JPS6142504A - Production of epoxidized polymer - Google Patents

Production of epoxidized polymer

Info

Publication number
JPS6142504A
JPS6142504A JP16393684A JP16393684A JPS6142504A JP S6142504 A JPS6142504 A JP S6142504A JP 16393684 A JP16393684 A JP 16393684A JP 16393684 A JP16393684 A JP 16393684A JP S6142504 A JPS6142504 A JP S6142504A
Authority
JP
Japan
Prior art keywords
polyisoprene
reaction
hydrogenation
epoxidized polymer
epoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16393684A
Other languages
Japanese (ja)
Other versions
JPH0578563B2 (en
Inventor
Hideo Takamatsu
秀雄 高松
Hiroshi Harima
針間 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP16393684A priority Critical patent/JPS6142504A/en
Publication of JPS6142504A publication Critical patent/JPS6142504A/en
Publication of JPH0578563B2 publication Critical patent/JPH0578563B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled polymer excellent in weather and heat resistances and suitable for use in adhesives, sealing agents, paints, etc., without side reactions such as gelation, by reacting hydrogenated polyisoprene with an epoxidizing agent. CONSTITUTION:In the production of an epoxidized polymer by reacting polyisoprene with an epoxidizing agent, hydrogenated polyisoprene of a rate of hydrogenation of 30-95% is used as said polyisoprene. It is preferable that the polyisoprene before hydrogenation has a MW of 5,000-150,000. Because the hydrogenation and the epoxidation can proceed without side reactions such as gelation, it is possible to obtain an epoxidized polymer easily at a high conversion in high yields.

Description

【発明の詳細な説明】 !皇」≦ソ11立E 本発明は、エポキシ化重合体の製造方法に関する。さら
に詳しくはポリイソプレンの水素添加物にエポキシ化剤
を反応させてエポキシ化重合体を製造する方法に関する
[Detailed description of the invention]! The present invention relates to a method for producing an epoxidized polymer. More specifically, the present invention relates to a method for producing an epoxidized polymer by reacting a hydrogenated polyisoprene with an epoxidizing agent.

従来の技術 従来よシ、エポキシ化剤を用いてポリイソプレン中の炭
素−炭素二重結合の一部をエポキシ基に変換し、得られ
九エボキク化重合体をラネーニッケル、カーボン担持白
金触媒等の不均一系触媒、またはチーグラー触媒等の均
一触媒を用いて水素添加することは、例えば特開昭56
−127641号公報で知られている。
Conventional technology Conventionally, a portion of the carbon-carbon double bonds in polyisoprene are converted into epoxy groups using an epoxidizing agent, and the resulting nine-epoxidized polymer is treated with a catalyst such as Raney nickel or carbon-supported platinum catalyst. Hydrogenation using a homogeneous catalyst or a homogeneous catalyst such as a Ziegler catalyst is described, for example, in JP-A-56
It is known from the publication No.-127641.

発F!Aが解決しようとする問題点 しかしながら、上記のようにエポキシ化剤に水素添加反
応を行なう場合、水素添加反応における触媒として不均
一触媒を用いたときには、エポキシ化重合体が触媒表面
に吸着され、水素添加の灰石速度が著しく遅く、また反
応液から触媒を除去するのが極めて困難である。また、
均一系触媒を用いたときには、エポキシ化重合体中のエ
ポキシ基同志が水素添加反応中に反応し、反応系の粘度
が著しく増大するか、ひどい場合にはゲル化してしまい
、水素添加反応は進行しない。
Departure F! Problem A aims to solve However, when hydrogenating an epoxidizing agent as described above, when a heterogeneous catalyst is used as a catalyst in the hydrogenation reaction, the epoxidized polymer is adsorbed on the catalyst surface. The ash rate of hydrogenation is extremely slow and the catalyst is extremely difficult to remove from the reaction solution. Also,
When a homogeneous catalyst is used, the epoxy groups in the epoxidized polymer react with each other during the hydrogenation reaction, resulting in a significant increase in the viscosity of the reaction system, or in severe cases, gelation, which prevents the hydrogenation reaction from proceeding. do not.

本発明の目的は、ゲル化等の副反応を伴なうことなく、
ポリイソプレンから高収率でエポキシ化重合体を製造す
る方法を提供することにある。
The purpose of the present invention is to
The object of the present invention is to provide a method for producing an epoxidized polymer from polyisoprene in high yield.

