JPS614239A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS614239A
JPS614239A JP12552484A JP12552484A JPS614239A JP S614239 A JPS614239 A JP S614239A JP 12552484 A JP12552484 A JP 12552484A JP 12552484 A JP12552484 A JP 12552484A JP S614239 A JPS614239 A JP S614239A
Authority
JP
Japan
Prior art keywords
polysilicon
film
substrate
etching
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12552484A
Other languages
Japanese (ja)
Inventor
Nobuo Okumura
信夫 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12552484A priority Critical patent/JPS614239A/en
Publication of JPS614239A publication Critical patent/JPS614239A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To ensure the burying of polysilicon in each isolating groove even if difference is present in the opening widths of the isolating grooves, which are used for isolating elements in the same substrate, by decreasing the resistance of the polysilicon in a part adjacent to the isolating groove in comparison with the polysilicon filled in the isolating groove for the element isolation. CONSTITUTION:Patterning is performed on a three-layer film 17 comprising an oxide film 14, which is layered on a substrate 10, a nitride film 15 and a PSG film 16. Etching is performed by an RIE method, and an isolating groove 19 is formed. Thereafter, thermal oxidation of the substrate 10 is performed, and an oxide film 21 is formed on the surface of the isolating groove 19. Then, polysilicon 22 is deposited on the entire surface of the substrate 10 by a pressure reduced CVD method. Thereafter, phosphorus in the PSG film 16 is infiltrated into the polysilicon in an upper region P, wherein the PSG film 16 is present, by thermal treatment. The resistance of said region is made low. Then, etching is performed for the polysilicon on the substrate 10 by an RIE method. The etching conditions are selected so that an upper surface 22a of the polysilicon in a region Q, whose etching rate is small, is approximately aligned with a surface 10a of the substrate 10. Then thermal oxidation of the surface of the polysilicon 22 in the isolating groove 19 is performed, and an oxide film 24 is formed. Thereafter the three- layer film 17 is removed by etching.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はIC,LSI、超LSIなどに適用されでいる
素子分離技術を改善してなる半導体素子の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device by improving the device isolation technology applied to ICs, LSIs, VLSIs, etc.

(ロ)従来の技術 従来の半導体素子における素子埋込形素子間の素子分離
方法は、素子分離部分に溝を形成しこの分離溝を含め半
導体素子上にポリシリコンを堆積させ、この堆積時に該
分離溝部分が厚くつまれることを利用して、分離溝内の
ポリシリコンを残し半導体素子上のポリシリコンを除去
するとし・うものである。しかし、この方法では分離溝
の各開口幅がそれぞれ同寸法であれば問題がない9が複
数の開口幅に大きい差があると開口幅の大きい分離溝へ
のポリシリコンの充てんが十分に行われないという欠点
があった。
(B) Prior art The conventional method for isolating elements between buried type elements in a semiconductor element is to form a groove in the element isolation part and deposit polysilicon on the semiconductor element including the isolation groove. The idea is to take advantage of the fact that the isolation trench is thick and to remove the polysilicon on the semiconductor element while leaving the polysilicon in the isolation trench. However, with this method, there is no problem if the opening widths of the isolation trenches are the same size9, but if there is a large difference in the width of the multiple openings, polysilicon may not be sufficiently filled into the isolation trenches with large opening widths. There was a drawback that there was no

第3図はこの従来方法の欠点を説明するもので、同図a
、bはポリシリコン膜の付設状態と、付設後表面部分を
除去・ルた状態とを示す断面図である。図中(1)は半
導体基板、(2)は酸化膜、(3a)(3b)(3c)
は素子分離のための分離溝、(4)はポリシリコン膜で
ある。開口幅の小さい分離溝(3a)(3c)上には隣
接する基板上の膜に比べて十分大きい膜厚のポリシリコ
ン膜が得られそのため隣接域のポリシリコン膜を除去し
ても該分離溝(3a)(3c)内にポリシリコンを残す
ことができるが、開口幅の大きい分離溝(3b)上のポ
リシリコン膜はエツチング工程で除去きれてしまう即ら
分離溝(3b)内に適切な分離領域が形成されないとい
う一矢点があった。尚、素子分離に関しては、日経エレ
クトロニクス誌1982年3月29日号F90〜100
「選択酸化法に代わる新しい素子分離技術の発表相法ぐ
」と題する論文を参考にすることができる。
Figure 3 explains the drawbacks of this conventional method.
, b are cross-sectional views showing a state in which a polysilicon film is attached and a state in which a surface portion is removed and removed after being attached. In the figure, (1) is a semiconductor substrate, (2) is an oxide film, (3a) (3b) (3c)
(4) is an isolation trench for element isolation, and (4) is a polysilicon film. On the isolation trenches (3a) and (3c) with small opening widths, a polysilicon film with a sufficiently larger thickness than the film on the adjacent substrate is obtained, so even if the polysilicon film in the adjacent region is removed, the isolation trenches It is possible to leave polysilicon in (3a) and (3c), but the polysilicon film on the isolation trench (3b) with a large opening width can be completely removed in the etching process. One drawback was that no separation region was formed. Regarding element isolation, see Nikkei Electronics Magazine March 29, 1982 issue F90-100.
You can refer to the paper titled ``Presentation of a new device isolation technology to replace selective oxidation.''

