JPS6142259A - Motor - Google Patents

Motor

Info

Publication number
JPS6142259A
JPS6142259A JP16186684A JP16186684A JPS6142259A JP S6142259 A JPS6142259 A JP S6142259A JP 16186684 A JP16186684 A JP 16186684A JP 16186684 A JP16186684 A JP 16186684A JP S6142259 A JPS6142259 A JP S6142259A
Authority
JP
Japan
Prior art keywords
teeth
short
long
winding
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16186684A
Other languages
Japanese (ja)
Other versions
JPH0681468B2 (en
Inventor
Makoto Goto
誠 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59161866A priority Critical patent/JPH0681468B2/en
Priority to US06/760,509 priority patent/US4692646A/en
Priority to EP85305468A priority patent/EP0178755B1/en
Priority to DE8585305468T priority patent/DE3584220D1/en
Priority to KR8505550A priority patent/KR900005756B1/en
Publication of JPS6142259A publication Critical patent/JPS6142259A/en
Publication of JPH0681468B2 publication Critical patent/JPH0681468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To reduce a cogging torque by specifying the disposition of a groove for windings more than the number of poles of a field. CONSTITUTION:A magnet 3 mounted on a rotor 2 has field poles of P poles (P is even number), and an armature core 4 has teeth formed between grooves (a)- (l) for T pieces (T is P or larger integer number) of windings wound with windings of 3 phases. The core 4 has L pieces (L is integer number) of long teeth at the effective pitch larger than D=360 deg./T, and M pieces (M is integer number) of short teeth at the effective pitch smaller than D, and the numbers of the long and short teeth are set to L>=3, M>=3. Short tooth blocks of two or more short teeth and long tooth blocks of at least one long tooth are the same number, the short and long tooth blocks are alternately disposed on the circumference, and the numbers of the long and short blocks are integer number magnification of 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、界磁部の磁極数よりも多い巻線用溝を有する
電機子鉄心を具備する電動機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electric motor having an armature core having more winding grooves than the number of magnetic poles in a field section.

従来例の構成とその問題点 電機子鉄心に巻線用溝を設けて多相の巻線を収納するよ
うにした電動機は、巻線用溝の間に形成される歯に界磁
部の磁束を収束させることができるために、その出力が
大きいという利点がある。
Conventional configuration and its problems In a motor in which winding grooves are provided in the armature core to house multiphase windings, the magnetic flux of the field part is transferred to the teeth formed between the winding grooves. It has the advantage that the output is large because it can converge.

そのため、産業用ロボットやN0機器の駆動動力伽とし
て広く使用されている。しかしながら、このような電動
機では、界磁部の磁極と電機子鉄心の巻線用溝の相互作
用によりコギングトルりが発生する。以下、これについ
てプラシレヌ形の直流電動機を例にとり、図面を参照し
て説明する。
Therefore, it is widely used as a driving force for industrial robots and N0 equipment. However, in such a motor, cogging torque occurs due to interaction between the magnetic poles of the field section and the winding grooves of the armature core. Hereinafter, this will be explained with reference to the drawings, taking a plasticine type DC motor as an example.

第1図は従来の電動機の構造を表わす要部構成図である
。回転軸1に取りつけられた強磁性体のロータ2の外周
に、円環状のマグネット3が取りつけられている。マグ
ネット3には4極の磁極が等角度間隔に着磁されておシ
、界磁部を形成している。界磁部のマグネット3と所定
の間隙を離して電機子鉄心4が配置されている。マグネ
ット3と電機子鉄心4は、いずれか一方が他方に対して
回転自在に支承されている(本例では、電機子鉄1シ・
4に対してマグネット3が回転するようになされている
)。電機、子鉄心4には、等角度間隔に12個の巻線用
溝5が設けられておシ、各巻線用溝の間には12個の歯
6が形成され、34’■の巻線A1〜A4,81〜B4
,01〜C4が巻装されている。巻線AI 、A2.A
3.A4は3個の歯を取り囲むように巻かれており、巻
線A1が収納された両方の巻線用溝にはそれぞれ巻線A
2とA4の一端が収納されている。同様に、巻線A2が
収納された両方の巻線用溝にはそれぞれ巻線A1とA3
の一端が収納され、巻線A3が収納された両方の巻線用
溝にはそれぞれ巻線人2とA4の一端が収納され、巻線
A4が収納された両方の巻線用溝にはそれぞれ巻線人1
とA3の一端が収納されている。他の相の巻線B1〜B
4.01〜C4についても同様である。以下、A1−A
4をまとめて人相の巻線群とし、B1〜B4をB相の巻
線群とし、C1〜C4をC相の巻線群とする。界s部の
マグネット3の発生磁束は電機子鉄、11)4の各歯に
流入または流出し、人、B、C相の巻線群に鎖交してい
る。A、B、C相の巻線群の間には、電気的に120度
の位相差がある。ここで、電気角の180度は界磁部の
1磁極ピツチ3 e o 0/ P(Pは界磁部の磁極
数)に相当するC本例では、P=4であるから機械角9
Q度が1磁極ピツチであり、電気角180度に相当する
)。
FIG. 1 is a diagram showing the main parts of the structure of a conventional electric motor. An annular magnet 3 is attached to the outer periphery of a ferromagnetic rotor 2 attached to a rotating shaft 1. The magnet 3 has four magnetic poles magnetized at equal angular intervals to form a field section. An armature core 4 is arranged at a predetermined gap from the magnet 3 of the field section. One of the magnet 3 and the armature core 4 is rotatably supported relative to the other (in this example, the armature iron 1
4). The electric machine and child core 4 are provided with 12 winding grooves 5 at equal angular intervals, and 12 teeth 6 are formed between each winding groove to accommodate a 34' winding. A1-A4, 81-B4
, 01 to C4 are wound. Winding AI, A2. A
3. A4 is wound so as to surround three teeth, and both winding grooves in which the winding A1 is housed each contain a winding A4.
2 and one end of A4 paper are stored. Similarly, both winding grooves in which winding A2 is stored have windings A1 and A3 respectively.
One end is stored in both winding grooves in which winding A3 is stored, and one ends of winding man 2 and A4 are stored in both winding grooves in which winding A4 is stored, respectively. winding person 1
and one end of the A3 paper are stored. Windings B1 to B of other phases
The same applies to 4.01 to C4. Below, A1-A
4 are collectively referred to as a human-phase winding group, B1 to B4 are a B-phase winding group, and C1 to C4 are a C-phase winding group. The magnetic flux generated by the magnet 3 in the field s flows into or out of each tooth of the armature iron 11) and 4, and interlinks with the winding groups of the human, B, and C phases. There is an electrical phase difference of 120 degrees between the A, B, and C phase winding groups. Here, 180 degrees of electrical angle corresponds to one magnetic pole pitch of the field part 3 e o 0/P (P is the number of magnetic poles of the field part) In this example, since P=4, the mechanical angle is 9
Q degree is one magnetic pole pitch, which corresponds to 180 electrical degrees).

第2図に駆動回路の構成図を示す。第1図の巻線A1〜
A4は、各巻回方向を考慮して直列に接続され人相の巻
線群を形成している。同様に、巻線B1〜B4は各巻回
方向を考慮して直列に接続されB相の巻線群を形成し、
巻線01〜C4は各巻回方向を考慮して直列に接続され
C相の巻線群を形成している。3相の巻線群は星形結線
され、その端子を駆動部11に接続されている。位置検
出部12はマグネット30回転位置を検出し、マグネッ
ト30回転に伴って変化する3相の正弦波状の信号P1
.P2.P3を出力する。駆動部11には、指令信号F
と位置検出部12の3相信号P1.P2.P3が入力さ
れ、その両者の積に比例した3相の正弦波状の電流11
.12.13を出力する。その結果、A、B、C相の巻
線群への電流11.12..13とマグネット3の磁束
との相互作用によって所定方向への回転力を発生する。
FIG. 2 shows a configuration diagram of the drive circuit. Winding A1~ in Figure 1
A4 are connected in series in consideration of each winding direction to form a human phase winding group. Similarly, windings B1 to B4 are connected in series considering each winding direction to form a B-phase winding group,
The windings 01 to C4 are connected in series in consideration of each winding direction to form a C-phase winding group. The three-phase winding group is connected in a star shape, and its terminals are connected to the drive section 11. The position detection unit 12 detects the position of 30 rotations of the magnet, and generates a three-phase sinusoidal signal P1 that changes as the magnet 30 rotates.
.. P2. Output P3. The drive unit 11 receives a command signal F.
and the three-phase signal P1. of the position detection section 12. P2. P3 is input, and a three-phase sinusoidal current 11 proportional to the product of both is input.
.. Outputs 12.13. As a result, currents 11.12. .. 13 and the magnetic flux of the magnet 3, a rotational force in a predetermined direction is generated.