また他の目的は、エポキシ化重合体固有の性質をそこな
うことなく、シかも耐候性および耐熱性にすぐれたエポ
キシ化重合体を製造する方法を提供することにある。
Another object of the present invention is to provide a method for producing an epoxidized polymer that has excellent weather resistance and heat resistance without impairing the inherent properties of the epoxidized polymer.

に−朧儂■を反応させてエポキシ化重合体を製造するに
あたり、前記ポリイソプレンとして水素添加率30〜9
5チのポリイソプレン水素添加物を用いることによって
達成される。
In producing an epoxidized polymer by reacting with - Oboro ■, the polyisoprene has a hydrogenation rate of 30 to 9.
This is accomplished by using a 5-inch polyisoprene hydrogenate.

本発明の製造方法において使用されるポリイソプレンの
水素添加物は、ポリイソプレンを常法によシ水素添加す
ることによって得られる。
The hydrogenated polyisoprene used in the production method of the present invention is obtained by hydrogenating polyisoprene in a conventional manner.

上記の水素添加する前のポリイソプレン(以下、未変性
ポリイソプレンと記すこともある)は、5、000〜1
50,000の範囲内の分子量を有するのが望ましい。
The above polyisoprene before hydrogenation (hereinafter also referred to as unmodified polyisoprene) has a molecular weight of 5,000 to 1
It is desirable to have a molecular weight within the range of 50,000.

分子tが小さ過ぎる場合、最終的に得られるエポキシ化
重合体を接着剤、コーテイング材として使用するとその
強度が不充分となる。一方、分子量ぎ大き過ぎる場合、
水素添加反応およびエポキシ化反応の際の反応系の粘度
が犬きくなシ過ぎ、反応が進行しにくくなるし、最終的
に得られるエポキシ化重合体の粘度が高くなシ過ざてそ
の取シ扱いまたはその使用の際に不都合となる。
If the molecule t is too small, the strength of the finally obtained epoxidized polymer will be insufficient when used as an adhesive or coating material. On the other hand, if the molecular weight is too large,
The viscosity of the reaction system during the hydrogenation reaction and epoxidation reaction is too strong, making it difficult for the reaction to proceed, and the viscosity of the epoxidized polymer ultimately obtained is too high, making it difficult to handle. It is inconvenient when handling or using it.

なお、ここでいう分子量は粘度平均分子t (MY)を
意味し、トルエン溶液での30℃における極限粘度((
77))を測定し、式(17) = 1.! I X 
10−4 MY  によって算出される(特開昭53−
102938号公報含量が50%以下であるのが望まし
い。ビニル結合量が50%を超えると最終的に得られる
エポキシ化重合体を用いて柔軟な成形物を製造すること
ができなくなシ好ましくない。
The molecular weight here means the viscosity average molecule t (MY), which is the intrinsic viscosity at 30°C in toluene solution ((
77)), and formula (17) = 1. ! IX
10-4 MY
No. 102938 It is desirable that the content is 50% or less. If the amount of vinyl bonds exceeds 50%, it is not preferable because a flexible molded article cannot be manufactured using the epoxidized polymer finally obtained.

このような未変性ポリイソプレンは、インプレン単量体
を重合するか、高分子量のポリイソプレンを分解するこ
とによって得られる。なかでも分子量の調節が容易であ
ることから、アニオン系重合開始剤によるアニオン重合
、とシわけリチウム系重合開始剤によるリビング重合に
よる方法が得られるポリイソプレンのビニル結合量が上
記の望ましい範囲になるので最も好ましく採用されるQ
本発明の要点は、上記ポリイソプレンをその二重結合を
水素添加した後にエポキシ化反応することにある。
Such unmodified polyisoprene can be obtained by polymerizing imprene monomers or by decomposing high molecular weight polyisoprene. Among these, since the molecular weight can be easily adjusted, the vinyl bond content of polyisoprene obtained by anionic polymerization using an anionic polymerization initiator and living polymerization using a lithium-based polymerization initiator falls within the above-mentioned desirable range. Therefore, Q is most preferably adopted.
The gist of the present invention is to hydrogenate the double bonds of the polyisoprene and then subject it to an epoxidation reaction.