(ハ)発明が解決しようと丈る問題点 本発明は素子分離に供する分離溝の開口幅が同一基板上
のものどうしで差があっても各分離溝内にポリシリコン
を確実に埋め込むことができるようにする半導体素子の
製造方法を提供しようとす1     64′(7)f
 ;F+6゜(ニ)問題点を解決するための手段 本発明は半導体基板に素子分離のための分離溝を開設し
その中にポリシリコンを埋設するに当り、該分離溝を含
め該分離溝に隣接する半導体基板上にポリシリ:コンを
付設し、隣接部分のポリシリコンに対して低抵抗化処理
を施こし、その後ポリシリコ〉・のエツチング処理を行
ない、分離溝内に素子分離に十分な量のポリシリコンを
残存させるようにすることを特徴とするものである。
(c) Problems that the invention seeks to solve The present invention makes it possible to reliably fill polysilicon into each isolation trench even if the opening widths of the isolation trenches used for element isolation differ between devices on the same substrate. 1 64'(7)f
;F+6° (D) Means for Solving Problems The present invention provides a method for forming isolation trenches for element isolation in a semiconductor substrate and burying polysilicon therein. A polysilicon layer is attached on the adjacent semiconductor substrate, and the adjacent portion of the polysilicon layer is subjected to a process to lower its resistance. After that, an etching process is performed on the polysilicon layer to form a sufficient amount of silicon in the isolation trench for device isolation. This is characterized by allowing polysilicon to remain.

(ホ)作用 本発明は素子分離のための分離溝に充てんしているポリ
シリコンに比へて該分離溝に隣接する部分のポリシリコ
ンに低抵抗化処理を施こしているので、次工程のエツチ
ングコニ程において低抵抗部分のポリシリコンのエツチ
ング速度を高速化させることができ、そのため分離溝部
分のポリシリコンを残しかつ該分離溝の隣接部分のポリ
シリコンを除去することができる。
(E) Function In the present invention, compared to the polysilicon filling the isolation trench for element isolation, the polysilicon in the portion adjacent to the isolation trench is subjected to a lower resistance treatment, so that the resistance of the polysilicon in the portion adjacent to the isolation trench is lowered. In the etching step, the etching speed of the polysilicon in the low-resistance portion can be increased, so that the polysilicon in the isolation groove portion can be left and the polysilicon in the adjacent portion of the isolation groove can be removed.

(へ)実施例 第1図は本発明方法により製造きれた半導体素子の部分
断面図(1g子槽構造ついては図示省略)である、 (
10)は単結晶シリコン製の半導体基板、(l1g>(
llb>(llc)は素子分離のための分離溝、(12
a)(12b)(12c)はこれら各分離溝内に充てん
されているポリシリコン、(138)(13b)<13
C)はこれら各ポリシリコンと半導体基板(10)との
間の5i02膜である。開口幅の小きい分離溝(lla
)(11C)内のポリシリコン(12a)(12c)は
開口幅の大きい分離溝(flb)内のポリシリコン(1
2b)に比べて外方に突出しており、少なくとも分離溝
(12b)内の充てん物(ポリシリコン及びS、40z
)が基板(10)表面以上のレベルを持つよう番こ構成
されている。
(f) Example FIG. 1 is a partial cross-sectional view of a semiconductor device manufactured by the method of the present invention (the 1g cell structure is not shown). (
10) is a semiconductor substrate made of single crystal silicon, (l1g>(
llb>(llc) is an isolation groove for element isolation, (12
a) (12b) (12c) are polysilicon filled in each of these isolation trenches, (138) (13b) < 13
C) is a 5i02 film between each of these polysilicon and the semiconductor substrate (10). Separation groove with small opening width (lla
) (11C) are polysilicon (12a) (12c) in the isolation groove (flb) with a large opening width.
2b), and at least the filling (polysilicon and S, 40z) in the separation groove (12b)
) is constructed to have a level higher than the surface of the substrate (10).

