JPS6142499A - Flux cored wire for welding - Google Patents

Flux cored wire for welding

Info

Publication number
JPS6142499A
JPS6142499A JP16358584A JP16358584A JPS6142499A JP S6142499 A JPS6142499 A JP S6142499A JP 16358584 A JP16358584 A JP 16358584A JP 16358584 A JP16358584 A JP 16358584A JP S6142499 A JPS6142499 A JP S6142499A
Authority
JP
Japan
Prior art keywords
wire
welding
weld metal
flux
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16358584A
Other languages
Japanese (ja)
Inventor
Tomoyuki Suzuki
友幸 鈴木
Yoshinori Takemoto
竹本 義徳
Shigeru Kurihara
繁 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16358584A priority Critical patent/JPS6142499A/en
Publication of JPS6142499A publication Critical patent/JPS6142499A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve an impact toughness of an weld metal obtd. by using a steel sheath contg. a prescribed ratio each of B and C and incorporating the B source which is heretofore added into the flux to be packed into the sheath of a wire into the steel sheath as well. CONSTITUTION:This flux cored wire for welding is formed by packing the flux around the steel sheath of the wire contg. 0.001-0.01wt% B and <=0.04wt% C. A suitable amt. of B is incorporated into the weld metal by such wire, by which the common use effect of Ti-B is provided and the weld metal having the excellent impact toughness is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶接用フラックス人シワイヤに関し、特に衝
撃靭性に優れた溶接金属が得られる溶接用スラックス入
りワイヤ(以下ワイヤと称す)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flux-cored wire for welding, and more particularly to a slack-cored wire for welding (hereinafter referred to as wire) from which weld metal with excellent impact toughness can be obtained.

(従来技術) 現在多種多様のワイヤが製造されているが、ルチールを
フラックスの主成分とするワイヤは、CO2雰囲気下に
おいてもアークが極めて安定なため、スパッタの発生量
も少なく優れたビード形状を与える等の多くの利点を有
している。そこでこの様な良好な溶接作業性と溶接能率
を生かし、且つ溶接金属の低温靭性を兼ね備えたワイヤ
の開発が、近年エネルギー資源開発の寒冷地化、海洋化
に伴って強く要望されてきている。しかし、ルチールを
フラックスの主成分とするワイヤは、一般に溶接金属の
衝撃靭性が低いという欠点を有している。この対策とし
て特開昭50−116351号公報に見る様にTI 、
 Bを溶接金属中に適量歩留らせ組織を微細化する方法
が提案されている。
(Prior art) A wide variety of wires are currently manufactured, but wires with rutile as the main component of the flux have an extremely stable arc even in a CO2 atmosphere, so they generate less spatter and can produce excellent bead shapes. It has many advantages such as giving. Therefore, the development of a wire that takes advantage of such good welding workability and welding efficiency and also has the low-temperature toughness of weld metal has been strongly desired in recent years as energy resources are being developed in colder regions and offshore. However, wires in which rutile is the main component of the flux generally have the disadvantage that the impact toughness of the weld metal is low. As a countermeasure to this problem, as seen in Japanese Patent Application Laid-Open No. 116351/1983, TI,
A method has been proposed to refine the structure by retaining an appropriate amount of B in the weld metal.

このTI 、 Bによる組織の微細化機構は次の様に考
えられている。すなわち、T10が溶接金属中に歩留ま
シ、針状フェライトの生成核となって組織を微細化する
。更KBがオーステナイト粒界に偏析し、粒界の自由エ
ネルギーが低下する結果、初析フェライトの生成が抑制
されて組織を微細化するというものである。
The mechanism of microstructural refinement by TI and B is thought to be as follows. That is, T10 forms a yield in the weld metal, becomes a nucleus for the production of acicular ferrite, and refines the structure. In addition, KB segregates at austenite grain boundaries and the free energy of the grain boundaries decreases, which suppresses the formation of pro-eutectoid ferrite and refines the structure.

この様に溶接金属組織の微細化機構をもたらすTIOお
よびBは次の方法で生成させている。TIOを生成させ
るには、ワイヤの主成分であるルチ−ル(TiO2)を
TIよシも酸化物の生成エネルギーの小さいAt、’M
g等の脱酸剤によって一部還元させて、TlOを生成さ
せるか、フラックス中に金属TIとして添加し直接Ti
Oを生成させる方法がある。
TIO and B, which bring about the refinement mechanism of the weld metal structure in this way, are produced by the following method. To generate TIO, rutile (TiO2), which is the main component of the wire, must be replaced with At, 'M, which has a lower energy for oxide formation than TI.
Either partially reduce it with a deoxidizing agent such as G to generate TlO, or directly add it to the flux as a metal TI.
There is a method to generate O.