ポリイソプレンの水素添加は、ニッケル、白金、パラジ
ウム等の金属からなる不均一系触媒またはチーグラー系
均−触媒を用い分子状水素を不溶性溶剤の存在下に、ポ
リイノプレンに接触させる方法が挙げられる。その際の
反応温度は0〜300℃、水素の圧力は1〜500気圧
であシ、このような条件での水素添加反応における反応
時間は0.1〜10時間である。反応の際に用いられる
溶媒としてハ、ヘキサン、ヘプタン、トルエン、キシレ
ン等が例示できる。ポリイソプレンの製置は30重i%
まで高くすることができるが、通常5〜20重tチが好
ましい。
Hydrogenation of polyisoprene includes a method in which molecular hydrogen is brought into contact with polyinoprene in the presence of an insoluble solvent using a heterogeneous catalyst made of a metal such as nickel, platinum, or palladium or a Ziegler-based homogeneous catalyst. The reaction temperature at that time is 0 to 300°C, the hydrogen pressure is 1 to 500 atm, and the reaction time in the hydrogenation reaction under these conditions is 0.1 to 10 hours. Examples of the solvent used in the reaction include hexane, heptane, toluene, and xylene. The production of polyisoprene is 30% by weight.
Although it can be made as high as 5 to 20 weights, it is usually preferred.

本発明においてポリイングレンの水素添加物における水
素添加率、すなわち、未変性ポリイソプレン中の炭素−
炭素不飽和二重結合に対する水素添加された二重結合の
割合は50〜95%の範囲にある。水素添加率が小さ過
ぎる場合には残存する二重結合の割合が多くなυ過ぎ、
エポキシ化重合体にしたとき耐候性、耐熱性の改良が不
充分となシ好ましくない。一方、水素添加率が太き過ぎ
る場合、エポキシ化反応の際の反応速度が極めて遅くな
シ、分子中に導入されるエポキシ基の量が少なくなシ過
ぎる。また得られるエポキシ化重合体のエポキシ基にも
とづく物性改良効果が不充分となる。
In the present invention, the hydrogenation rate in the hydrogenated polyurethane, that is, the carbon-
The proportion of hydrogenated double bonds to carbon unsaturated double bonds is in the range 50-95%. If the hydrogenation rate is too small, the proportion of remaining double bonds will be too high.
When made into an epoxidized polymer, the weather resistance and heat resistance are not sufficiently improved, which is undesirable. On the other hand, if the hydrogenation rate is too high, the reaction rate during the epoxidation reaction will be extremely slow and the amount of epoxy groups introduced into the molecule will be too small. Furthermore, the effect of improving physical properties based on the epoxy groups of the resulting epoxidized polymer becomes insufficient.

エポキシ化反応は、ポリイソプレンにエポキシ化剤を加
え加熱することによって、または反応系でエポキシ化剤
となシうる化合物を組合せ用い、加熱することによって
行なわれる。代表的なエポキシ化剤としては過酢酸、過
プロピオン酸、過安息香酸等の有機過酸類、t−ブチル
ハイドロパーオキシド、クメンハイドロパーオキラド、
ジーイソグロベニルベンゼンパーオキシド等の有機ハイ
ドロパーオキシド類等が挙げられる。エポキシ化剤とな
りうる2つの化合物としてはギ酸、酢酸、プロピオン酸
等のカルボン酸と過酸化水素との組合せがある。この反
応は溶媒の不存在下にも行なうことができるが、エポキ
シ化剤等に不活性な溶媒の存在下に行なうのが好ましい
。前記溶媒としてはヘキサン、ヘプタン等の脂肪族炭化
水素、ベンゼン、キシレン等の芳香族炭化水素、クロロ
ホルム、四塩化炭素等のノ・ロゲン化炭化水素が好まし
い0 上記反ろに用いるエポキシ化剤の使用量は、エポキシ化
の度合、反応条件によシ異なるが、通常、ポリイソプレ
ンの水素添加物中の二重結合に対し0、1〜10当量の
範囲内であるのが好ましい。反応温度は0〜20℃の範
囲内にあるのが好ましいが、エポキシ化剤として有機パ
ーオキシド類を用いる場合には、高目の温度が必要であ
シ、50〜180℃の範囲内で、また他のエポキシ化剤
を用いる場合には20〜120℃の範囲内が好ましい0
反応時間は、エポキシ化剤の使用量、反応温度等によっ
て異なってくるが、通常0.5〜10時間の範囲内にあ
る。
The epoxidation reaction is carried out by adding an epoxidizing agent to polyisoprene and heating it, or by using a combination of compounds that can act as an epoxidizing agent in the reaction system and heating it. Typical epoxidizing agents include organic peracids such as peracetic acid, perpropionic acid, and perbenzoic acid, t-butyl hydroperoxide, cumene hydroperoxide,
Examples include organic hydroperoxides such as diisoglobenylbenzene peroxide. Two compounds that can serve as epoxidizing agents include a combination of a carboxylic acid such as formic acid, acetic acid, or propionic acid and hydrogen peroxide. Although this reaction can be carried out in the absence of a solvent, it is preferably carried out in the presence of a solvent that is inert to the epoxidizing agent and the like. Preferably, the solvent is an aliphatic hydrocarbon such as hexane or heptane, an aromatic hydrocarbon such as benzene or xylene, or a halogenated hydrocarbon such as chloroform or carbon tetrachloride. The amount varies depending on the degree of epoxidation and reaction conditions, but is preferably within the range of 0.1 to 10 equivalents relative to the double bond in the hydrogenated polyisoprene. The reaction temperature is preferably within the range of 0 to 20°C, but when using organic peroxides as the epoxidizing agent, a higher temperature is required; When using other epoxidizing agents, the temperature is preferably within the range of 20 to 120°C.
The reaction time varies depending on the amount of epoxidizing agent used, the reaction temperature, etc., but is usually within the range of 0.5 to 10 hours.

