JPH0685628B2 - Electric motor - Google Patents

Electric motor

Info

Publication number
JPH0685628B2
JPH0685628B2 JP59144903A JP14490384A JPH0685628B2 JP H0685628 B2 JPH0685628 B2 JP H0685628B2 JP 59144903 A JP59144903 A JP 59144903A JP 14490384 A JP14490384 A JP 14490384A JP H0685628 B2 JPH0685628 B2 JP H0685628B2
Authority
JP
Japan
Prior art keywords
tooth
teeth
winding
short
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59144903A
Other languages
Japanese (ja)
Other versions
JPS6122746A (en
Inventor
誠 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59144903A priority Critical patent/JPH0685628B2/en
Priority to DE8585304941T priority patent/DE3578281D1/en
Priority to EP85304941A priority patent/EP0170452B1/en
Priority to US06/753,964 priority patent/US4692645A/en
Publication of JPS6122746A publication Critical patent/JPS6122746A/en
Publication of JPH0685628B2 publication Critical patent/JPH0685628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、界磁部の磁極数よりも多い巻線用溝を有する
電機子鉄心を具備する電動機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor provided with an armature core having winding grooves that are larger in number than the number of magnetic poles in a field unit.

従来例の構成とその問題点 電機子鉄心に巻線用溝を設けて多相の巻線を収納するよ
うにした電動機は、巻線用溝の間に形成される歯に界磁
部の磁束を収束させることができるために、その出力が
大きいという利点がある。そのため、産業用ロボットや
NC機器の駆動動力源として広く使用されている。しかし
ながら、このような電動機では、界磁部の磁極と電機子
鉄心の巻線用溝の相互作用によりコギングトルクが発生
する。以下、これについて図面を参照して説明する。
Configuration of conventional example and its problems An electric motor in which a winding groove is provided in an armature core to accommodate a multi-phase winding, the magnetic flux of the field part is formed in the teeth formed between the winding grooves. Has the advantage that the output is large. Therefore, industrial robots and
Widely used as a driving power source for NC equipment. However, in such an electric motor, cogging torque is generated by the interaction between the magnetic poles of the field magnet and the winding grooves of the armature core. This will be described below with reference to the drawings.