次に、この従来例のコギングトルりについて第3図を参
照して説明する。第3図は、第1図のマグネット3と電
機子鉄心4をx−x’線とY−Y’線について平面展開
した図である(巻線を省略し、巻線用溝を&〜1で示し
だ)。コギング)/レフは界磁部と電機子鉄心の間の磁
場に蓄えられた磁気エネルギーが両者の相対的な回転に
応じて変化することによって生じるものである。特に、
界磁部の磁極と電機子鉄心の溝の両者に関係して発生し
、第1図のごとく界磁部のマグネット3と電機子鉄心4
の両方に磁気的な周期性がある場合には、その両者に共
通して存在する成分(整合成分)のコギングトルクが生
じる。第4図にマグネット3の発生する磁束密度の分布
特性を全周(360度)について示す。磁気エネルギー
は磁束密度の2乗に関係する凰であるから、第4図に示
すごとき特性の界磁部のマグネット3が有する磁気的な
周期・波形の基本的な調波成分は第4次調波成分となる
。ここで、1回転1回の正弦波成分を第1次調波成分と
する。
Next, the cogging torque of this conventional example will be explained with reference to FIG. FIG. 3 is a plan view of the magnet 3 and armature core 4 in FIG. ). Cogging/ref is caused by the magnetic energy stored in the magnetic field between the field part and the armature core changing in accordance with the relative rotation of the two. especially,
This occurs in relation to both the magnetic poles of the field part and the grooves of the armature core, and as shown in Figure 1, the magnet 3 of the field part and the armature core 4
When both have magnetic periodicity, a cogging torque of a component (matching component) that exists in common in both occurs. FIG. 4 shows the distribution characteristics of the magnetic flux density generated by the magnet 3 over the entire circumference (360 degrees). Since magnetic energy is related to the square of the magnetic flux density, the basic harmonic component of the magnetic period/waveform of the magnet 3 in the field part with the characteristics shown in Fig. 4 is the fourth harmonic. It becomes a wave component. Here, a sine wave component generated once per rotation is defined as a first harmonic component.

すなわち、マグネット3は第4火成分を基本として、第
8次、第12次、・・・・・・・・などの高調波成分を
含んでいることになる。
That is, the magnet 3 includes harmonic components such as the 8th, 12th, etc. based on the 4th ignition component.

一方、電機子鉄心4の磁気的不均一性(パーミアンスに
関係する量)は巻線用溝lL〜1によって生じる。電機
子鉄心4の巻線用溝IL〜1は等角度間隔(30度間隔
)に配置されているので、電機子鉄心4の磁気的不均一
性の基本的な調波成分は第12次成分となる。従って、
これを基本として第24次、第36次、・・・・・・・
などの高調波成分を含んでいる。コギングトルクは、電
機子鉄心4の有する磁気的不均一性の成分とマグネット
3の有する周期・波形の調波成分が整合(一致)すると
きに発生するから、本従来例のコギングトルりは第12
次、第24次、・・・・・・・・などの調波成分が生じ
る。
On the other hand, magnetic non-uniformity (an amount related to permeance) of the armature core 4 is caused by the winding grooves 1L-1. Since the winding grooves IL~1 of the armature core 4 are arranged at equal angular intervals (30 degree intervals), the fundamental harmonic component of the magnetic non-uniformity of the armature core 4 is the 12th order component. becomes. Therefore,
Based on this, the 24th, 36th, etc.
Contains harmonic components such as Cogging torque occurs when the magnetic non-uniformity component of the armature core 4 and the harmonic component of the period/waveform of the magnet 3 match (match), so the cogging torque of this conventional example is the 12th
Harmonic components such as the 24th order, 24th order, etc. are generated.

コギング)/レフの第12次成分は、12個の巻線用溝
によって生じる電機子鉄心4の磁気的不均一性の基本成
分に直接に関係している。一般に、電機子鉄心4の基本
成分はその他の高調波成分に較べてかなり大きい。その
結果、この従来の電動機では非常に大きなコギングトル
りが発生していた。
The 12th order component of the cogging)/ref is directly related to the fundamental component of the magnetic inhomogeneity of the armature core 4 caused by the 12 winding grooves. Generally, the fundamental component of the armature core 4 is considerably larger than other harmonic components. As a result, very large cogging torque occurred in this conventional electric motor.

本出願人は、このようなコギングトルクを低減する一方
法を特願昭53−145489号に提案している。特願
昭53−145489号では、電機子鉄心の各歯に補助
溝を設けることにより、コギングトルクの基本的な調波
成分を高くしてコギングトルクを低減している。しかし
ながら、このような方法によりコギングトルクを十分に
低減するためには、コギングトノVりの基本次数をかな
り高次にする必要があシ、多くの補助溝を電機子鉄心に
設けなければならず、実用的でない。また、補助溝を多
く設けた場合でも、コギングトルりの基本成分が電機子
鉄心の基本成分と一致するためにコギングトルりを十分
に低減できなかった。
The present applicant has proposed a method for reducing such cogging torque in Japanese Patent Application No. 53-145489. In Japanese Patent Application No. 53-145489, cogging torque is reduced by increasing the basic harmonic component of cogging torque by providing auxiliary grooves on each tooth of the armature core. However, in order to sufficiently reduce the cogging torque by such a method, it is necessary to make the basic order of the cogging tonnage considerably high, and many auxiliary grooves must be provided in the armature core. Not practical. Further, even when many auxiliary grooves are provided, the basic component of the cogging torque matches the basic component of the armature core, so the cogging torque cannot be sufficiently reduced.

発明の目的 本発明は、このような点を考慮し、界磁部の磁極数より
も電機子鉄心の巻線用溝の数が多いような電動機におけ
るコギングトルクを大幅に低減したものである。
Purpose of the Invention The present invention takes these points into consideration and significantly reduces cogging torque in a motor in which the number of winding grooves in the armature core is greater than the number of magnetic poles in the field section.

発明の構成 本発明では、P極(Pは偶数)の界磁磁極を円周上に等
角度間隔もしくは略等角度間隔に有する界磁部と、T個
(TはPより大きい整数)の巻線用溝に3相の巻線を重
巻した電機子鉄心とを具備し、前記界磁部と電機子鉄心
のうちでいずれが一方が他方に対して回転自在となされ
た電動機であって、 前記電機子鉄心は、実効ピッチがD = 360 ′/
Tより大きいL個(Lけ整数)の長歯と、実効ピッチが
Dより小さいM個(Mは整数)の短歯を有し、前記長歯
と短歯の個数を L  ≧3 M  ≧3 となし、2個以上の短歯からなる短歯ブロックと少なく
とも1個の長歯からなる長歯ブロックを同数個有し、前
記短歯ブロックと前記長歯ブロックを円周上に交互に配
置し、かつ、前記長歯ブロックと前記短歯ブロックの個
数をそれぞれ3の整数倍にすることによって、上記の目
的を達成したるものである。
Structure of the Invention The present invention includes a field part having P poles (P is an even number) field magnetic poles at equiangular intervals or approximately equiangular intervals on the circumference, and T windings (T is an integer larger than P). An electric motor comprising an armature core in which three-phase windings are heavily wound in a wire groove, and one of the field part and the armature core is rotatable relative to the other, The armature core has an effective pitch of D = 360'/
It has L long teeth larger than T (L integer) and M short teeth whose effective pitch is smaller than D (M is an integer), and the number of the long teeth and short teeth is L ≧3 M ≧3 and an equal number of short tooth blocks consisting of two or more short teeth and long tooth blocks consisting of at least one long tooth, and the short tooth blocks and the long tooth blocks are arranged alternately on the circumference. , and the above object is achieved by making the numbers of the long tooth blocks and the short tooth blocks each an integral multiple of 3.

さらに、本発明では、P極(Pは偶数)の界磁磁極を円
周上に等^隔もしくは略等角度間隔に有する界磁部と、
T個(TはPより大きい整数)の巻線用溝に3相の巻線
を重巻した電機子鉄心とを具備し、前記界磁部と電機子
鉄心のうちでいずれか一方が他方に対して回転自在とな
された電動機であって、 前記電機子鉄心は、実効ピッチがD = 360 ’/
Tより大きいL個(Lは整数)の長歯と、実効ピッチが
Dより小さいM個(Mは整数)の短歯を有し、前記長歯
と短歯の個数を L  ≧3 M ≧3 となし、少なくとも1個の短歯からなる短歯ブロックと
2個以上の長歯からなる長歯ブロックを同数個有し、前
記短歯ブロックと前記長歯ブロックを円周上に交互に配
置し、かつ、前記長歯ブロックと前記短歯ブロックの個
数をそれぞれ3の整数倍にすることにより、上記の目的
を達成したものである。
Furthermore, in the present invention, a field portion having P-pole (P is an even number) field magnetic poles at equal intervals or approximately equal angular intervals on the circumference;
The armature core includes T winding grooves (T is an integer larger than P) and an armature core in which three-phase windings are wound heavily, and one of the field part and the armature core is connected to the other. In this motor, the armature core has an effective pitch of D = 360'/
It has L long teeth larger than T (L is an integer) and M short teeth whose effective pitch is smaller than D (M is an integer), and the number of the long teeth and short teeth is L ≧3 M ≧3 and an equal number of short tooth blocks consisting of at least one short tooth and long tooth blocks consisting of two or more long teeth, and the short tooth blocks and the long tooth blocks are arranged alternately on the circumference. , and the above object is achieved by making the number of the long tooth blocks and the short tooth blocks each an integral multiple of three.