本発明のエポキシ化重合体における炭素−炭素不飽和二
重結合から変換したエポキシ基の割合は、未変性ポリイ
ソプレン中の炭素−炭素不飽和二重結合に対するモル割
合(以下、エポキシ化率と記す)で0.2〜70%の範
囲内にある。エポキシ化率が小さ過ぎる場合、エポキシ
化重合体を架橋剤によシ架橋したとき、充分な架橋が形
成されず、シーリング材、コーテイング材等として使用
できなくなる。一方、エポキシ化率は水素添加率との関
係より70%以上とならない。この観点よジェポキシ化
率としては5〜50%でか好ましい。
The ratio of epoxy groups converted from carbon-carbon unsaturated double bonds in the epoxidized polymer of the present invention is the molar ratio to the carbon-carbon unsaturated double bonds in unmodified polyisoprene (hereinafter referred to as epoxidation rate). ) is within the range of 0.2 to 70%. If the epoxidation rate is too low, sufficient crosslinking will not be formed when the epoxidized polymer is crosslinked with a crosslinking agent, making it impossible to use it as a sealing material, coating material, etc. On the other hand, the epoxidation rate does not exceed 70% due to the relationship with the hydrogenation rate. From this point of view, the jepoxidation rate is preferably 5 to 50%.

作用 本発明において、ポリイソプレンの水素添加物およびエ
ポキシ化剤が反応系においてどのように作用するのか、
その作用機構自体は明らかでない0しかしながら、前述
した特開昭56−127641号公報に示式れている如
く、エポキシ化反応を行なった後に水素添加反応をする
場合には水素添加に用いられる触媒とエポキシ化重合体
中のエポキシ基とが複雑に反応し、エポキシ化重合体中
で分子内または分子間架橋が形成されるが、本発明の場
合には、まず炭素−炭素不飽和二重結合以外に活性な基
が存在しない状態で水素添加反応が行なわれ、エポキシ
化反応の際に炭素−炭素不飽和二重結合が少ないうえに
、それ以外にエポキシ化剤と容易に反応しうる基が存在
しないため、エポキシ化反応が容易に進行するものと予
想される。
Action In the present invention, how the hydrogenated polyisoprene and epoxidizing agent act in the reaction system,
Its mechanism of action itself is not clear. However, as shown in the above-mentioned Japanese Unexamined Patent Publication No. 56-127641, when a hydrogenation reaction is performed after an epoxidation reaction, the catalyst used for hydrogenation is The epoxy groups in the epoxidized polymer react in a complex manner to form intramolecular or intermolecular crosslinks in the epoxidized polymer. The hydrogenation reaction is carried out in the absence of active groups, and during the epoxidation reaction, there are few carbon-carbon unsaturated double bonds, and there are other groups that can easily react with the epoxidizing agent. Therefore, it is expected that the epoxidation reaction will proceed easily.