この様にTiOを生成させることは、ルチール系ワイヤ
では容易に行えると考えられる。一方、Bを溶接金属中
に適量歩留らせるにはFe−Hの様にB合金形態または
B2O3の様に酸化物形態でフラックス中に少量添加し
ている。しかし、フラックス中に占めるBの割合は非常
に少いためフラックス中でのBの偏析、場合によっては
フラックスの充填率の変動が生じ溶接金属中OBの歩留
りが不安定となりやすい。
It is considered that TiO can be easily generated in a rutile-based wire in this manner. On the other hand, in order to maintain a suitable amount of B in the weld metal, a small amount of B is added to the flux in the form of a B alloy like Fe-H or in the form of an oxide like B2O3. However, since the proportion of B in the flux is very small, B segregates in the flux, and in some cases, the filling rate of the flux fluctuates, which tends to make the yield of OB in the weld metal unstable.

またワイヤは1種類のワイヤで下向、立向、横向、上向
溶接いずれにも適用されているが、各姿勢で使用電流が
異なるだめBの歩留シは、不安定となる。この様にB源
を粉粒体の形態でフラックスに添加することは溶接金属
中OBの歩留りが不安定とがp、TI、Bの共用効果が
充分発揮されず低温での衝盤靭性の向上が確保できなく
なる。
Also, one type of wire is used for downward, vertical, horizontal, and upward welding, but since the current used differs in each position, the yield of B becomes unstable. In this way, adding a B source to the flux in the form of powder or granules makes the yield of OB in the weld metal unstable, and the joint effect of p, TI, and B is not fully exerted, and the impact toughness at low temperatures is improved. cannot be secured.

(発明が解決しようとする問題点) 本発明は上記の如き問題点に鑑み溶接金属中に適量のB
を安定に歩留らせることによって、TI。
(Problems to be Solved by the Invention) In view of the above-mentioned problems, the present invention provides an appropriate amount of B in the weld metal.
TI by achieving stable yield.

Bの共用効果を充分発揮させて良好な衝撃靭性が得られ
るワイヤの提供を目的とする。
The purpose of the present invention is to provide a wire that fully exhibits the combined effects of B and provides good impact toughness.

(問題点を解決するための手段) 本発明は従来フラックス中に添加していたB源を鋼外皮
に含有させることにより、上記問題点を悉く解決したも
ので、その要旨はワイヤ外皮にフラックスを充填してな
るフラックス入すワイヤにおいて、B量が重量比で0.
001〜0.01%である鋼外皮を使用することを特徴
とする溶接用フラックス入りワイヤにある。
(Means for Solving the Problems) The present invention solves all of the above problems by incorporating a B source, which was conventionally added to flux, into the steel sheath.The gist of the present invention is to add flux to the wire sheath. In the flux-cored wire formed by filling, the amount of B is 0.
The flux-cored wire for welding is characterized by using a steel outer skin having a content of 0.001% to 0.01%.

(発明の作用) 以下に本発明の作用について説明する。(Action of invention) The operation of the present invention will be explained below.

従来通りB源としてB2O5を016チフラツクス中に
添加したワイヤ(、)と鋼外皮中にBを0.007%。
Wire (,) with B2O5 added to the 016 flux as a B source and 0.007% B in the steel sheath.

Cを0.03チ含有させた、ワイヤ(b)を試作し各姿
勢溶接で半自動で溶接を行々い溶接金属の衝蛤靭性を調
査した。第1表に試作ワイヤ(a) l (b) 、第
2表に各姿勢溶接での溶接条件および第3表に各姿勢溶
接での溶接金属の衝撃値を示す。
A prototype wire (b) containing 0.03 g of C was produced, and welding was carried out semi-automatically in each position to investigate the impact toughness of the weld metal. Table 1 shows the prototype wires (a) l (b), Table 2 shows the welding conditions in each welding position, and Table 3 shows the impact value of the weld metal in each welding position.