実施例の説明 第5図に本発明の一実施例を表わす要部平面展開図を示
す。第6図において、ロータ2に取りつけられたマグネ
ット3は等角度間隔に4極の磁極を有し、電機子鉄心4
012個の巻線用溝I!L〜1および12個の歯に所定
間隙あけて対向している。
DESCRIPTION OF EMBODIMENTS FIG. 5 is a developed plan view of essential parts representing an embodiment of the present invention. In FIG. 6, the magnet 3 attached to the rotor 2 has four magnetic poles at equal angular intervals, and the armature core 4
012 winding grooves I! It faces L~1 and 12 teeth with a predetermined gap.

電機子鉄心4の12個の巻線用溝には、第1図のA、B
、C相の巻線群と同様に3相の巻線群が重巻して巻装さ
れている(図示を省略する)。すなわち、巻線用溝aか
らdに渡って巻線人1が巻装され、巻線用溝dからgに
渡って巻線人2が巻装され、巻線用溝gからコに渡って
巻線A3が巻装され、巻線用溝コから乙に渡って巻線ム
4が巻装され、巻線人1〜人4がその巻回方向を考慮し
て直列に接続でれて第A相の巻線群を形成している。
The 12 winding grooves of the armature core 4 are marked with A and B in Fig. 1.
, three-phase winding groups are wound in multiple layers similarly to the C-phase winding group (not shown). That is, the winder 1 is wound from the winding grooves a to d, the winder 2 is wound from the winding grooves d to g, and the winder 2 is wound from the winding grooves g to co. The winding A3 is wound, the winding 4 is wound from the winding groove to the winding groove A, and the winding operators 1 to 4 are connected in series considering the winding direction. It forms an A-phase winding group.

同様に、巻線用溝Cからfに渡って巻線B1が巻装され
、巻線用溝fから1に渡って巻線B2が巻装され、巻線
用$1iから1に渡って巻#1lB3が巻装され、巻線
用溝1からCに渡って巻線B4が巻装され、巻線B1〜
B4がその巻回方向を考慮して直列に接続されて第3組
の巻線群を形成している。さらに、巻線用溝eからhに
渡って巻線C1が巻装され、巻線用溝りからkに渡って
巻線C2が巻装され、巻線用溝kからbに渡って巻線C
3が巻装され、巻線用溝すからeに渡って巻線C4が巻
装され、巻線01〜C4がその巻回方向を考慮して直列
に接続されて第C相の巻線群を形成している。本実施例
の駆動回路は、第2図の構成と同様であり、説明を省略
する。
Similarly, the winding B1 is wound from the winding groove C to f, the winding B2 is wound from the winding groove f to 1, and the winding B2 is wound from the winding groove f to 1. #1lB3 is wound, winding B4 is wound from winding groove 1 to C, and winding B1 to C are wound.
B4 are connected in series in consideration of the winding direction to form a third winding group. Further, the winding C1 is wound from the winding groove e to h, the winding C2 is wound from the winding groove k to the winding groove k, and the winding C2 is wound from the winding groove k to b. C
3 is wound, and a winding C4 is wound across the winding groove e, and the windings 01 to C4 are connected in series considering the winding direction to form a C-phase winding group. is formed. The drive circuit of this embodiment has the same configuration as that shown in FIG. 2, and its explanation will be omitted.

第6図の実施例においては、電機子鉄心4の巻線用溝I
L〜1の配置を不等角変間隔となし、巻線用溝の間に形
成される歯の実効ピッチを不均一にしている。ここに、
歯の実効ピッチとは歯の両端の巻線用溝の中心のなす角
度である。巻線用溝の個数をT=3・P=12 (Pは
界磁部の磁極数であpP=a)とするとき、等角度間隔
に配置すると各歯の実効ピッチはD=360°’/T(
本例でけD=j20°/P=30°)となるので、Dよ
り大きい両全長歯と呼び、Dより小さい歯を短歯と呼ぶ
ことにする。歯a−b (両端の巻線用溝によって歯を
表わす)は短歯、歯b−aは短歯、歯C−dは短歯、歯
d−eは長歯、歯θ−fは短歯、歯f−gは短歯、歯g
−hは短歯、歯h−iは長歯、歯i−jは短歯、歯j−
には短歯、歯に−1は短歯、歯1−aは長歯である。す
なわち、長歯の個数はL=3、短歯の個数はM=9であ
る。巻線用溝aからdの間(a、b、c、d)と巻線用
溝eからhの間(θ、f、g、h)と巻線用溝lから1
の間(1+ ] r k + 1)は短歯のみが部分的
に集中しており、3個の短歯からなる短歯プロ、7りを
形成している(長歯を含まない)。同様に、巻線用溝d
からeの間(d、e)と巻線用溝りから工の間(h、i
)と巻線用溝lからaの間(1゜a)は長歯のみが部分
的に集中しており、1個の長歯からなる長歯ブロックを
形成している(短歯を含まない)。すなわち、3組の短
歯ブロックと長歯ブロックが円、周上に交互に配置され
ている。
In the embodiment shown in FIG. 6, the winding groove I of the armature core 4 is
L to 1 are arranged at non-uniform intervals to make the effective pitch of the teeth formed between the winding grooves non-uniform. Here,
The effective pitch of a tooth is the angle formed by the center of the winding groove at both ends of the tooth. When the number of winding grooves is T=3・P=12 (P is the number of magnetic poles in the field part and pP=a), when arranged at equal angular intervals, the effective pitch of each tooth is D=360°' /T(
In this example, D=j20°/P=30°), so we will call both full-length teeth larger than D, and teeth smaller than D will be called short teeth. Teeth a-b (represented by the winding grooves at both ends) are short teeth, teeth b-a are short teeth, teeth C-d are short teeth, teeth d-e are long teeth, and teeth θ-f are short teeth. Tooth, tooth f-g is short tooth, tooth g
-h is a short tooth, tooth h-i is a long tooth, tooth i-j is a short tooth, tooth j-
is a short tooth, tooth -1 is a short tooth, and tooth 1-a is a long tooth. That is, the number of long teeth is L=3, and the number of short teeth is M=9. Between the winding grooves a to d (a, b, c, d), between the winding grooves e to h (θ, f, g, h), and between the winding grooves l to 1
Between (1+] r k + 1), only short teeth are partially concentrated, forming a short tooth pro-7ri consisting of three short teeth (no long teeth included). Similarly, the winding groove d
to e (d, e) and between the winding groove and the groove (h, i
) and winding grooves l to a (1°a), only long teeth are partially concentrated, forming a long tooth block consisting of one long tooth (not including short teeth). ). That is, three sets of short tooth blocks and long tooth blocks are arranged alternately on the circumference of a circle.

短歯a−b 、 b−c 、 c−6、e−f 、 f
−g 。
Short teeth a-b, b-c, c-6, e-f, f
-g.

g−h r i−j r j −k r k−1の実効
ピッチは、360’/(T+3)=24°に等しくもし
くは略等しくされている。長歯d−e 、 h−i 、
 l−&の実効ピッチは、7200/(T+3 )=4
8°に等しくもしくは略等しくされている。すなわち、
短歯の実効ピッチは長歯の実効ピッチの比はR:R+1
 (R=1)にされている。また、各長歯には1個の補
助溝が設けられ、巻線用溝と補助溝からなる電機子鉄心
の溝の全体は等角度間隔(36Q0/15=24°間隔
)もしくは略等角度間隔に各港の中心(磁気的な作用効
果からみた中心)が配置されている。
The effective pitch of g−hr i−j r j −k r k−1 is equal to or approximately equal to 360′/(T+3)=24°. Long tooth de, h-i,
The effective pitch of l-& is 7200/(T+3)=4
It is made equal or approximately equal to 8°. That is,
The ratio of the effective pitch of short teeth to the effective pitch of long teeth is R:R+1
(R=1). In addition, each long tooth is provided with one auxiliary groove, and the entire armature core groove consisting of the winding groove and the auxiliary groove is at equal angular intervals (36Q0/15=24° intervals) or approximately at equal angular intervals. The center of each port (the center seen from the magnetic effect) is located at .