第1図は従来の電動機の構造を表わす要部構成図であ
る。回転軸1に取りつけられた強磁性体のロータ2の外
周に、円環状のマグネット3が取りつけられている。マ
グネット3には4極の磁極が等角度間隔に着磁されてお
り、界磁部を形成している。界磁部のマグネット3と所
定の間隔を離して電機子鉄心4が配置されている。マグ
ネット3と電機子鉄心4は、いずれか一方が他方に対し
て回転自在に支承されている(本例では、電機子鉄心4
に対してマグネット3が回転するようになされてい
る)。電機子鉄心4には、等角度間隔に24個の巻線用溝
5が設けられており、各巻線用溝の間には24個の歯6が
形成され、3相の巻線A1〜A4,B1〜B4,C1〜C4が巻装され
ている。巻線A1,A2,A3,A4は5個の歯を取り囲むように
巻かれており、巻線A1が収納された両方の巻線用溝の隣
の巻線用溝にはそれぞれ巻線A2とA4の一端が収納されて
いる。同様に、巻線A2が収納された両方の巻線用溝の隣
の巻線用溝にはそれぞれ巻線A1とA3の一端が収納され、
巻線A3が収納された両方の巻線用溝の巻線用溝にはそれ
ぞれ巻線A2とA4の一端が収納され、巻線A4が収納された
両方の巻線用溝の隣の巻線用溝にはそれぞれ巻線A1とA3
の一端が収納されている。他の相の巻線B1〜B4,C1〜C4
についても同様である。以下、A1〜A4をまとめてA相の
巻線群とし、B1〜B4をB相の巻線群とし、C1〜C4をC相
の巻線群とする。界磁部のマグネット3の発生磁束は電
機子鉄心4の各歯に流入または流出し、A,B,C相の巻線
群に鎖交している。A,B,C相の巻線群の間には、電気的
に120度の位相差がある。ここで、電気角の180度は界磁
部の1磁極ピッチ360゜/P(Pは界磁部の磁極数)に相
当する(本例では、P=4であるから機械角90度が1磁
極ピッチであり、電気角180度に相当する)。
FIG. 1 is a main part configuration diagram showing a structure of a conventional electric motor. An annular magnet 3 is attached to the outer circumference of a ferromagnetic rotor 2 attached to the rotating shaft 1. The magnet 3 is magnetized with four magnetic poles at equal angular intervals to form a field portion. An armature core 4 is arranged at a predetermined distance from the magnet 3 of the field unit. One of the magnet 3 and the armature core 4 is rotatably supported with respect to the other (in the present example, the armature core 4
In contrast, the magnet 3 is designed to rotate). The armature core 4 is provided with 24 winding grooves 5 at equal angular intervals, 24 teeth 6 are formed between the winding grooves, and three-phase windings A1 to A4 are provided. , B1 to B4, C1 to C4 are wound. The windings A1, A2, A3, A4 are wound so as to surround five teeth, and the winding A2 is placed in the winding groove next to both winding grooves in which the winding A1 is housed. One end of A4 is stored. Similarly, one end of each of the windings A1 and A3 is housed in the winding groove next to both winding grooves in which the winding A2 is housed,
The winding grooves of both winding grooves in which winding A3 is housed have one ends of windings A2 and A4, respectively, and the winding next to both winding grooves in which winding A4 is housed. Windings A1 and A3 respectively
One end of is stored. Windings of other phases B1 to B4, C1 to C4
Is also the same. Hereinafter, A1 to A4 are collectively referred to as an A phase winding group, B1 to B4 are referred to as a B phase winding group, and C1 to C4 are referred to as a C phase winding group. The magnetic flux generated by the magnet 3 in the field unit flows into or out of each tooth of the armature core 4, and is linked to the winding groups of A, B, and C phases. There is an electrical phase difference of 120 degrees between the A, B and C phase winding groups. Here, the electrical angle of 180 degrees corresponds to one magnetic pole pitch of 360 degrees / P (P is the number of magnetic poles of the field section) in the field section (in this example, P = 4, so the mechanical angle of 90 degrees is 1). Magnetic pole pitch, which corresponds to an electrical angle of 180 degrees).

第2図に駆動回路の構成図を示す。第1図の巻線A1〜A4
は、各巻回方向を考慮して直列に接続されA相の巻線群
を形成している。同様に、巻線B1〜B4は、各巻回方向を
考慮して直列に接続されB相の巻線群を形成し、巻線C1
〜C4は、各巻回方向を考慮して直列に接続されC相の巻
線群を形成している。3相の巻線群は星形結線され、そ
の端子を駆動部11に接続されている。位置検出部12はマ
グネット3の回転位置を検出し、マグネット3の回転に
伴って変化する3相の正弦波状の信号Pa,Pb,Pcを出力す
る。駆動部11には、指令信号Fと位置検出部12の3相信
号Pa,Pb,Pcが入力され、その両者の積に比例した3相の
正弦波状の電流Ia,Ib,Icを出力する。その結果、A,B,C
相の巻線群へ相互作用によって所定方向への回転力を発
生する。
FIG. 2 shows a configuration diagram of the drive circuit. Windings A1 to A4 in Fig. 1
Are connected in series in consideration of each winding direction to form an A-phase winding group. Similarly, the windings B1 to B4 are connected in series in consideration of the respective winding directions to form a B-phase winding group, and the winding C1
C4 are connected in series in consideration of each winding direction to form a C-phase winding group. The three-phase winding group is star-connected, and its terminals are connected to the drive unit 11. The position detector 12 detects the rotational position of the magnet 3 and outputs three-phase sinusoidal signals Pa, Pb, Pc that change with the rotation of the magnet 3. The command signal F and the three-phase signals Pa, Pb, Pc of the position detection unit 12 are input to the drive unit 11, and three-phase sinusoidal currents Ia, Ib, Ic proportional to the product of both are output. As a result, A, B, C
Rotational force is generated in a predetermined direction by interaction with the phase winding group.