なお、供試鋼板は板厚16咽の5M−50B拐(45゜
V開先、ルート間隙12簡)を各姿勢同一積層数で多層
盛した。
The test steel plates were 5M-50B (45° V groove, 12 root gaps) with a thickness of 16 mm and were laminated in multiple layers with the same number of layers in each orientation.

第3表 第3表よシワイヤ(b)はワイヤ(、)に較べ各姿勢と
も衝撃値が高い。これはBを鋼外皮に含有させただめ適
量のBが溶接金属中に歩留まりTIとの共用効果がよシ
いっそう発揮されたことが、確認されたものである。ま
た、ワイヤ(、)は、上向姿勢での衝撃値が他姿勢に較
べて低い。これは、上向姿勢溶接では、特に未溶融フラ
アクスが生じやすく多量のスノクツタが発生するためB
の歩留りが不安定とかったためと考えられる。本発明者
らの研究によると、鋼外皮中のB量が0.010%を超
えると固溶Bが溶接金属中に多量に歩留まるため、硬化
して衝撃靭性は却って低下した。逆[0,0014未満
では、固溶BICよる溶接金属の組織の微細化効果が期
待できないことが判った。
Table 3 As shown in Table 3, the shear wire (b) has higher impact values in each posture than the wire (,). This confirms that by incorporating B into the steel sheath, an appropriate amount of B can be incorporated into the weld metal to further enhance the joint effect of yield TI. Further, the impact value of the wire (,) in the upward position is lower than in other positions. B
This is thought to be because the yield was unstable. According to the research conducted by the present inventors, when the amount of B in the steel outer skin exceeds 0.010%, a large amount of solid solution B remains in the weld metal, resulting in hardening and a decrease in impact toughness. It was found that when the ratio is less than 0,0014, no effect of refining the structure of the weld metal due to solid solution BIC can be expected.

なお、Bを鋼外皮中に含有させると鋼外皮が硬化してワ
イヤとして一般に用いられる1、2φの細径にまで伸線
加工を行うことは困難であったが、本発明では、C量を
0.04チ以下にすることにより上記問題点は解決され
た。特KO,03%以下では断線が殆どなくなった。
In addition, when B is included in the steel sheath, the steel sheath hardens, making it difficult to draw the wire to a diameter as small as 1 or 2φ, which is generally used as a wire.However, in the present invention, the amount of C is reduced. The above problem was solved by making it 0.04 inch or less. Special KO, below 03%, there was almost no disconnection.

(実施例) 次に本発明の効果を実施例により更に具体的に説明する
(Example) Next, the effects of the present invention will be explained in more detail with reference to Examples.

実施例1 第4表にB源としてFe−B (2% B )をフラッ
クス中に2.0チ添加したワイヤ(c)と鋼外皮中に0
.002チ、0.006チ、0.011チBを含有させ
たワイヤ(d) 、 (e) 、 (f)を示す。また
ワイヤ(d) 、 (6) 、 (f)の鋼外皮のC量
は0.03%であった。
Example 1 Table 4 shows a wire (c) in which 2.0 g of Fe-B (2% B) was added to the flux as a B source and a wire (c) in which 2.0 g of Fe-B (2% B) was added to the steel jacket.
.. Wires (d), (e), and (f) containing 0.002, 0.006, and 0.011 are shown. Further, the C content of the steel outer skin of wires (d), (6), and (f) was 0.03%.

第4表に示したワイヤ(e) 、 (d) 、 (a)
 、 (f)を溶接電流を変えて半自動で下向溶接を行
表い、溶接金属中OBの歩留p率と衝撃靭性を調査した
。第5表に溶接条件を第6表にBの歩留夛率を幀1図に
衝撃値を示す。なお供試鋼板は板厚201Hの5M−5
0B材(45°V開先、ルート間隙12sm)を各溶接
条件で同一積層数で多層盛した。
Wires (e), (d), (a) shown in Table 4
, (f) was semi-automatically downward welded by changing the welding current, and the yield p ratio and impact toughness of OB in the weld metal were investigated. Table 5 shows the welding conditions, Table 6 shows the yield rate of B, and Figure 1 shows the impact value. The sample steel plate is 5M-5 with a plate thickness of 201H.
0B material (45° V groove, root gap 12 sm) was stacked in multiple layers with the same number of layers under each welding condition.