次に、本実施例のコギングトルりについて説明する。す
でに説明したように、コギングトルクは電機子鉄心の巻
線用溝による磁気的不均一性の調波成分と界磁部の磁極
による磁気的な周期・波形の調波成分が整合したときに
生じる。界磁部のマグネット3の磁気的な周期・波形は
、マグネット3の1磁極ピツチ3607Pを周期とする
周期関数となっている。従って、マグネット3の1磁極
ピッチを基本周期として、電機子鉄心4の磁気的不均一
性(巻線用溝と補助溝の配置によって生じる磁気的な変
動分)を考えればよく、一般にその変−へ小さくするな
らばコギングトルクは小さくなる。マグネット3の1磁
極ピツチを基本周期として電機子鉄心4の巻線用溝+a
〜1と補助溝a′〜C′をみたときの位相関係を第6図
に示す。人相の巻線群を収納された巻線用溝’ r d
r g r ]は1磁極ピッチの1/(T+3)=1/
15の位相差で位相ずれを設けられ(巻線用溝a 、d
 + g + ]の位相は4個所以−ヒに異なる)、そ
の変動範囲は1磁極ピツチの3/15=115 (1磁
極ピッチの1/3以下)になされている。同様に、B相
の巻線群を収納された巻線用溝c、f、i、lは1磁極
ピツチの1/16の位相差で位相ずれを設けられ、その
変動範囲は1磁極ピツチの115になされている。さら
に、C相の巻線群を収納された巻線用溝す、e、h、に
は1磁極ピツチの1/16の位相差で位相ずれを設けら
れ、その変動範囲は1磁極ピツチの115になされてい
る。人相の巻線用溝群(乙、d、g、j)とB相の巻線
用溝群(c、f、i、l)とC相の巻線用溝群(b 、
 e。
Next, the cogging torque of this embodiment will be explained. As already explained, cogging torque occurs when the harmonic components of the magnetic inhomogeneity caused by the winding grooves in the armature core match the harmonic components of the magnetic period and waveform caused by the magnetic poles of the field section. . The magnetic period/waveform of the magnet 3 in the field section is a periodic function whose period is one magnetic pole pitch 3607P of the magnet 3. Therefore, it is only necessary to consider the magnetic non-uniformity of the armature core 4 (magnetic fluctuations caused by the arrangement of the winding grooves and auxiliary grooves) using one magnetic pole pitch of the magnet 3 as the basic period. If it is made smaller, the cogging torque becomes smaller. Winding groove +a of armature core 4 with one magnetic pole pitch of magnet 3 as the basic period
1 and the auxiliary grooves a' to C' are shown in FIG. Winding groove that accommodates the human phase winding group' r d
r g r ] is 1/(T+3)=1/ of one magnetic pole pitch
A phase shift is provided with a phase difference of 15 (winding grooves a, d
+g+] differs in four locations), and its variation range is 3/15 of one magnetic pole pitch=115 (1/3 or less of one magnetic pole pitch). Similarly, the winding grooves c, f, i, and l, which house the B-phase winding group, are provided with a phase shift of 1/16 of the pitch of one magnetic pole, and the variation range is that of the pitch of one magnetic pole. 115. Furthermore, the winding grooves e and h in which the C-phase winding group is housed are provided with a phase shift of 1/16 of the pitch of one magnetic pole, and the variation range is 115 of the pitch of one magnetic pole. is being done. The human phase winding groove group (Otsu, d, g, j), the B phase winding groove group (c, f, i, l), and the C phase winding groove group (b,
e.

h、k)の間にはそれぞれ1磁極ピツチの1/3の位相
差がある。また、巻線用溝a〜1の位相とは異なる位相
に補助溝a′〜C′が位置し、巻線用溝a〜1と補助溝
a′〜C′からなる溝の全体は1/15の位相差で位相
がすべて異なっている。
There is a phase difference of 1/3 of one magnetic pole pitch between h and k). Further, the auxiliary grooves a' to C' are located in a phase different from the phase of the winding grooves a to 1, and the entire groove consisting of the winding grooves a to 1 and the auxiliary grooves a' to C' is 1/ The phases are all different with a phase difference of 15.

第7図に巻線用溝a〜1と補助溝a′〜C’に、]1.
ル電機子鉄心4の磁気的変動分の波形を示す。巻線用溝
の開口幅に応じて、各巻線用溝による磁気的な変動分は
なだらかに変化する。巻線用溝a〜1と補助溝a′〜C
′は1/15ずつ位相が異なっているために、合成の磁
気的な変動分(交流分)はかなシ小さくなっている。第
8図に、第1図の従来の電動機の磁気的な変動分を示す
。巻線用溝a。
In FIG. 7, the winding grooves a to 1 and the auxiliary grooves a' to C' are shown]1.
2 shows the waveform of magnetic fluctuations in the armature core 4. The magnetic fluctuation due to each winding groove changes smoothly depending on the opening width of the winding groove. Winding grooves a~1 and auxiliary grooves a'~C
' have a phase difference of 1/15, so the composite magnetic fluctuation component (alternating current component) is very small. FIG. 8 shows magnetic fluctuations of the conventional electric motor shown in FIG. Winding groove a.

d、g、jは同位相となり、巻線用溝c 、 f 、 
i。
d, g, and j are in the same phase, and the winding grooves c, f,
i.

lは同位相となシ、巻線用溝す、e、h、には同位相に
なるので、第1図の従来の電動機の合成の磁気的な変動
分は非常に大きい(第1図の従来例に補助溝a′〜C′
はない)。第7図と第8図を比較すると、本実施例の電
動機の磁気的な変動分が大幅に小さくなっていることが
わかる。その結果、本実施例のコギングトルクは大幅に
低減されている。
l is in the same phase, and the winding grooves e and h are in the same phase, so the composite magnetic fluctuation of the conventional motor shown in Fig. 1 is very large (Fig. 1). In the conventional example, auxiliary grooves a' to C'
(No) Comparing FIG. 7 and FIG. 8, it can be seen that the magnetic fluctuation of the motor of this embodiment is significantly reduced. As a result, the cogging torque of this embodiment is significantly reduced.

さらに、本実施例の各巻線AI、人2 、 A3 。Furthermore, each winding AI, person 2, and A3 of this example.

A4.B1.B2.B3.B4,01.02゜03.0
4の実効ピッチは(1磁極ピツチの16715 )=1
92度(電気角)以下から(1磁極ピツチの415 )
−144度(電気角)以上になされている。ここに、巻
線の実効ピッチはその巻線が収納された巻線用溝の中心
間のなす角度であ肉分)、A2の巻装された巻線用溝d
−g間の角度は192°(1個の長歯と2個の短肉分)
、A3の巻装された巻線用溝g−コ間の角変は192゜
(1個の長歯と2個の短肉分)、A4の巻装された巻線
用溝j−a間の角度は192°(1個の長歯と2個の短
肉分)である。B相の巻線群についてみれば、B1の巻
装された巻線用溝c−を間の角度は192° (1個の
長歯と2個の短肉分)、B2の巻装された巻線用溝f−
i間の角度は192° (1個の長歯と2個の短肉分)
、B3の巻装された巻線用溝i−1間の角度は144゜
(3個の短肉分)、B4の巻装された巻線用溝1−0間
の角度は192° (1個の長歯と2個の短肉分)であ
る。C相の巻線群についてみれば、C1の巻装された巻
線用溝e−h間の角度は144゜(3個の短肉分)、C
2の巻装された巻線用溝h−に間の角度は192° (
1個の長歯と2個の短肉分)、C3の巻装された巻線用
溝に−b間の角度は192° (1個の長歯と2個の短
肉分)、C4の巻装された巻線用溝b−e間の角度は1
92゜(1個の長歯と2個の短肉分)である。このよう
に、各相の巻線が収納された巻線用溝の変動範囲を小さ
くして(1磁極ピツチの1/3以下)、かつ、巻線の実
効ピッチの変動範囲を小さくするならば(192度以下
から144度以上)、巻線作3が容易となり、自動化も
可能となる。
A4. B1. B2. B3. B4, 01.02゜03.0
The effective pitch of 4 is (16715 of 1 magnetic pole pitch) = 1
From 92 degrees (electrical angle) or less (415 degrees of 1 magnetic pole pitch)
-144 degrees (electrical angle) or more. Here, the effective pitch of the winding is the angle formed between the centers of the winding grooves in which the winding is stored, and the winding groove d in which the winding is wound is A2.
The angle between -g is 192° (1 long tooth and 2 short walls)
, the angular variation between A3's winding groove g and co is 192° (one long tooth and two short walls), and the angle difference between A4's wound winding groove j and a. The angle is 192° (one long tooth and two short walls). Looking at the B-phase winding group, the angle between the B1 winding groove c- is 192° (one long tooth and two short teeth), and the B2 winding groove is 192° (one long tooth and two short teeth). Winding groove f-
The angle between i is 192° (1 long tooth and 2 short teeth)
, the angle between the winding grooves i-1 of B3 is 144° (3 short thicknesses), and the angle between the winding grooves 1-0 of B4 is 192° (1 (long teeth and two short pieces). Looking at the winding group of phase C, the angle between the winding grooves e and h in which C1 is wound is 144° (three short thicknesses), and C
The angle between the two winding grooves h- is 192° (
(1 long tooth and 2 short walls), the angle between -b in the winding groove where C3 is wound is 192° (1 long tooth and 2 short walls), The angle between the winding groove b and e is 1
92° (one long tooth and two short pieces). In this way, if the range of variation of the winding groove in which the windings of each phase are housed is reduced (to 1/3 or less of the pitch of one magnetic pole), and the range of variation of the effective pitch of the winding is reduced. (from 192 degrees or less to 144 degrees or more), the winding operation 3 becomes easier and automation is possible.