発明の効果 本発明の製造方法においては、ゲル化等の副反応を伴な
うことなく水素添加反応およびエポキシ化反応が進行す
る。そのため、高い反応率とあいまって高収率で容易に
エポキシ化重合体が得られる0 また、得られるエポキシ化重合体はゲルや不純物を含ま
ず、また残存二重結合もすくないので、耐候性、耐熱性
にすぐれ、しかも、導入されたエポキシ基によシ高い反
応性を示す。そのため、低分子量、低エポキシ価の多価
エボキク化合物と同様ジエチレントリアミン、メタフェ
ニレンジアミン、トリス(ジメチルアミンメチル)フェ
ノール等のアミン類、フタル酸、コノ・り酸、それらの
無水物等のカルボン酸またはその無水物、ポリアミド樹
脂、三フッ化ホウ素錯体等で架橋する。これらの特徴を
生かし、接着剤、シーリング材、コーテイング材、塗料
等の用途に好適に使用される0実施例 以下、実施例によって本発明を具体的に説明するが、本
発明はそれらによって何ら限定されるものでない。
Effects of the Invention In the production method of the present invention, the hydrogenation reaction and the epoxidation reaction proceed without accompanying side reactions such as gelation. Therefore, combined with a high reaction rate, an epoxidized polymer can be easily obtained at a high yield.In addition, the resulting epoxidized polymer does not contain gels or impurities, and has few residual double bonds, so it has good weather resistance and It has excellent heat resistance and also shows high reactivity due to the introduced epoxy group. Therefore, as well as polyhydric compounds with low molecular weight and low epoxy value, amines such as diethylenetriamine, metaphenylenediamine, and tris(dimethylaminemethyl)phenol, carboxylic acids such as phthalic acid, cono-phosphoric acid, and their anhydrides, Crosslink with its anhydride, polyamide resin, boron trifluoride complex, etc. Taking advantage of these features, the present invention is suitably used for applications such as adhesives, sealants, coating materials, paints, etc.Examples The present invention will be specifically explained using Examples below, but the present invention is not limited by them in any way. It is not something that can be done.

実施例1 n−ブチルリチウムを触媒とする溶液重合によって得ら
れた、分子量19,000.ビニル結合量21チの低分
子量ポリイソプレン1002およびシクロヘキサン40
01をオートクレーブに仕込み溶解した後、カーボン担
持バラジクム触媒(パラジウム:5重量%)を21加え
、分散させ、水素によシ35KP/−まで加圧した。次
いで攪拌下、50℃で水素添加反応を行なった。反応1
時間後、室温まで冷却し、残存水素を放出し、反応を停
止した。反応混合物から触媒を濾過によシ取シ除き、真
空乾燥し、ポリイソプレンの水素添加物を得た。
Example 1 Molecular weight: 19,000, obtained by solution polymerization using n-butyllithium as a catalyst. Low molecular weight polyisoprene 1002 with vinyl bond content of 21 and cyclohexane 40
After charging 01 into an autoclave and dissolving it, a carbon-supported baladicium catalyst (palladium: 5% by weight) was added and dispersed, and the mixture was pressurized to 35 KP/- by hydrogen gas. Next, a hydrogenation reaction was carried out at 50° C. with stirring. reaction 1
After an hour, the mixture was cooled to room temperature, residual hydrogen was released, and the reaction was stopped. The catalyst was removed from the reaction mixture by filtration and dried under vacuum to obtain a hydrogenated product of polyisoprene.

赤外分光分析法によシ求めた水素添加率は59%であっ
た。該水素添加物602をトルエン100fK溶解し、
ギ酸101を加え、50℃まで昇温し、この温度に保ち
ながら30重量−の過酸化水素水100tを約1時にわ
たって滴下し、エポキシ化反応を行なった。滴下終了後
さらに1時間50℃に保った後、水層を分離し、有機層
を水洗し、真空乾燥により生成物を取シ出した。該生成
物は赤外分光分析法で調べたところ、エポキシ化率32
モルチ、水素添加率59%の変性ポリイソプレンであっ
た。
The hydrogenation rate determined by infrared spectroscopy was 59%. The hydrogenated material 602 is dissolved in toluene 100fK,
101 of formic acid was added, the temperature was raised to 50°C, and while maintaining this temperature, 100 tons of hydrogen peroxide solution (30% by weight) was added dropwise over about 1 hour to carry out an epoxidation reaction. After the dropwise addition was completed, the mixture was kept at 50° C. for 1 hour, and then the aqueous layer was separated, the organic layer was washed with water, and the product was taken out by vacuum drying. When the product was examined by infrared spectroscopy, the epoxidation rate was 32.
It was a modified polyisoprene with a hydrogenation rate of 59%.

上記変性ポリイソプレン100重量部にトリス(ジメチ
ルアミノメチル)フェノール5重量部を添加し、次いで
その混合物をガラス板に乾燥硬化剤の厚さが1藺となる
よう塗シ付け、120℃で2時間加熱することによシ硬
化膜を作成した。該硬化膜を中セノンウェザーメータに
よシ耐候性を調べたが、前記硬化膜は500時間照射後
も変化が全くみられなかった。
Add 5 parts by weight of tris(dimethylaminomethyl)phenol to 100 parts by weight of the above modified polyisoprene, then apply the mixture to a glass plate so that the thickness of the dry curing agent is 1 layer, and heat at 120°C for 2 hours. A cured film was created by heating. The weather resistance of the cured film was examined using a medium senone weather meter, and no change was observed in the cured film even after 500 hours of irradiation.