第6表 第6表よシワイヤ(c)は、各溶接電流において、Bの
歩留シ率が低くそのバラツキが大きいのに対し、ワイヤ
(d) 、 (e) 、 (f)はBの歩留〕率は高く
、バラツキも小さい。また第1図からワイヤ((1) 
、 (f)は各溶接電流での衝撃値が低いのに対し、ワ
イヤ(d)、(@)は高く、各溶接電流でも安定してい
る。
Table 6 As shown in Table 6, wire (c) has a low yield shear rate of B at each welding current and a large variation, whereas wires (d), (e), and (f) have a low yield shear rate of B. The retention rate is high and the variation is small. Also, from Figure 1, the wire ((1)
, (f) have low impact values at each welding current, whereas wires (d) and (@) have high impact values and are stable at each welding current.

すガわちワイヤ(e)はBを7ラツクス中に添加してい
るため、ブラックス中でのBの偏析あるいは充填率の変
動によって溶接金属中に安定にBが歩留らず、その結果
、歩留如率のバラツキが大きく衝撃値も低くなった。ワ
イヤ(d)、(e)はBを鋼外皮に含有させているため
溶接金属中に安定にBが歩留シ、衝撃値は高くなった。
In wire (e), B is added to the 7 lacs, so B cannot be stably yielded in the weld metal due to segregation of B in the blacks or fluctuations in the filling rate. , the variation in yield rate was large and the impact value was low. Since the wires (d) and (e) contained B in the steel outer shell, the yield of B was stable in the weld metal and the impact value was high.

しかしワイヤ(f)は鋼外皮中OB含有量が多いため、
Bが溶接金属中に多量に歩留って硬化し、衝撃値は低く
なった。
However, since wire (f) has a high OB content in the steel jacket,
A large amount of B remained in the weld metal and hardened, resulting in a low impact value.

第7表に鋼外皮中にBとCを含有させたワイヤ(g) 
、 (h) 、 (i)を示す。
Table 7 shows wire (g) containing B and C in the steel sheath.
, (h) and (i) are shown.

第7表に示したワイヤ(g) 、(h) 、 (i)の
伸線加工性を調査するためにワイヤ径4,2mφから1
ダイス約25%の減面率で1.2閣φまでl tonの
ワイヤを伸線速度500m/分で試作したときのワイヤ
断線回数を調査した。その結果を第8表に示す。
In order to investigate the wire drawability of wires (g), (h), and (i) shown in Table 7, wire diameters of 4.2 mφ and 1.
The number of wire breakages was investigated when a prototype wire of 1.2 ton in diameter was produced at a wire drawing speed of 500 m/min with a die area reduction rate of approximately 25%. The results are shown in Table 8.

第8表よシワイヤ鋼外皮中にBを含有させた場合、ワイ
ヤ鋼外皮中のC量が0.05%では、1.2111mφ
まで伸線は不可能であることが認められる。したがって
、ワイヤ鋼外皮中にBを含有させる場合には鋼外皮中の
C量を0.04チ以下にする必要がある。
Table 8 shows that when B is contained in the shear steel sheath, when the amount of C in the wire steel sheath is 0.05%, the diameter is 1.2111 mφ.
It is recognized that it is impossible to draw wire up to this point. Therefore, when B is contained in the wire steel sheath, the amount of C in the steel sheath must be 0.04 or less.

伺、本発明ワイヤは添加するBの全てを鋼外皮から添加
するのを基本とするが若干量のBを7ラツクスよ)添加
して全B量を適正にコントロールすることも経済的に各
稲用途のワイヤを供給する目的からすれば本発明の範ち
ゅうに入ることは当然である。また、本発明・ワイヤは
ルチール系のCO2ワイヤの外、Ar −co2溶接用
ワイヤ、エレクトロガス溶接用ワイヤ、潜弧溶接用ワイ
ヤ、ノーガスワイヤ等にも適用できることは云うまでも
ないことである。
Basically, all of the B added to the wire of the present invention is added from the steel outer shell, but it is also economically possible to add a small amount of B (up to 7 lux) to appropriately control the total B amount. Naturally, it falls within the scope of the present invention in view of the purpose of supplying wire for this purpose. It goes without saying that the wire of the present invention can be applied not only to rutile-based CO2 wires but also to Ar-co2 welding wires, electrogas welding wires, submerged arc welding wires, no-gas wires, etc.