前述の第6図の実施例では、長歯の先端に補助溝を設け
たが、補助溝は必ずしも必要ではない。
In the embodiment shown in FIG. 6 described above, an auxiliary groove was provided at the tip of the long tooth, but the auxiliary groove is not necessarily necessary.

第7図の、7 、 bI 、 CIがなくなっても、合
成の磁気的変動分は第8図の従来例よりも小さい。一般
に、長歯と短歯の配置を工夫して、3の整数倍の短歯ブ
ロックと長歯ブロックを交互に配置することによって、
コギングトルりを低減できる。このとき、隣接する1組
の短歯ブロックと長歯ブロックの歯の総数を3の倍数と
異ならせるならば、容易に歯の位相を変動させることが
できる。また、連続する3組の短歯ブロックと長歯ブロ
ックの全体の実効ピッチを(3600/P)■Qに等し
くして、隣接する1組の短歯ブロックと長歯ブロックの
歯の総数をQに等しくするならば、3相の巻線群の間の
位相差を12o変(電気角)に等しくでき、3組巻線を
均等に配置できる。
Even if 7, bI, and CI shown in FIG. 7 are eliminated, the composite magnetic variation is smaller than that of the conventional example shown in FIG. 8. In general, by devising the arrangement of long teeth and short teeth and alternately arranging short tooth blocks and long tooth blocks of integral multiples of 3,
Cogging torque can be reduced. At this time, if the total number of teeth in a pair of adjacent short tooth blocks and long tooth blocks is different from a multiple of three, the phase of the teeth can be easily varied. In addition, the total effective pitch of three consecutive sets of short tooth blocks and long tooth blocks is set equal to (3600/P)■Q, and the total number of teeth in one set of adjacent short tooth blocks and long tooth blocks is Q. If it is made equal to , the phase difference between the three-phase winding groups can be made equal to 12 degrees (electrical angle), and the three sets of windings can be equally arranged.

捷だ、少なくとも1個の長歯に補助溝を設けるならば、
コギングトルクの低減効果を大きくできる。さらに、短
歯の実効ピッチと長歯の実効ピッチをR: R+I L
L<はR二R+3(Rは整数)にして、巻線用溝と補助
溝からなる電機子鉄心の溝の全体を短歯の実効ピッチの
R分の1の間隔で配置するならば、簡単にコギングトル
りを低減できる。このような構成の他の例を表1にしめ
す。
Well, if you provide an auxiliary groove on at least one long tooth,
The cogging torque reduction effect can be increased. Furthermore, the effective pitch of short teeth and the effective pitch of long teeth are R: R+I L
If L< is R2R+3 (R is an integer) and the entire armature core groove consisting of the winding groove and auxiliary groove is arranged at an interval of 1/R of the effective pitch of the short teeth, it is easy. Cogging torque can be reduced. Other examples of such configurations are shown in Table 1.

表  1 表1(ム)の構成は、第5図の短歯の実効ピッチを2単
位角度(1単位角度は360’/27−13゜33°)
にし、長歯の実効ピッチを3単位角度にして、短歯と長
歯に補助溝を設け、巻線用溝と補助溝からなる溝の全体
を1単位角度間隔に配置したものである。表1CB)の
構成は、第6図の短歯の実効ピッチを3単位角度(1単
位角度は36o0/39.=9.23°)にし、長歯の
実効ピッチを4単位角度にして、短歯と長歯に補助溝を
設け、巻線用溝と補助溝からなる溝の全体を1単位角度
間隔に配置したものである。表1(C)の構成は、第5
図の短歯の実効ピッチを1単位角度(1単位角度は36
00/21 =17.14°)にし、長歯の実効ピッチ
を4単位角変にして、長歯に補助溝を設け、巻線用溝と
補助溝からなる溝の全体を1単位角度間隔に配置したも
のである。
Table 1 The configuration of Table 1 (mu) is based on the effective pitch of the short teeth in Figure 5 by 2 units of angle (1 unit angle is 360'/27-13°33°)
The effective pitch of the long teeth is set to 3 unit angles, auxiliary grooves are provided on the short teeth and long teeth, and the entire groove consisting of the winding groove and the auxiliary groove is arranged at intervals of 1 unit angle. The configuration of Table 1CB) is as shown in Fig. 6, where the effective pitch of the short teeth is set to 3 unit angles (one unit angle is 36o0/39.=9.23°), the effective pitch of the long teeth is set to 4 unit angles, and the short teeth are set to 4 units of angle. Auxiliary grooves are provided on the teeth and long teeth, and the entire grooves consisting of the winding groove and the auxiliary groove are arranged at one unit angular intervals. The configuration of Table 1(C) is the fifth
The effective pitch of the short teeth in the figure is 1 unit angle (1 unit angle is 36
00/21 = 17.14°), change the effective pitch of the long teeth by 4 units of angle, provide auxiliary grooves on the long teeth, and make the entire groove consisting of the winding groove and the auxiliary groove at 1 unit angle intervals. This is what was placed.

址だ、長歯ブロックが3個の長歯からなシ、短歯ブロッ
クが1個の短歯からなる場合でも、コギングトルりを低
減できる。そのような構成を表2に示す。
However, even if the long tooth block does not consist of three long teeth and the short tooth block consists of one short tooth, cogging torque can be reduced. Such a configuration is shown in Table 2.

表  2 表2(A)の構成は、3個の長歯からなる長歯ブロック
と1個の短歯からなる短歯ブロックを3組交互に円周上
に配置しく第6図の短歯と長歯の個数を交換する)、短
歯の実効ピッチを1単位角度(1単位角度は360’/
21 =17.14°)にし、長歯の実効ピッチを2単
位角度にして、長歯に補助溝を設け、巻線用溝と補助溝
からなる溝の全体を1単位角度間隔に配置したものであ
る。表2(B)の構成では、短歯の実効ピッチを2単位
角度(1単位角度は360’/33=10.91°)ニ
ジ、長歯の実効ピッチを3単位角度にして、長歯と短歯
に補助溝を設け、巻線用溝と補助溝からなる溝の全体を
1単位角度間隔に配置したものである。
Table 2 The configuration of Table 2 (A) consists of 3 sets of long tooth blocks consisting of 3 long teeth and 3 sets of short tooth blocks consisting of 1 short tooth arranged alternately on the circumference and the short teeth shown in Figure 6. (exchanging the number of long teeth) and the effective pitch of short teeth by 1 unit angle (1 unit angle is 360'/
21 = 17.14°), the effective pitch of the long teeth is set to 2 unit angles, auxiliary grooves are provided on the long teeth, and the entire groove consisting of the winding groove and the auxiliary groove is arranged at 1 unit angle intervals. It is. In the configuration shown in Table 2 (B), the effective pitch of the short teeth is 2 unit angles (1 unit angle is 360'/33 = 10.91°), and the effective pitch of the long teeth is 3 unit angles. Auxiliary grooves are provided on the short teeth, and the entire groove consisting of the winding groove and the auxiliary groove is arranged at one unit angle intervals.

表2(C)の構成では、短歯の実効ピッチを3単位角度
(1単位角度は3600/33=10.91°)にし、
長歯の実効ピッチを4単位角度にして長歯と短歯に補助
溝を設け、巻線用溝と補助溝からなる溝の全体を1単位
角度間隔に配置したものである。
In the configuration of Table 2 (C), the effective pitch of the short teeth is set to 3 unit angles (1 unit angle is 3600/33 = 10.91°),
The effective pitch of the long teeth is set to 4 unit angles, auxiliary grooves are provided on the long teeth and short teeth, and the entire groove consisting of the winding groove and the auxiliary groove is arranged at intervals of 1 unit angle.

また、長歯ブロックが2個の長歯からなり、短歯ブロッ
クが2個の短歯からなる場合でも、コギングトルりを低
減できる。そのような構成を表3に示す。
Further, even when the long tooth block consists of two long teeth and the short tooth block consists of two short teeth, cogging torque can be reduced. Such a configuration is shown in Table 3.

表  3 し、2個の長歯の実効ピッチをそれぞれ2単位角1.1
と3単位角度にし、長歯に補助溝を設け、巻線用溝と補
助溝からなる溝の全体を1単位角度間隔に配置したもの
である。表3(B)の構成は、2細動ピッチをそれぞれ
4単位角変と5単位角度にし、長歯と短歯に補助溝を設
け、巻線用溝と補助溝からなる溝の全体を1単位角度間
隔に配置したものである。
Table 3 and the effective pitch of the two long teeth are each 2 units angle 1.1
and 3 unit angles, auxiliary grooves are provided on the long teeth, and the entire grooves consisting of the winding groove and the auxiliary groove are arranged at 1 unit angle intervals. The configuration in Table 3 (B) has two fibrillation pitches of 4 and 5 units, auxiliary grooves are provided on the long teeth and short teeth, and the entire groove consisting of the winding groove and the auxiliary groove is 1. They are arranged at unit angle intervals.