次に、この従来例のコギングトルクについて第3図を参
照して説明する。第3図は、第1図のマグネット3と電
機子鉄心4をX−X線とY−Y線について平面展開した
図である。(巻線を省略し、巻線用溝をa〜xで示し
た)。コギングトルクは界磁部と電機子鉄心の間の磁場
に蓄えられた磁気エネルギーが両者の相対的な回転に応
じて変化することによって生じるものである。特に、界
磁部の磁極と電機子鉄心の溝の両者に関係して発生し、
第1図のごとく界磁部のマグネット3と電機子鉄心4の
両方に磁気的な周期性がある場合には、その両者に共通
して存在する成分(整合成分)のコギングトルクが生じ
る。第4図にマグネット3の発生する磁束密度の分布特
性を全周(360度)について示す。磁気エネルギーは磁
束密度の2乗に関係する量であるから、第4図に示すご
とき特性の磁界部のマグネット3が有する磁気的な周期
・波形の基本的な調波成分は第4次調波成分となる。こ
こで、1回転1回の正弦波成分を第1次調波成分とす
る。すなわち、マグネット3は第4次成分を基本とし
て、第8次、第12次、…などの高調波成分を含んでいる
ことになる。
Next, the cogging torque of this conventional example will be described with reference to FIG. FIG. 3 is a plan development view of the magnet 3 and the armature core 4 of FIG. 1 taken along the line XX and the line YY. (The winding is omitted and the winding grooves are indicated by a to x). The cogging torque is generated when the magnetic energy stored in the magnetic field between the field part and the armature core changes according to the relative rotation between the two. In particular, it occurs in relation to both the magnetic poles of the field part and the grooves of the armature core,
As shown in FIG. 1, when both the magnet 3 of the field magnet section and the armature core 4 have a magnetic periodicity, a cogging torque of a component (matching component) commonly present in both of them is generated. FIG. 4 shows the distribution characteristics of the magnetic flux density generated by the magnet 3 over the entire circumference (360 degrees). Since the magnetic energy is a quantity related to the square of the magnetic flux density, the fundamental harmonic component of the magnetic period / waveform of the magnet 3 of the magnetic field portion having the characteristic shown in FIG. 4 is the 4th harmonic. It becomes an ingredient. Here, the sine wave component of one rotation once is the first harmonic component. That is, the magnet 3 contains harmonic components such as the 8th, 12th, ... Based on the 4th component.

一方、電機子鉄心4の磁気的不均一性(パーミアンスに
関係する量)は巻線用溝a〜xによって生じる。電機子
鉄心4の巻線用溝a〜xは等角度間隔(15度)に配置さ
れているので、電機子鉄心4の磁気的不均一性の基本的
な調波成分は第24次成分となる。従って、これを基本と
して第48次、第72次、…などの高調波成分を含んでい
る。コギングトルクは、電機子鉄心4の有する磁気的不
均一性の成分とマグネット3の有する周期・波形の調波
成分が整合(一致)するときに発生するから、本従来例
のコギングトルクは第24次、第48次、…などの調波成分
が生じる。
On the other hand, the magnetic nonuniformity (the amount related to permeance) of the armature core 4 is caused by the winding grooves a to x. Since the winding grooves a to x of the armature core 4 are arranged at equal angular intervals (15 degrees), the fundamental harmonic component of the magnetic nonuniformity of the armature core 4 is the 24th component. Become. Therefore, based on this, harmonic components of the 48th order, the 72nd order, ... Are included. Since the cogging torque is generated when the magnetic nonuniformity component of the armature core 4 and the harmonic component of the period / waveform of the magnet 3 are matched (matched), the cogging torque of this conventional example is the 24th. Harmonic components of the next, the 48th, etc. occur.

コギングトルクの端24次成分は、24個の巻線用溝によっ
て生じる電機子鉄心4の磁気的不均一性の基本成分に関
係している。一般に、電機子鉄心4の基本成分はその他
の高調波成分に較べてかなり大きい。その結果、この従
来の電動機では非常に大きなコギングトルクが発生して
いた。
The 24th-order component of the cogging torque is related to the basic component of the magnetic nonuniformity of the armature core 4 caused by the 24 winding grooves. Generally, the fundamental component of the armature core 4 is considerably larger than the other harmonic components. As a result, a very large cogging torque is generated in this conventional electric motor.