また、上記変性ポリイソプレン100重量部に無水メチ
ルナジック#130重量部およびトリス(ジメチルアミ
ノメチル)フェノール1重量部を混合し、テフロンコー
トした金枠に流し込み150℃で30分間加熱し、硬化
成形物をつくった0該成形物を180℃のギヤーオーブ
ン中で1時間加熱したが、上記成形物の表面状態および
形状には変化が全くみられなかった。
Further, 100 parts by weight of the above modified polyisoprene, 130 parts by weight of anhydrous methylnazic #1 and 1 part by weight of tris(dimethylaminomethyl)phenol were mixed, poured into a Teflon-coated metal frame, and heated at 150°C for 30 minutes to form a cured molded product. The resulting molded product was heated in a gear oven at 180° C. for 1 hour, but no change was observed in the surface condition or shape of the molded product.

比較例1 実施例1のエポキシ化反応において、ポリイソプレン水
素添加物の代シに実施例1で用いた水素添加前の未変性
ポリイソプレンを用いること以外は実施ガ1と同様にし
て、エポキシ化率36モル一のエポキシ化ポリイソプレ
ンを得た。この反応を2度繰シ返し、エポキシ化ポリイ
ソプレン約3252を得た。
Comparative Example 1 Epoxidation was carried out in the same manner as in Example 1, except that in the epoxidation reaction of Example 1, the unmodified polyisoprene used in Example 1 before hydrogenation was used instead of the hydrogenated polyisoprene. Epoxidized polyisoprene having a ratio of 36 mol was obtained. This reaction was repeated twice to obtain about 3252 epoxidized polyisoprene.

実施例1の水素添加反応において、水素添加していない
未変性ポリイノプレンの代シに上記エポキシ化ポリイソ
プレンを用いること、および反応時間を2時間にする以
外は実施例1と同様に水素添加反応を行なったが、水素
の吸収が極めて遅く、反応開始してから1時間で系の水
素圧低下が止った。反応開始してから2時間後に反応を
停止し、反応混合物から触媒を戸別しようとしたが、反
応混合液は粘稠であって濾過が極めて困難であった。
In the hydrogenation reaction of Example 1, the hydrogenation reaction was carried out in the same manner as in Example 1, except that the above-mentioned epoxidized polyisoprene was used in place of the non-hydrogenated unmodified polyinoprene, and the reaction time was changed to 2 hours. However, hydrogen absorption was extremely slow, and the hydrogen pressure in the system stopped decreasing one hour after the start of the reaction. Two hours after the reaction had started, the reaction was stopped and an attempt was made to separate the catalyst from the reaction mixture, but the reaction mixture was so viscous that it was extremely difficult to filter it.

かろうじて得られた反応生成物を調べたところ、二重結
合の残存率45%、水素添加率19%、エポキシ化率3
6七ルー〇変性ポリイソプレンであった。
When we examined the barely obtained reaction product, we found that the residual rate of double bonds was 45%, the hydrogenation rate was 19%, and the epoxidation rate was 3.
The material was 67 Ru0 modified polyisoprene.

上記変性ポリイソプレンを実施例1と同様にして硬化膜
および硬化成形物をつ<シ、各々キセノンウェザメータ
ーで耐候性、180℃のギヤーオープンで耐熱性を調べ
たところ、300時間照射後に硬化膜の表面から薄い硬
化膜が分離し、500時1間・照1射後にはその表面に
ひび割れが生じた。また、硬化成形物は加熱30分後に
表面にペタツキがみられ、1時間の加熱では表面が流失
した。
A cured film and a cured molded product were prepared from the above modified polyisoprene in the same manner as in Example 1, and the weather resistance and heat resistance were examined using a xenon weather meter and with the gear open at 180°C. After 300 hours of irradiation, the cured film A thin cured film separated from the surface, and cracks appeared on the surface after 500 hours of irradiation. Further, the surface of the cured molded product showed some stickiness after 30 minutes of heating, and the surface was washed away after 1 hour of heating.