前述の各実施例においては、界磁部のマグネット3の磁
極数をし=4としたが、本発明はそのような場合に限ら
れるものではない。例えば、界磁部のマグネット3の磁
極数をP = 8 VCした場合には、T−3P−24
個の巻線用溝に3+目の巻線を重巻することになるが、
7個の短歯からなる短歯ブ・、・りと、個の長歯からな
る長歯ブ・・諺i組交互に円周上に配置して、コギング
トルクを低減した例を表4に示す。
In each of the embodiments described above, the number of magnetic poles of the magnet 3 in the field section was set to 4, but the present invention is not limited to such a case. For example, if the number of magnetic poles of magnet 3 in the field part is P = 8 VC, T-3P-24
The 3+th winding will be wound heavily in each of the winding grooves,
Table 4 shows an example of reducing cogging torque by arranging short toothed teeth consisting of 7 short teeth and long toothed teeth consisting of 7 long teeth alternately on the circumference. show.

(以 下 余 白) 表4(A)の構成は、短歯の実効ピッチを1単位角度(
1単位角度は360’/27=13.33°)にし、長
歯の実効ピッチを2単位角度にして、長歯に補助溝を設
けて、巻線用溝と補助溝からなる溝の全体を1単位角度
間隔に配置したものである。
(Margin below) The configuration of Table 4 (A) has the effective pitch of the short teeth set by 1 unit angle (
1 unit angle is 360'/27 = 13.33°), the effective pitch of the long teeth is set to 2 unit angles, and an auxiliary groove is provided on the long teeth, so that the entire groove consisting of the winding groove and the auxiliary groove is They are arranged at 1 unit angle intervals.

表4(B)の構成は、短歯の実効ピッチを2単位角度(
1単位角度は360’/65=5.638°)にし、長
歯の実効ピッチを3単位角度にして、長歯と短歯に補助
溝を設けて、巻線用溝と補助溝からなる溝の全体を1単
位角度間隔に配置したものである。表4(C)の構成は
、短歯の実効ピッチを3単位角度(1単位角度は360
’/75=4.8°)にし、長歯の実効ピッチを4単位
角度にして、長歯と短歯に補助溝を設けて、巻線用溝と
補助溝からなる溝の全体を1単位角度間隔に配置したも
のである。
The configuration in Table 4 (B) has an effective pitch of short teeth of 2 units angle (
One unit angle is 360'/65 = 5.638°), the effective pitch of the long teeth is set to 3 unit angles, auxiliary grooves are provided on the long teeth and short teeth, and the groove consists of the winding groove and the auxiliary groove. are arranged at intervals of one unit angle. In the configuration of Table 4 (C), the effective pitch of the short teeth is 3 unit angles (1 unit angle is 360
'/75=4.8°), the effective pitch of the long teeth is set to 4 unit angles, and auxiliary grooves are provided on the long teeth and short teeth, so that the entire groove consisting of the winding groove and the auxiliary groove is 1 unit. They are arranged at angular intervals.

また、界磁部のマグネット3の磁極数をp=sにした場
合に、1個の短歯からなる短歯ブロックと7個の長歯か
らなる長歯ブロックを3組交互に円周上に配置して、コ
ギング)/レフを低減した例を表6に示す。
In addition, when the number of magnetic poles of the magnet 3 in the field part is set to p=s, three sets of short tooth blocks consisting of one short tooth and long tooth blocks consisting of seven long teeth are arranged alternately on the circumference. Table 6 shows an example of reducing the cogging)/ref.

表6(A)の構成は、短歯の実効ピッチを1単位角度(
1単位角度は3600/45二8°)にし、長歯の実効
ピッチを2単位角度にして、長歯に補助溝を設けて、巻
線用溝と補助溝からなる溝の全体を1単位角度間隔に配
置したものである。表5(B)の構成は、短歯の実効ピ
ッチを2単位角度(1単位角度は360’/69=5.
217°)にし、長歯の実効ピッチを3単位角度にして
、長歯と短歯に補助溝を設けて、巻線用溝と補助溝から
なる溝の全体を1単位角度間隔に配置したものである。
The configuration in Table 6(A) has the effective pitch of the short teeth set by 1 unit angle (
One unit angle is 3600/4528 degrees), the effective pitch of the long teeth is set to 2 unit angles, an auxiliary groove is provided on the long teeth, and the entire groove consisting of the winding groove and the auxiliary groove is 1 unit angle. They are arranged at intervals. In the configuration shown in Table 5(B), the effective pitch of the short teeth is 2 unit angles (1 unit angle is 360'/69=5.
217°), the effective pitch of the long teeth is 3 unit angles, auxiliary grooves are provided on the long teeth and short teeth, and the entire groove consisting of the winding groove and auxiliary groove is arranged at 1 unit angle intervals. It is.

表5(C)の構成は、短歯の実効ピッチを3単位角度(
1単位角度は360’/93=3.871°)にし、長
歯の実効ピッチを4単位角度にして、長歯と短歯に補助
溝を設けて、巻線用溝と補助溝からなる溝の全体を1単
位角度間隔に配置したものである。
The configuration in Table 5(C) has the effective pitch of the short teeth set by 3 unit angles (
One unit angle is 360'/93 = 3.871°), the effective pitch of the long teeth is set to 4 unit angles, auxiliary grooves are provided on the long teeth and short teeth, and the groove consists of the winding groove and the auxiliary groove. are arranged at intervals of one unit angle.

各種の実施例について説明してきたが、本発明はそのよ
うに実施例に限定されるものではない。
Although various embodiments have been described, the present invention is not limited to such embodiments.

例えば、P=4の実施例とP=8の実施例を組み合わせ
て、界磁部の磁極数がP−12極の電動機を構成できる
。また、第6図の実施例の構成を単純に2倍にして、2
倍の磁極数と巻線用溝数の電動機を構成できる。一般に
、P極(Pは偶数)の界磁磁極を円周上に等角度間隔も
しくは略等角変間隔に有する界磁部と、T個(TはPよ
り大きい整数)の巻線用溝に3相の巻線を重巻した電機
子と 鉄・蒔具備し、前記界磁部と電機子鉄心のうちでいずれ
か一方が他方に対して回転自在となされた電動機の場合
には、 前記電機子鉄心は、実効ピッチがD=360°/Tより
大きいL個(Lは整数)の長歯と、実効ピッチがDより
小さいM個(Mは整数)の短歯を有し、前記長歯と短歯
の個数を L ≧3 M ≧3 となし、2個以−ヒの短歯からなる短歯ブロックと少な
くとも1個の長歯からなる長歯ブロックを同数個有し、
前記短歯ブロックと前記長歯ブロックを円周上に交互に
配置し、かつ、前記長歯ブロックと前記短歯ブロックの
個数をそれぞれ3の整数倍にすることによって、コギン
グトルクを容易に低減できる。
For example, by combining the embodiment with P=4 and the embodiment with P=8, it is possible to configure an electric motor in which the number of magnetic poles in the field section is P-12. In addition, by simply doubling the configuration of the embodiment shown in FIG.
It is possible to construct a motor with twice the number of magnetic poles and twice the number of winding grooves. In general, a field part has P poles (P is an even number) field magnetic poles arranged at equiangular intervals or approximately equiangularly variable intervals on the circumference, and T (T is an integer greater than P) winding grooves. In the case of an electric motor equipped with an armature heavily wound with three-phase windings, an iron and a sowing device, and either one of the field part and the armature core is rotatable relative to the other, the electric machine The child core has L long teeth (L is an integer) with an effective pitch larger than D=360°/T and M short teeth (M is an integer) with an effective pitch smaller than D, and the long teeth and the number of short teeth is L ≧3 M ≧3, and has the same number of short tooth blocks consisting of two or more short teeth and long tooth blocks consisting of at least one long tooth,
Cogging torque can be easily reduced by arranging the short tooth blocks and the long tooth blocks alternately on the circumference, and making the numbers of the long tooth blocks and the short tooth blocks each an integral multiple of 3. .