本出願人は、このようなコギングトルクを低減する一方
法を特開昭55−71163号公報に提案している。特開昭55
−71163号公報では、電機子鉄心の波の部分に補助溝を
設けることにより、コギングトルクの基本的な調波成分
を高くしてコギングトルクを低減している。しかしなが
ら、このような方法によりコギングトルクを十分に低減
するためには、コギングトルクの基本次数をかなり高次
にする必要があり、多くの補助溝を電機子鉄心に設けな
ければならず、実用的でない。また、補助溝を多く設け
た場合でも、コギングトルクの基本成分が電機子鉄心の
基本成分と一致するためにコギングトルクを十分に低減
できなかった。
The present applicant has proposed a method of reducing such cogging torque in Japanese Patent Laid-Open No. 55-71163. JP 55
In Japanese Patent No. 71163, the auxiliary groove is provided at the wave portion of the armature core to increase the basic harmonic component of the cogging torque and reduce the cogging torque. However, in order to sufficiently reduce the cogging torque by such a method, the fundamental order of the cogging torque needs to be set to a considerably high order, and many auxiliary grooves must be provided in the armature core, which is not practical. Not. Further, even when a large number of auxiliary grooves are provided, the basic component of the cogging torque matches the basic component of the armature core, so that the cogging torque cannot be reduced sufficiently.

発明の目的 本発明は、このような点を考慮し、界磁部の磁極数より
も電機子鉄心の巻線用溝の数が多いような電動機におけ
るコギングトルクを大幅に低減したものである。
SUMMARY OF THE INVENTION In consideration of the above points, the present invention significantly reduces the cogging torque in an electric motor in which the number of winding grooves of the armature core is larger than the number of magnetic poles of the field magnet portion.

発明の構成 本発明では、P極(ここに、Pは4以上の整数)の永久
磁石磁極を円周上に所定角度間隔に有する界磁部と、前
記永久磁石磁極と所定間隙あけて設けられ、3相の巻線
が巻装された6P個の巻線用溝および前記巻線用溝の間に
形成される歯を有する電機子鉄心とを具備し、前記界磁
部と前記電機子鉄心のうちでいずれか一方が他方に対し
て回転自在となされた電動機であって、前記電機子鉄心
の各歯の実効ピッチを前記各歯の両端の前記巻線用溝の
中心のなす角度とするとき、前記電機子鉄心は、実効ピ
ッチがD=60゜/Pに等しいN個(ここに、Nは4以上の
整数)の等歯と、実効ピッチがDより大きいL個(ここ
に、Lは2以上の整数)の長歯と、実効ピッチがDより
小さいM個(ここに、Mは2以上の整数)の短歯を有
し、さらに、前記電機子鉄心の歯の並びを所定方向にブ
ロック化したとき、前記長歯から始まって前記等歯で終
わり、少なくとも2個の前記長歯と少なくとも2個の前
記等歯が部分的に隣接して集中している長ピッチブロッ
ク、および、前記短歯から始まって前記等歯で終わり、
少なくとも2個の前記短歯と少なくとも2個の前記等歯
が部分的に隣接して集中している短ピッチブロックを円
周上に交互に配置され、さらに、前記長歯と前記長歯の
間に少なくとも1個の前記等歯が配置され、前記短歯と
前記短歯の間に少なくとも1個の前記等歯が配置され、
前記長歯と前記短歯の間に少なくとも1個の前記等歯が
配置されたことにより、上記の目的を達成したものであ
る。
Structure of the Invention In the present invention, a field portion having permanent magnet magnetic poles of P poles (where P is an integer of 4 or more) on the circumference at predetermined angular intervals, and a predetermined gap from the permanent magnet magnetic poles are provided. A field magnet portion and an armature core having 6P winding grooves around which three-phase windings are wound and teeth formed between the winding grooves. One of the teeth is an electric motor rotatable with respect to the other, and the effective pitch of each tooth of the armature core is an angle formed by the centers of the winding grooves at both ends of each tooth. At this time, the armature core has N equal teeth (where N is an integer of 4 or more) whose effective pitch is equal to D = 60 ° / P and L whose effective pitch is greater than D (here, L Is an integer of 2 or more) and M short teeth with an effective pitch smaller than D (where M is an integer of 2 or more), and , When the arrangement of teeth of the armature core is blocked in a predetermined direction, starting from the long teeth and ending with the constant teeth, at least two of the long teeth and at least two of the constant teeth are partially adjacent to each other. Concentrated long pitch blocks and starting from the short teeth and ending at the equal teeth,
Short pitch blocks in which at least two short teeth and at least two equal teeth are partially adjacent and concentrated are alternately arranged on the circumference, and further, between the long teeth and the long teeth. At least one of the equal teeth is arranged in the, and at least one of the equal teeth is arranged between the short tooth and the short tooth,
The above object is achieved by disposing at least one equal tooth between the long tooth and the short tooth.