実施例2 分子!52,000.ビニル結合量16%のポリイソプ
レン100f’eへキサンに溶解し、オートクレーブに
仕込んだ後、ナフテン酸コバルトとトリエボリイングレ
ン中のイソプレン単量体単位100に対し0.1モルと
なるように添加し、水素によシ10Kp/mK加圧し、
50℃で水素添加反応を行なつ九0反応終了後、得られ
た生成物を赤外分光分析法によシ調べたところ、水素添
加率72%のポリイソプレン水素添加物が得られている
ことが判った。
Example 2 Molecule! 52,000. Polyisoprene 100f'e with a vinyl bond content of 16% is dissolved in hexane, charged into an autoclave, and then added to cobalt naphthenate and 0.1 mol per 100 isoprene monomer units in the trieboline. and pressurized with hydrogen at 10 Kp/mK,
After the hydrogenation reaction was completed at 50°C, the resulting product was examined by infrared spectroscopy, and it was found that a hydrogenated polyisoprene product with a hydrogenation rate of 72% was obtained. It turns out.

上記水素添加物60Fをトルエン100Fに溶解し、ギ
酸10fを加え、50℃に昇温し、この温度に保ちなが
ら30重量%の過酸化水素水100Vを約1時間にわた
って滴下し、エポキシ化反応を行なった。滴下終了後さ
らに1時間50°Cに保った後、水層を分離し、有機層
を水洗し、真空乾燥によシ生成物を取シ出した。該生成
物を赤外分光分析法によシ調べたところ、水素添加率7
2チ、エポキシ化率21%の変性ポリイソプレンが得ら
れていることが判った。
The above hydrogenated product 60F was dissolved in toluene 100F, 10f of formic acid was added, the temperature was raised to 50°C, and while maintaining this temperature, 30% by weight hydrogen peroxide solution 100V was added dropwise over about 1 hour to initiate the epoxidation reaction. I did it. After the dropwise addition was completed, the mixture was kept at 50°C for an additional hour, and then the aqueous layer was separated, the organic layer was washed with water, and the product was filtered out by vacuum drying. When the product was examined by infrared spectroscopy, it was found that the hydrogenation rate was 7.
It was found that modified polyisoprene with an epoxidation rate of 21% was obtained.

上記変性ポリイソプレンに関して耐候性を実施例1の方
法と同様にして調べたところ、キセノンウェザ−メータ
ーによ9500時間照射後も状態の変化は全く認められ
なかった。
When the weather resistance of the modified polyisoprene was examined in the same manner as in Example 1, no change in condition was observed even after irradiation with a xenon weather meter for 9,500 hours.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリイソプレンにエポキシ化剤を反応させてエポ
キシ化重合体を製造するにあたり、前記ポリイソプレン
として水素添加率30〜95%のポリイソプレン水素添
加物を用いることを特徴とするエポキシ化重合体の製造
方法。
(1) An epoxidized polymer characterized in that when producing an epoxidized polymer by reacting polyisoprene with an epoxidizing agent, a hydrogenated polyisoprene with a hydrogenation rate of 30 to 95% is used as the polyisoprene. manufacturing method.
(2)水素添加する前のポリイソプレンの分子量が、5
,000〜150,000である特許請求の範囲第1項
記載の製造方法。
(2) The molecular weight of polyisoprene before hydrogenation is 5
,000 to 150,000.
JP16393684A 1984-08-03 1984-08-03 Production of epoxidized polymer Granted JPS6142504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16393684A JPS6142504A (en) 1984-08-03 1984-08-03 Production of epoxidized polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16393684A JPS6142504A (en) 1984-08-03 1984-08-03 Production of epoxidized polymer

Publications (2)

Publication Number Publication Date
JPS6142504A true JPS6142504A (en) 1986-03-01
JPH0578563B2 JPH0578563B2 (en) 1993-10-29

Family

ID=15783635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16393684A Granted JPS6142504A (en) 1984-08-03 1984-08-03 Production of epoxidized polymer

Country Status (1)

Country Link
JP (1) JPS6142504A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229464A (en) * 1991-04-29 1993-07-20 Shell Oil Company Epoxidized viscous conjugated diene block copolymers
US5247026A (en) * 1992-06-19 1993-09-21 Shell Oil Company Randomly epoxidized small star polymers
US5382604A (en) * 1991-10-07 1995-01-17 Shell Oil Company Crosslinked epoxy functionalized polydiene block polymers and adhesives
US5399626A (en) * 1991-04-29 1995-03-21 Shell Oil Company Viscous conjugated diene block copolymers
USH1517H (en) * 1993-07-12 1996-02-06 Shell Oil Company Radiation curable printing ink composition
US5536772A (en) * 1993-06-18 1996-07-16 Shell Oil Company Radiation cured conjugated diene block copolymer compositions
US5686535A (en) * 1991-04-29 1997-11-11 Shell Oil Company Viscous conjugated diene block copolymers
WO2004076558A1 (en) * 2003-02-28 2004-09-10 Kuraray Co., Ltd. Curable composition
WO2004076522A1 (en) * 2003-02-28 2004-09-10 Kuraray Co., Ltd. Curable resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520489A (en) * 1974-12-03 1978-08-09 Inst Francais Du Petrole Polybutadiene dervatives and lubricating compositions con-taining them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520489A (en) * 1974-12-03 1978-08-09 Inst Francais Du Petrole Polybutadiene dervatives and lubricating compositions con-taining them