(発明の効果) 以上のごとく本発明によれば溶接金属中に適量のBを安
定に歩留らせることができるので、Tl−Hの共用効果
がよシいっそう発揮され、衝撃靭性に優れた溶接金属が
得られる。
(Effects of the Invention) As described above, according to the present invention, it is possible to stably retain an appropriate amount of B in the weld metal, so that the joint effect of Tl-H is further exhibited, resulting in excellent impact toughness. Weld metal is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、試作ワイヤにおける溶接電流と衝撃値の関係
を示すグラフである。 (]8)
FIG. 1 is a graph showing the relationship between welding current and impact value in a prototype wire. (]8)

Claims (1)

【特許請求の範囲】[Claims] ワイヤ外皮にフラックスを充填してなるフラックス入り
ワイヤにおいて、B量が重量比で0.001〜0.01
%、C量が0.04%以下である鋼外皮を使用すること
を特徴とする溶接用フラックス入りワイヤ。
In a flux-cored wire formed by filling the wire sheath with flux, the amount of B is 0.001 to 0.01 in terms of weight ratio.
%, and a flux-cored wire for welding, characterized in that it uses a steel outer skin having a C content of 0.04% or less.
JP16358584A 1984-08-03 1984-08-03 Flux cored wire for welding Pending JPS6142499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16358584A JPS6142499A (en) 1984-08-03 1984-08-03 Flux cored wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16358584A JPS6142499A (en) 1984-08-03 1984-08-03 Flux cored wire for welding

Publications (1)

Publication Number Publication Date
JPS6142499A true JPS6142499A (en) 1986-02-28

Family

ID=15776707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16358584A Pending JPS6142499A (en) 1984-08-03 1984-08-03 Flux cored wire for welding

Country Status (1)

Country Link
JP (1) JPS6142499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344943B1 (en) * 2000-04-27 2002-07-20 고려용접봉 주식회사 Metal cored wire having good properties in welding steel coated by zinc primer and in low temperature impact characteristics for gas shielded arc welding
KR100497180B1 (en) * 2000-07-04 2005-06-23 현대종합금속 주식회사 Titania based flux cored wire having excellent hot crack resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947087A (en) * 1982-09-11 1984-03-16 Daido Steel Co Ltd Flux cored wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947087A (en) * 1982-09-11 1984-03-16 Daido Steel Co Ltd Flux cored wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344943B1 (en) * 2000-04-27 2002-07-20 고려용접봉 주식회사 Metal cored wire having good properties in welding steel coated by zinc primer and in low temperature impact characteristics for gas shielded arc welding
KR100497180B1 (en) * 2000-07-04 2005-06-23 현대종합금속 주식회사 Titania based flux cored wire having excellent hot crack resistance

Similar Documents

Publication Publication Date Title
US6340396B1 (en) Flux cored wire for welding duplex stainless steel
EP2868425B1 (en) Ni based alloy flux cored wire
US1501266A (en) Arc-welding electrode
KR940011114A (en) Core embedded electrode for gas shielded arc welding and gas shielded arc welding method by the electrode
CA2531990C (en) Flux cored, gas shielded welding electrode
US4449031A (en) Tubular composite arc welding electrode for vertical up welding of stainless steel and nickel-base alloys
JPS58132393A (en) Composite wire for welding 9% ni steel
EP0688630B2 (en) Flux-cored wire for gas shielded arc welding
US4314136A (en) Tubular composite arc welding electrode for vertical up welding of stainless steel
JP2005059077A (en) Ni RADICAL ALLOY FLUX CORED WIRE
JPS6142499A (en) Flux cored wire for welding
KR100265097B1 (en) Flux-cored wire for arc welding
JPH0577086A (en) Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
SE518732C2 (en) Stainless steel flux core thread
JPS59159277A (en) Multi-wire submerged arc welding method
US4294614A (en) Austenitic iron-base cryogenic alloy and arc welding electrode for depositing the same
JPH0545360B2 (en)
JPH0242313B2 (en)
JPS6216747B2 (en)
CN113798721B (en) Rutile flux-cored wire with yield strength exceeding 890MPa
JPS5940556B2 (en) High toughness seamless wire for arc welding
JPS61176492A (en) Flux-cored wire for welding stainless steel
JPS62267096A (en) Solid wire for direct current reverse polarity welding
JPS6316239B2 (en)
SU610644A1 (en) Welding wire electrode composition