実施例の説明 第5図に本発明の一実施例を表わす要部平面展開図を示
す。第5図において、ロータ2に取りつけられたマグネ
ット3は等角度間隔に4極の磁極を有し、電機子鉄心4
の24個の巻線用溝a〜xおよび24個の歯に所定間隔あけ
て対向している。電機子鉄心4の24個の巻線用溝には、
第1図のA,B,C相の巻線群と同様に3層の巻線群が巻装
されている(図示を省略する)。すなわち、巻線用溝a
からfに渡って巻線A1が巻装され、巻線用溝gから1に
渡って巻線A2が巻装され、巻線用溝mからrに渡って巻
線A3が巻装され、巻線用溝sからxに渡って巻線A4が巻
装れ、巻線A1〜A4がその巻回方向を考慮して直列に接続
されて第A相の巻線群を形成している。同様に、巻線用
溝eからjに渡って巻線B1が巻装され、巻線用溝kから
pに渡って巻線B2が巻装され、巻線用溝qからvに渡っ
て巻線B3が巻装され、巻線用溝wからdに渡って巻線B4
が巻装され、巻線B1〜B4がその巻回方向を考慮して直列
に接続されて第B相の巻線群を形成している。さらに、
巻線用溝iからnに渡って巻線C1が巻装され、巻線用溝
oからtに渡って巻線C2が巻装され、巻線用溝uからb
に渡って巻線C3が巻装され、巻線用溝cからhに渡って
巻線C4が巻装され、巻線C1〜C4がその巻回方向を考慮し
て直列に接続されて第C相の巻線群を形成している。本
実施例の駆動回路は、第2図の構成と同様であり、説明
を省略する。
Description of Embodiments FIG. 5 is a developed plan view of a main part of an embodiment of the present invention. In FIG. 5, the magnet 3 attached to the rotor 2 has four magnetic poles arranged at equal angular intervals.
24 winding grooves a to x and 24 teeth facing each other at a predetermined interval. In the 24 winding grooves of the armature core 4,
A winding group of three layers is wound in the same manner as the winding group of A, B, and C phases in FIG. 1 (illustration is omitted). That is, the winding groove a
To f, the winding A1 is wound, the winding groove g is wound over 1, the winding A2 is wound, the winding groove m is passed over r, and the winding A3 is wound. A winding A4 is wound from the wire groove s to x, and the windings A1 to A4 are connected in series in consideration of the winding direction to form a phase A winding group. Similarly, the winding B1 is wound over the winding grooves e to j, the winding B2 is wound over the winding grooves k to p, and the winding B is wound over the winding grooves q to v. The wire B3 is wound, and the wire B4 is wound across the winding groove w to d.
Is wound and the windings B1 to B4 are connected in series in consideration of the winding direction to form a B-phase winding group. further,
The winding C1 is wound from the winding grooves i to n, the winding C2 is wound from the winding grooves o to t, and the winding grooves u to b.
The winding C3 is wound around the winding C3, the winding C4 is wound around the winding groove c to h, and the windings C1 to C4 are connected in series in consideration of the winding direction to form the C-th winding. Forming a phase winding group. The drive circuit of this embodiment has the same configuration as that of FIG.