・ 第2図a−f’は本発明方法の−・実施例の工程説
明図である。(lO)はN型のシリコン半導体基板であ
り、該基板の表面上に熱酸化法で膜厚500人の酸化膜
(S io 2 >(14)を形成し、次いでこの酸化
膜の上にナイトライド(S’i3N4 )膜(15)を
1200人の膜厚になるように減圧CVD法で形成し、
さらにこのナイトライド膜の上に膜厚1000AのPS
G(phospho−silicate glass)
膜(16)をデポジションする。第2図(a)は基板(
10)上に、酸化膜〈14)、ナイトライド膜(15)
、及びPSG膜(16)からなる3HI膜〈17〉を順
次積み重ねた状態を示している。
- Figures 2a to 2f' are process explanatory diagrams of an example of the method of the present invention. (lO) is an N-type silicon semiconductor substrate, and an oxide film (S io 2 > (14) with a thickness of 500 nm is formed on the surface of the substrate by a thermal oxidation method, and then a night film is formed on this oxide film. A Ride (S'i3N4) film (15) was formed to a thickness of 1200 by low pressure CVD,
Furthermore, on top of this nitride film, a PS film with a thickness of 1000A is applied.
G (phospho-silicate glass)
Deposit a membrane (16). Figure 2(a) shows the substrate (
10) On top, oxide film (14), nitride film (15)
, and a 3HI film <17> consisting of a PSG film (16) are shown stacked one after another.

次いで、この3層膜(17)上にバターニングを行ない
、その後素子分離を行なうべき領域り18)の3層膜(
17)をドライエツチング法で除去し、引続いて該領域
の基板(10)をRI E(react、ive io
netching)法でエツチングして分離溝〈19)
を形成する。この分離溝はRIE法の特徴によっていわ
ゆるサイドエッチを生ずることなく形成される。第2図
(b)はこの分離溝(19)を形成した直後の基板(1
0)を示している。
Next, patterning is performed on this three-layer film (17), and then the three-layer film (18) in the area where element isolation is to be performed is applied.
17) by a dry etching method, and then the substrate (10) in this area is subjected to RIE (react, ive io
Separation grooves are created by etching using the
form. This separation groove is formed without causing so-called side etching due to the characteristics of the RIE method. FIG. 2(b) shows the substrate (1) immediately after forming this separation groove (19).
0) is shown.

次いで分離溝(19)の下方域にチャンネルストップ用
のイオンく例えばリン)(20)を注入し、該下方域を
高濃度のN型に構成し、分離溝域での分離を確実にする
。その後、基板(10)を熱酸化して、分離溝(19)
表面のSiを酸化して膜厚1000人程度0酸化膜(S
 io 2 )(21)を形成する。第2図(c)はこ
の熱処理1稈終了後の基板の断面図を示している。
Next, channel stop ions such as phosphorus (20) are injected into the lower region of the separation groove (19) to make the lower region highly concentrated N type and ensure separation in the separation groove region. Thereafter, the substrate (10) is thermally oxidized to form isolation grooves (19).
By oxidizing the Si on the surface, a film thickness of approximately 1,000 oxides (S
io 2 ) (21). FIG. 2(c) shows a cross-sectional view of the substrate after one culm of this heat treatment is completed.

次いで、この基板(10)の表面側の全面に、シランガ
スを熱分解する減圧CVD法でポリシリコン(22)を
膜厚12000人程デポレジョンする。その後、常圧、
N2雰囲気、1000°Cで約30分位熱処理を行ない
、この熱処理工程にて上記PSG膜(16)内のリンを
該PSG膜(16)の存在する上方域(P)のポリシリ
コンに浸透さゼ、該当部分を低抵抗化する。破線(23
a)(23b)で囲まれる領域(Q)のポリシリコンは
PSG膜<16)の影響を受けずデポジション時の抵抗
に維持され低抵抗化されない。第2図(d)は熱処理工
程後の基板の断面図を示している。
Next, polysilicon (22) is deposited to a thickness of about 12,000 on the entire surface side of this substrate (10) using a low pressure CVD method that thermally decomposes silane gas. After that, normal pressure,
A heat treatment is performed at 1000° C. for about 30 minutes in a N2 atmosphere, and in this heat treatment step, the phosphorus in the PSG film (16) penetrates into the polysilicon in the upper region (P) where the PSG film (16) exists. ze, lower the resistance of the relevant part. Broken line (23
a) The polysilicon in the region (Q) surrounded by (23b) is not affected by the PSG film <16) and is maintained at the resistance at the time of deposition and is not lowered in resistance. FIG. 2(d) shows a cross-sectional view of the substrate after the heat treatment process.

