERM BP-
20), the same operation as in Example 1 was performed. The results obtained are shown in Table 5.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 トリプトフアン・シンセターゼを含有するエ
ツシエリヒア・コリに属する微生物菌体を0.0001
%以上のピリドキサールリン酸水溶液中に懸濁さ
せてのち凍結することを特徴とする菌体内トリプ
トフアン・シンセターゼの保存方法。
1. 0.0001 microorganisms belonging to Etscherichia coli containing tryptophan synthetase.
A method for preserving intracellular tryptophan synthetase, which comprises suspending it in an aqueous solution of pyridoxal phosphate with a concentration of at least 10% and then freezing it.
JP56114414A 1981-07-23 1981-07-23 Storage of tryptophan-synthetase Granted JPS5816676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114414A JPS5816676A (en) 1981-07-23 1981-07-23 Storage of tryptophan-synthetase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114414A JPS5816676A (en) 1981-07-23 1981-07-23 Storage of tryptophan-synthetase

Publications (2)

Publication Number Publication Date
JPS5816676A JPS5816676A (en) 1983-01-31
JPS6142553B2 true JPS6142553B2 (en) 1986-09-22

Family

ID=14637088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114414A Granted JPS5816676A (en) 1981-07-23 1981-07-23 Storage of tryptophan-synthetase

Country Status (1)

Country Link
JP (1) JPS5816676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410755U (en) * 1987-07-10 1989-01-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147389A (en) * 1983-02-10 1984-08-23 シャープ株式会社 Dot matrix display unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410755U (en) * 1987-07-10 1989-01-20

Also Published As

Publication number Publication date
JPS5816676A (en) 1983-01-31

Similar Documents

Publication Publication Date Title
Epps et al. The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids
Leitzmann et al. Threonine dehydratase of Bacillus licheniformis: I. Purification and properties
JPS6142553B2 (en)
JPH0411194B2 (en)
CA1167401A (en) Production of an immobilized enzyme system
JPS6142554B2 (en)
Barban STUDIES ON THE METABOLISM OF THE TREPONEMATA I: Amino Acid Metabolism
MIZUSHIMA et al. Quantitative studies on glycolytic enzymes in Lactobacillus plantarum III. Intracellular activities of reverse reaction of D-and L-lactate dehydrogenases during glucose fermentation
US4357425A (en) Process for producing L-amino acid oxidase
JPH0379999B2 (en)
EP0110422A2 (en) Process for producing L-aspartic acid
JPH1175836A (en) New mannose isomerase and production of mannose
Poór et al. Activity of β-galactosidase in immobilized cells of tomato
JP3122990B2 (en) Process for producing O-methyl-L-tyrosine and L-3- (1-naphthyl) alanine
JPH0455669B2 (en)
Perry et al. Role of potassium in the oxidative metabolism of Micrococcus sodonensis
Sinha et al. Thiaminokinase in parent and pyrithiamine mutant Staphylococcus aureus
Cohen [52] Pentose isomerases
JPS6225353B2 (en)
JPH045434B2 (en)
SU644833A1 (en) 85 escherichia coli strain as producer of l-aspartic acid
YASHIMA et al. OXIDATIVE DECARBOXYLATION OF 6-PHOSPHOGLUCONATE IN LEUCONOSTOC MESENTEROIDES B07 II. PURIFICATION AND PROPERTIES OF A NEW ENZYME CATALYZING DECARBOXYLATION OF 2-KETO-6-PHOSPHOGLUCONATE
JPH0212558B2 (en)
JPS6055119B2 (en) Method for producing urease by fermentation method
JPH0143554B2 (en)