界 また、P極(Pは偶数)の磁磁極を円周上に等角度間隔
もしくは略等角変間隔に有する界磁部と、T個(TはP
より大きい整数)の巻線用溝[3相の巻線を重巻した電
機子鉄心とを具備し、前記界磁部と電機子鉄心のうちで
いずれか一方が他方に対して回転自在となされた電動機
の場合には、前記電機子鉄心は、実効ピッチがD=36
0’/Tより大きいL個(Lは整数)の長歯と、実効ピ
ッチがDより小さいM個(Mは整数)の短歯を有し、前
記長歯と短歯の個数を L ≧3 M ≧3 となし、少なくとも1個の短歯からなる短歯ブロックと
2個以上の長歯からなる長歯ブロックを同数個有し、前
記短歯ブロックと前記長歯ブロックを円周上に交互に配
置し、かつ、前記長歯ブロックと前記短歯ブロックの個
数をそれぞれ3の整数倍にしても、コギングトルクを容
易に低減できる。
The field also includes a field part having P magnetic poles (P is an even number) at equiangular intervals or approximately equiangularly variable intervals on the circumference, and T magnetic poles (T is P
a larger integer) and a winding groove [an armature core in which three-phase windings are heavily wound; one of the field part and the armature core is rotatable relative to the other In the case of an electric motor, the armature core has an effective pitch of D=36.
It has L long teeth (L is an integer) larger than 0'/T and M short teeth whose effective pitch is smaller than D (M is an integer), and the number of the long teeth and short teeth is L ≧3. M ≧3, and the same number of short tooth blocks consisting of at least one short tooth and long tooth blocks consisting of two or more long teeth are provided, and the short tooth blocks and the long tooth blocks are alternated on the circumference. The cogging torque can be easily reduced by arranging the long tooth block and the short tooth block by making each number an integral multiple of three.

このとき、連続する3組の短歯ブロックと長歯ブロック
の実効ピッチが(3600/P)■Qに等しい時に、隣
接する1組の前記短歯ブロックの歯数と前記長歯ブロッ
クの歯数の和をQに等しくしたシ、隣接する1組の短歯
ブロックと長歯ブロックの歯の総数を3の倍数と異なら
せたりするならば、3相の巻線群の間の位相差を120
度(電気角)に保ちながらも、巻線用溝の位相を簡単に
変動させることができ、コギングトルりの低減に効果が
ある。さらに、少なくとも1個の長歯に補助溝を設けて
、短歯の実効ピッチと長歯の実効ピッチの比をR:R+
1(Rは整数)にして、巻線用溝と補助溝からなる電機
子鉄心の溝の全体を前記短歯の実効ピッチのR分の1の
間隔で配置するならば、少ない補助溝でコギングトルり
を大幅に低減できる(但し、溝の総数は磁極数Pの整数
倍でない)。
At this time, when the effective pitch of three consecutive sets of short tooth blocks and long tooth blocks is equal to (3600/P)■Q, the number of teeth in the adjacent short tooth block and the number of teeth in the long tooth block If the total number of teeth in an adjacent pair of short tooth block and long tooth block is made to be different from a multiple of 3, the phase difference between the three-phase winding group will be 120.
The phase of the winding groove can be easily varied while maintaining the same electrical angle, which is effective in reducing cogging torque. Furthermore, by providing an auxiliary groove on at least one long tooth, the ratio of the effective pitch of the short teeth to the effective pitch of the long teeth is R:R+
1 (R is an integer), and if the entire armature core groove consisting of the winding groove and auxiliary groove is arranged at an interval of 1/R of the effective pitch of the short teeth, cogging torque can be achieved with a small number of auxiliary grooves. (However, the total number of grooves is not an integral multiple of the number of magnetic poles P.)

以上の実施例では、内側にマグネットを配置し外側にf
%Q子鉄心を配置したが、その関係が逆であってもよい
。ま、た、円環状のマグネットに限らず、複数個のマグ
ネット磁極片によって界磁部を構成してもよい。その他
、本発明の主旨を変えずして種々の変更が可能である。
In the above embodiment, the magnet is placed inside and f is placed outside.
Although the %Q cores are arranged, the relationship may be reversed. Furthermore, the field portion is not limited to an annular magnet, and the field portion may be composed of a plurality of magnet pole pieces. In addition, various modifications can be made without changing the gist of the present invention.

発明の効果 本発明は、界磁部の磁極数よりも巻線用溝の数が多い電
動機において、巻線用溝の配置を特殊となすことにより
コギングトルクを大幅に低減したものである。従って、
本発明に基いて、例えばロボットの間部駆動用電動機や
IC機器の駆動用電動機を構成するならば、高精度の回
転駆動や位置制御が可能となる。
Effects of the Invention The present invention is a motor in which the number of winding grooves is greater than the number of magnetic poles in the field section, and the cogging torque is significantly reduced by arranging the winding grooves in a special manner. Therefore,
If, for example, a motor for driving an intermediate part of a robot or a motor for driving an IC device is configured based on the present invention, highly accurate rotational drive and position control will be possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電動機の要部構造図、第2図(dその駆
動回路の構成図、第3図は第1図の電動機の平面展開図
、第4図は界磁部のマグネットの磁束密度の分布を表わ
す図、第5図は本発明の一実施例による電動機の平面展
開図、第6図はマグネットの1磁極ピッチを基本周期と
して第5図の電機子鉄心をみたときの巻線用溝の位相関
係を示す図、第7図は第5図に示す実施例の磁気的変動
分高表わす図、第8図は第1図に示した従来例の磁気的
変動分を表わす図である。 2 ・・ロータ、3・・ ・マグネット、4・・・・・
電機子鉄心、6.&〜l・・・・・巻線用溝、6・・・
歯、a′〜C′  補助溝、A1〜人4.B1〜B4 
、01〜C4・・巻線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名I 窮1図 Y/ 区     3麩情( パ         X ト       シ区
Figure 1 is a structural diagram of the main parts of a conventional electric motor, Figure 2 (d) is a configuration diagram of its drive circuit, Figure 3 is a plan development of the electric motor in Figure 1, and Figure 4 is the magnetic flux of the magnet in the field section. Figure 5 is a diagram showing the distribution of density, Figure 5 is a plan development view of a motor according to an embodiment of the present invention, Figure 6 is the winding when looking at the armature core in Figure 5 with one magnetic pole pitch of the magnet as the basic period. FIG. 7 is a diagram showing the magnetic fluctuation height of the embodiment shown in FIG. 5, and FIG. 8 is a diagram showing the magnetic fluctuation height of the conventional example shown in FIG. 1. Yes. 2...Rotor, 3... -Magnet, 4...
Armature core, 6. &~l... Winding groove, 6...
Teeth, a'-C' Auxiliary groove, A1-Person 4. B1~B4
, 01-C4... winding. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (10)