次いで、基板(10)上のポリシリコンに対してRIE
法でエツチングを行なう。このエラグ・ング条件は、エ
ツチングレートの小さい領域(Q)以外のポリシリコン
膜(領域(P)の膜)が完全に除去されるタイミングで
、エツチングレートの小さい領域(Q)のポリシリコン
(22)の上面(22a)がほぼ基板、      D
o)cn*i(”0°)”  * t 6 、l: 3
1: −Z −y + > f pれるように選定され
る。(第2図(e)参照)。
Next, RIE is performed on the polysilicon on the substrate (10).
Perform etching by law. This erasing condition is such that the polysilicon film (film in region (P)) other than the region (Q) with a small etching rate is completely removed, and the polysilicon film (22 ) is almost the substrate, D
o) cn*i("0°)" *t6, l: 3
1: −Z −y + > f p. (See Figure 2(e)).

次いで、分離溝(19)内のポリシリコン(22hlE
面を熱酸化して膜厚が約3000人の酸化膜(24)を
形成し、その後、上記3NI膜(17)をエツチングに
より除去する(第2図<r>参照)。この3層膜(17
)は1つのエッチャントでいちどにエツチングをしても
よいが、上層側から順次、分離溝内のポリシリコンに対
する影響の小さいエッチャントを使って除去するように
しても良い。この後、分離溝に隣接する領域に、トラン
ジスタ等を作っていく訳であるがその工程については説
明を省略する。
Next, the polysilicon (22hlE) in the isolation trench (19) is
The surface is thermally oxidized to form an oxide film (24) with a thickness of about 3000 nitrides, and then the 3NI film (17) is removed by etching (see FIG. 2 <r>). This three-layer film (17
) may be etched at once with one etchant, but it may also be removed sequentially from the upper layer side using an etchant that has a small effect on the polysilicon in the isolation trench. After this, transistors and the like are formed in the region adjacent to the isolation trench, but a description of the process will be omitted.

本発明において隣接領域の低抵抗化は該当部分に開口を
持つマスクを用いてイオン注入を行なう方法を採用して
も良いが、上記実施例の方がマスクアライメントの必要
がないので製造が容易であるという利点がある。尚、第
2図(a)〜(f)は第1図中の■〜■部分を代表して
示している。
In the present invention, a method of implanting ions using a mask having an opening in the relevant region may be used to reduce the resistance of the adjacent region, but the above embodiment is easier to manufacture because it does not require mask alignment. There is an advantage to having one. Incidentally, FIGS. 2(a) to 2(f) represent the portions (■) to (■) in FIG. 1.