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229464A (en) * 1991-04-29 1993-07-20 Shell Oil Company Epoxidized viscous conjugated diene block copolymers
US5686535A (en) * 1991-04-29 1997-11-11 Shell Oil Company Viscous conjugated diene block copolymers
US5399626A (en) * 1991-04-29 1995-03-21 Shell Oil Company Viscous conjugated diene block copolymers
US5389701A (en) * 1991-10-07 1995-02-14 Shell Oil Company Crosslinked adhesive compositions comprising epoxy functionalized polydiene block polymers and hydrogenated tackifying resins
US5382604A (en) * 1991-10-07 1995-01-17 Shell Oil Company Crosslinked epoxy functionalized polydiene block polymers and adhesives
US5491193A (en) * 1991-10-07 1996-02-13 Shell Oil Company Crosslinked epoxy functionalized polydiene block polymers and adhesives
US5428114A (en) * 1992-06-19 1995-06-27 Shell Oil Company Randomly epoxidized small star polymers
US5247026A (en) * 1992-06-19 1993-09-21 Shell Oil Company Randomly epoxidized small star polymers
US5536772A (en) * 1993-06-18 1996-07-16 Shell Oil Company Radiation cured conjugated diene block copolymer compositions
USH1517H (en) * 1993-07-12 1996-02-06 Shell Oil Company Radiation curable printing ink composition
WO2004076558A1 (en) * 2003-02-28 2004-09-10 Kuraray Co., Ltd. Curable composition
WO2004076522A1 (en) * 2003-02-28 2004-09-10 Kuraray Co., Ltd. Curable resin composition
CN1333011C (en) * 2003-02-28 2007-08-22 株式会社可乐丽 Curable composition
US7632895B2 (en) 2003-02-28 2009-12-15 Kuraray Co., Ltd. Curable resin composition
US8013075B2 (en) 2003-02-28 2011-09-06 Kuraray Co., Ltd. Curable composition

Also Published As

Publication number Publication date
JPH0578563B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
US5428114A (en) Randomly epoxidized small star polymers
USH1597H (en) Epoxidized diene elastomers for exterior block crosslinking
CN1056624C (en) Cross-linked epoxy functionalized polydiene block polymers, process to prepare them, adhesive composition and starting block copolymer
US3853815A (en) Thermosetting cyclized polydiene resins
EP0498426B1 (en) Hydrogenated block copolymers containing epoxy groups
JPS6142504A (en) Production of epoxidized polymer
US20160311970A1 (en) Insertion polynorbornene-based thermoset resins
JP3578848B2 (en) Core-functionalized star block copolymer
US20030096916A1 (en) Amino-terminated polybutadienes
US3931354A (en) Reaction products of carboxyl terminated 1,2-polybutadiene with epoxides and aromatic bis(maleimides)
JP3285653B2 (en) Hydroxylated derivative of epoxidized diene block copolymer and method for producing the same
EP3668907B1 (en) Epoxidized polyfarnesene and methods for producing the same
US3073796A (en) Cured resin from epoxidized polybutadiene, unsaturated dicarboxylic acid anhydride and polyhydric alcohol
JP2000506186A (en) Improved chemical curing of epoxidized diene polymers using aromatic anhydride curing agents
US3215586A (en) Modified epoxidized polybutadiene resin composition
EP0634420A1 (en) Star polymers
JPS6143376B2 (en)
JP2560012B2 (en) Liquid polymer composition
JPS6019329B2 (en) Reinforced polypropylene composition
JPS6342642B2 (en)
JPH07247321A (en) Polymer of cyclic conjugated diene and polymerization of the diene
JPS62218410A (en) Liquid polymer composition
JPH0621155B2 (en) Epoxy resin composition
JPS649335B2 (en)
JPS58127711A (en) Hydroxyl group-containing diene polymer and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term