【特許請求の範囲】[Claims] (1)P極(Pは偶数)の界磁磁極を円周上に等角度間
隔もしくは略等角度間隔に有する界磁部と、T個(Tは
Pより大きい整数)の巻線用溝に3相の巻線を重巻した
電機子鉄心とを具備し、前記界磁部と電機子鉄心のうち
でいずれか一方が他方に対して回転自在となされた電動
機であって、前記電機子鉄心は、実効ピッチがD=36
0°/Tより大きいL個(Lは整数)の長歯と、実効ピ
ッチがDより小さいM個(Mは整数)の短歯を有し、前
記長歯と短歯の個数を L≧3 M≧3 となし、2個以上の短歯からなる短歯ブロックと少なく
とも1個の長歯からなる長歯ブロックを同数個有し、前
記短歯ブロックと前記長歯ブロックを円周上に交互に配
置し、かつ、前記長歯ブロックと前記短歯ブロックの個
数をそれぞれ3の整数倍にしたことを特徴とする電動機
(1) A field part having P poles (P is an even number) field magnetic poles at equiangular intervals or approximately equiangular intervals on the circumference, and T (T is an integer greater than P) winding grooves. An electric motor comprising an armature core in which three-phase windings are heavily wound, and either one of the field part and the armature core is rotatable relative to the other, and the armature core has an effective pitch of D=36
It has L long teeth (L is an integer) larger than 0°/T and M short teeth (M is an integer) whose effective pitch is smaller than D, and the number of the long teeth and short teeth is L≧3. M≧3, and the same number of short tooth blocks consisting of two or more short teeth and long tooth blocks consisting of at least one long tooth are provided, and the short tooth blocks and the long tooth blocks are alternated on the circumference. , and the number of the long tooth blocks and the short tooth blocks are each an integral multiple of 3.
(2)連続する3組の短歯ブロックと長歯ブロックの全
体の実効ピッチが(360°/P)■Qに等しい時に、
隣接する1組の前記短歯ブロックの歯数と前記長歯ブロ
ックの歯数の和をQに等しくしたことを特徴とする特許
請求の範囲第(1)項記載の電動機。
(2) When the overall effective pitch of three consecutive short tooth blocks and long tooth blocks is equal to (360°/P)■Q,
2. The electric motor according to claim 1, wherein the sum of the number of teeth of the short tooth block and the number of teeth of the long tooth block in an adjacent set is equal to Q.
(3)隣接する1組の短歯ブロックと長歯ブロックの歯
の総数を3の倍数と異ならせたことを特徴とする特許請
求の範囲第(1)項記載の電動機。
(3) The electric motor according to claim (1), characterized in that the total number of teeth in a pair of adjacent short tooth blocks and long tooth blocks is different from a multiple of three.
(4)少なくとも1個の長歯に補助溝を設けたことを特
徴とする特許請求の範囲第(1)項記載の電動機。
(4) The electric motor according to claim (1), characterized in that at least one long tooth is provided with an auxiliary groove.
(5)短歯の実効ピッチと長歯の実効ピッチの比をR:
R+1(Rは整数)にして、巻線用溝と補助溝からなる
電機子鉄心の溝の全体を前記短歯の実効ピッチのR分の
1の間隔で配置したことを特徴とする特許請求の範囲第
(4)項記載の電動機。
(5) The ratio of the effective pitch of short teeth to the effective pitch of long teeth is R:
R+1 (R is an integer), and the entire armature core groove consisting of the winding groove and the auxiliary groove is arranged at an interval of 1/R of the effective pitch of the short teeth. The electric motor described in scope item (4).
(6)P極(Pは偶数)の界磁磁極を円周上に等角度間
隔もしくは略等角度間隔に有する界磁部と、T個(Tは
Pより大きい整数)の巻線用溝に3相の巻線を重巻した
電機子鉄心とを具備し、前記界磁部と電機子鉄心のうち
でいずれか一方が他方に対して回転自在となされた電動
機であって、 前記電機子鉄心は、実効ピッチがD=3
60°/Tより大きいL個(Lは整数)の長歯と、実効
ピッチがDより小さいM個(Mは整数)の短歯を有し、
前記長歯と短歯の個数を L≧3 M≧3 となし、少なくとも1個の短歯からなる短歯ブロックと
2個以上の長歯からなる長歯ブロックを同数個有し、前
記短歯ブロックと前記長歯ブロックを円周上に交互に配
置し、かつ、前記長歯ブロックと前記短歯ブロックの個
数をそれぞれ3の整数倍にしたことを特徴とする電動機
(6) A field part having P poles (P is an even number) field magnetic poles at equiangular intervals or approximately equiangular intervals on the circumference, and T (T is an integer greater than P) winding grooves. An electric motor comprising an armature core in which three-phase windings are heavily wound, and either one of the field part and the armature core is rotatable relative to the other, and the armature core has an effective pitch of D=3
It has L long teeth (L is an integer) larger than 60°/T and M short teeth (M is an integer) whose effective pitch is smaller than D,
The numbers of the long teeth and short teeth are L≧3 and M≧3, and the short teeth block has the same number of short teeth blocks consisting of at least one short tooth and the same number of long teeth blocks consisting of two or more long teeth, and the short teeth An electric motor characterized in that blocks and the long tooth blocks are arranged alternately on a circumference, and the numbers of the long tooth blocks and the short tooth blocks are each an integral multiple of 3.
(7)連続する3組の短歯ブロックと長歯ブロックの全
体の実効ピッチが(360°/P)・Qに等しい時に、
隣接する1組の前記短歯ブロックの歯数と前記長歯ブロ
ックの歯数の和をQに等しくしたことを特徴とする特許
請求の範囲第(6)項記載の電動機。
(7) When the overall effective pitch of three consecutive short tooth blocks and long tooth blocks is equal to (360°/P)・Q,
6. The electric motor according to claim 6, wherein the sum of the number of teeth of the short tooth block and the number of teeth of the long tooth block in an adjacent set is equal to Q.
(8)隣接する1組の短歯ブロックと長歯ブロックの歯
の総数を3の倍数と異ならせたことを特徴とする特許請
求の範囲第(6)項記載の電動機。
(8) The electric motor according to claim (6), characterized in that the total number of teeth in a pair of adjacent short tooth blocks and long tooth blocks is different from a multiple of three.
(9)少なくとも1個の長歯に補助溝を設けたことを特
徴とする特許請求の範囲第(6)項記載の電動機。
(9) The electric motor according to claim (6), characterized in that at least one long tooth is provided with an auxiliary groove.
(10)短歯の実効ピッチと長歯の実効ピッチの比をR
:R+1(Rは整数)にして、巻線用溝と補助溝からな
る電機子鉄心の溝の全体を前記短歯の実効ピッチのR分
の1の間隔で配置したことを特徴とする特許請求の範囲
第(9)項記載の電動機。
(10) The ratio of the effective pitch of short teeth to the effective pitch of long teeth is R
:R+1 (R is an integer), and the entire armature core groove consisting of a winding groove and an auxiliary groove is arranged at an interval of 1/R of the effective pitch of the short teeth. The electric motor described in paragraph (9) of the scope of
JP59161866A 1984-08-01 1984-08-01 Electric motor Expired - Lifetime JPH0681468B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59161866A JPH0681468B2 (en) 1984-08-01 1984-08-01 Electric motor
US06/760,509 US4692646A (en) 1984-08-01 1985-07-30 Rotating electric motor with reduced cogging torque
EP85305468A EP0178755B1 (en) 1984-08-01 1985-07-31 Rotating electric motor
DE8585305468T DE3584220D1 (en) 1984-08-01 1985-07-31 ROTATING ELECTRIC MOTOR.
KR8505550A KR900005756B1 (en) 1984-08-01 1985-08-01 Rotating electric motor with reduced cogging torque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59161866A JPH0681468B2 (en) 1984-08-01 1984-08-01 Electric motor

Related Child Applications (13)

Application Number Title Priority Date Filing Date
JP7374890A Division JPH02276439A (en) 1990-03-23 1990-03-23 Motor
JP7374790A Division JPH02276438A (en) 1990-03-23 1990-03-23 Motor
JP7374590A Division JPH02269445A (en) 1990-03-23 1990-03-23 Motor
JP7375590A Division JPH02269448A (en) 1990-03-23 1990-03-23 Motor
JP7375390A Division JPH02276442A (en) 1990-03-23 1990-03-23 Motor
JP7374990A Division JPH02269446A (en) 1990-03-23 1990-03-23 Motor
JP7375290A Division JPH02276441A (en) 1990-03-23 1990-03-23 Motor
JP7374490A Division JPH02269444A (en) 1990-03-23 1990-03-23 Motor
JP7375490A Division JPH02276443A (en) 1990-03-23 1990-03-23 Motor
JP7375190A Division JPH02276440A (en) 1990-03-23 1990-03-23 Motor
JP7374690A Division JPH02269456A (en) 1990-03-23 1990-03-23 Motor
JP7375090A Division JPH02269447A (en) 1990-03-23 1990-03-23 Motor
JP7374390A Division JPH02269443A (en) 1990-03-23 1990-03-23 Motor

Publications (2)

Publication Number Publication Date
JPS6142259A true JPS6142259A (en) 1986-02-28
JPH0681468B2 JPH0681468B2 (en) 1994-10-12

Family

ID=15743447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59161866A Expired - Lifetime JPH0681468B2 (en) 1984-08-01 1984-08-01 Electric motor

Country Status (2)

Country Link
JP (1) JPH0681468B2 (en)
KR (1) KR900005756B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442250A (en) * 1990-10-09 1995-08-15 Stridsberg Licencing Ab Electric power train for vehicles
JP2008148478A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor
CN104300700A (en) * 2013-12-19 2015-01-21 杨仕元 Novel three-phase AC motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148165A (en) * 1980-04-17 1981-11-17 Hitachi Ltd Brushless motor
JPS5842707A (en) * 1981-09-07 1983-03-12 Kawasaki Steel Corp Construction for refractory lining of blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148165A (en) * 1980-04-17 1981-11-17 Hitachi Ltd Brushless motor
JPS5842707A (en) * 1981-09-07 1983-03-12 Kawasaki Steel Corp Construction for refractory lining of blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442250A (en) * 1990-10-09 1995-08-15 Stridsberg Licencing Ab Electric power train for vehicles
JP2008148478A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor
CN104300700A (en) * 2013-12-19 2015-01-21 杨仕元 Novel three-phase AC motor

Also Published As

Publication number Publication date
KR900005756B1 (en) 1990-08-09
JPH0681468B2 (en) 1994-10-12
KR860002169A (en) 1986-03-26

Similar Documents

Publication Publication Date Title
US4692646A (en) Rotating electric motor with reduced cogging torque
US4692645A (en) Rotating electric motor with reduced cogging torque
JPS6223537B2 (en)
JPS6142258A (en) Motor
JPS6142259A (en) Motor
JPS61221559A (en) Generator
JPH02276443A (en) Motor
JPH02276440A (en) Motor
JPS61196746A (en) Motor
JPH02276441A (en) Motor
JPH02269444A (en) Motor
JPS61221556A (en) Generator
JPH02276447A (en) Motor
JPH02276448A (en) Motor
JPH02269447A (en) Motor
JPH0685628B2 (en) Electric motor
JPS6142254A (en) Motor
JPS6142260A (en) Motor
JPH071999B2 (en) Electric motor
JPH02276445A (en) Motor
JPH02276439A (en) Motor
JPH02269448A (en) Motor
JPH02276444A (en) Motor
JPH02269443A (en) Motor
JPH02269456A (en) Motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term