(ト)発明の効果 本発明は分離溝及びその上方域に位置するポリシリコン
に比べてそれに隣接する領域に位置するポリシリコンの
方に低抵抗化処理を施こしエツチングレートを早くさせ
るようにしているので、隣接領域のポリシリコンを除去
すると共に分離溝内にポリシリコンを残すことができ、
分離溝の開口幅が違うものであってもそれらの全部にポ
リシリコンの分離域を形成できる。また、低抵抗化処理
を分離溝に隣接するポリシリコン膜の下層に位置するP
SG膜からのリン成分で行なうようにすれば低抵抗化の
ためのイオン注入用としてマスクを必要とせず有利であ
る。
(g) Effects of the Invention The present invention performs a process to lower the resistance of the polysilicon located in the region adjacent to the separation trench and the polysilicon located above the trench to increase the etching rate. Therefore, it is possible to remove polysilicon in the adjacent region and leave polysilicon in the isolation trench.
Even if the opening widths of the isolation trenches are different, polysilicon isolation regions can be formed in all of them. In addition, the resistance reduction process is applied to the P layer located below the polysilicon film adjacent to the isolation trench.
If the phosphorus component from the SG film is used for ion implantation to lower resistance, a mask is not required, which is advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により製造される半導体素子の部分
断面図、第2図(a)〜(f’)は本発明方法の工程説
明図、第3図(a)(b)は従来方法の説明図である。
Figure 1 is a partial sectional view of a semiconductor device manufactured by the method of the present invention, Figures 2 (a) to (f') are process explanatory diagrams of the method of the present invention, and Figures 3 (a) and (b) are conventional methods. FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の素子分離部に分離溝を形成する工程
と、この分離溝の表面部に酸化膜を付設する工程と、こ
の酸化膜上の前記分離溝内及び該分離溝に隣接する前記
半導体基板の隣接部上にポリシリコンを付設する工程と
、前記隣接部上のポリシリコンに対して低抵抗化処理を
施して前記分離溝内のポリシリコンとの間でのエッチン
グレートに差をもたせる工程と、前記隣接部上のポリシ
リコンを除去する工程とを備えてなる半導体素子の製造
方法。
(1) A step of forming an isolation trench in an element isolation portion of a semiconductor substrate, a step of attaching an oxide film to the surface portion of this isolation trench, and a step of forming an oxide film on the surface of the isolation trench, and a step of forming an isolation trench within the isolation trench and adjacent to the isolation trench on the oxide film. A step of attaching polysilicon on an adjacent portion of the semiconductor substrate, and performing a resistance reduction treatment on the polysilicon on the adjacent portion to create a difference in etching rate between the polysilicon in the isolation trench and the polysilicon on the adjacent portion. and a step of removing polysilicon on the adjacent portion.
(2)前記低抵抗化処理は前記半導体基板上のPSG膜
内のリン成分を前記隣接部上のポリシリコンに熱処理で
浸透させてなることを特徴とする特許請求の範囲第(1
)項記載の半導体素子の製造方法。
(2) The resistance lowering treatment is performed by infiltrating the phosphorus component in the PSG film on the semiconductor substrate into the polysilicon on the adjacent portion by heat treatment.
) The method for manufacturing a semiconductor device according to item 2.
JP12552484A 1984-06-18 1984-06-18 Manufacture of semiconductor element Pending JPS614239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12552484A JPS614239A (en) 1984-06-18 1984-06-18 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12552484A JPS614239A (en) 1984-06-18 1984-06-18 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS614239A true JPS614239A (en) 1986-01-10

Family

ID=14912295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12552484A Pending JPS614239A (en) 1984-06-18 1984-06-18 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS614239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010559A1 (en) * 1991-11-15 1993-05-27 Analog Devices, Incorporated Process for fabricating insulation-filled deep trenches in semiconductor substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010559A1 (en) * 1991-11-15 1993-05-27 Analog Devices, Incorporated Process for fabricating insulation-filled deep trenches in semiconductor substrates

Similar Documents

Publication Publication Date Title
EP0044082B1 (en) Method of manufacturing a semiconductor device comprising a dielectric insulating region
US4491486A (en) Method for manufacturing a semiconductor device
US6103574A (en) Method of manufacturing non-volatile semiconductor memory device having reduced electrical resistance of a source diffusion layer
US5326715A (en) Method for forming a field oxide film of a semiconductor device
JPS6412110B2 (en)
EP0284456B1 (en) Pad oxide protect sealed interface isolation process
US5696020A (en) Method for fabricating semiconductor device isolation region using a trench mask
US7547618B1 (en) System and method for providing a deep connection to a substrate or buried layer of a semiconductor device
JPS614239A (en) Manufacture of semiconductor element
JPS6119111B2 (en)
US5874347A (en) Method for fabricating field oxide isolation region for semiconductor devices
JPS61228650A (en) Manufacture of semiconductor device
JPH0562463B2 (en)
KR0179555B1 (en) Isolation method of semiconductor device
JPH0363220B2 (en)
JPS59168640A (en) Manufacture of semiconductor device
JPH09330988A (en) Laminated gate-type non-volatile semiconductor memory device
JP3468920B2 (en) Element isolation method for semiconductor device
JP2864558B2 (en) Method for manufacturing semiconductor device
JPS60189237A (en) Production of semiconductor device
JPS6117143B2 (en)
JPH02161750A (en) Manufacture of semiconductor device
JP3189320B2 (en) Method for manufacturing semiconductor device
JPS6358851A (en) Manufacture of semiconductor integrated circuit device
JPH0834241B2 (en) Method for manufacturing semiconductor integrated circuit device