第5図の実施例においては、電機子鉄心4の巻線用溝a
〜xの配置を不等角度間隔となし、巻線用溝の間に形成
される歯の実効ピッチを不均一にしている。ここに、歯
の実効ピッチとは歯の両端の巻線用溝の中心のなす角度
である。巻線用溝の個数をT=6・P=24(Pは磁界部
の磁極数でありP=4)とするとき、等角度間隔に配置
すると各歯の実効ピッチはD=60゜/P=15゜となるの
で、歯の実効ピッチがDに等しい歯を等歯と呼び、Dよ
り大きい歯を長歯と呼び、Dより小さい歯を短歯と呼ぶ
ことにする。第5図では、等歯をEで示し、長歯をRで
示し、短歯をZで示した。歯a−b(両端の巻線用溝に
よって歯を表わす)は等歯(E)、歯b−cは長歯
(R)、歯c−dは等歯(E)、歯d−eは等歯
(E)、歯e−fは長歯(R)、歯f−gは等歯
(E)、歯g−hは等歯(E)、歯h−jは長歯
(R)、歯i−jは等歯(E)、歯j−kは等歯
(E)、歯k−lは等歯(E)、歯l−mは等歯
(E)、歯m−nは等歯(E)、歯n−oは短歯
(Z)、歯o−pは等歯(E)、歯p−qは等歯
(E)、歯q−rは短歯(Z)、歯r−sは等歯
(E)、歯s−tは等歯(E)、t−uは短歯(Z)、
歯u−vは等歯(E)、歯v−wは等歯(E)、歯w−
xは等歯(E)、歯x−aは等歯(E)である。すなわ
ち、等歯の個数はN=18、長歯の個数はL=3、短歯の
個数はM=3である。長歯b−c,e−f,h−iの実効ピッ
チは、D・(1+1/P)=5・D/4に等しくなされてい
る。短歯n−o,q−r,t−uの実効ピッチは、D・(1−
1/P)=3・D/4に等しくなされている。電機子鉄心4の
歯の並びを所定方向にブロック化したとき、巻線用溝b
からnの間(b,c,d,e,f,g,h,i,j,k,l,m,n)は長歯から
始まって等歯で終わり、長歯と等歯のみが部分的に集中
しており、長歯を3個含む長ピッチブロックを形成して
いる(短歯を含まない)。同様に、巻線用溝nからbの
間(n,o,p,q,r,s,t,u,v,w,x,a,b)は短歯から始まって
等歯で終わり、短歯と等歯のみが部分的に集中してお
り、短歯を3個含む短ピッチブロックを形成している
(長歯を含まない)。長ピッチブロックと短ピッチブロ
ックの境界のとりかたは所定方向からみて長歯に後続す
る等歯を長ピッチブロックに含め、短歯に後続する等歯
を短ピッチブロックに含める。また、長ピッチブロック
内には短歯を含まず、短ピッチブロック内には長歯を含
まないので、長ピッチブロックと短ピッチブロックは明
確に区別できる。また、長ピッチブロック内の歯の個数
の短ピッチブロック内の歯の個数が等しい場合には、長
ピッチブロックのなす角度は短ピッチブロックのなす角
度よりも大きくなる。第5図の長ピッチブロックa−m
は9・D+15・D/4=51・D/4=191.25゜であり、短ピッ
チブロックm−aは9・D+9・D/4=45・D/4=168.75
゜である。
In the embodiment shown in FIG. 5, the winding groove a of the armature core 4 is used.
The arrangement of ~ x is arranged at unequal angular intervals, and the effective pitch of the teeth formed between the winding grooves is made nonuniform. Here, the effective pitch of the teeth is the angle formed by the centers of the winding grooves at both ends of the teeth. When the number of winding grooves is T = 6 · P = 24 (P is the number of magnetic poles in the magnetic field part and P = 4), the effective pitch of each tooth is D = 60 ° / P when they are arranged at equal angular intervals. Since the effective pitch of the teeth is equal to D = 15 °, teeth having an effective tooth pitch equal to D are called equal teeth, teeth larger than D are called long teeth, and teeth smaller than D are called short teeth. In FIG. 5, equal teeth are indicated by E, long teeth are indicated by R, and short teeth are indicated by Z. The tooth a-b (representing the tooth by the winding grooves at both ends) is a constant tooth (E), the tooth bc is a long tooth (R), the tooth cd is a constant tooth (E), and the tooth d-e is a tooth. Equal tooth (E), tooth e-f is long tooth (R), tooth f-g is equal tooth (E), tooth g-h is equal tooth (E), tooth h-j is long tooth (R), The tooth i-j is a constant tooth (E), the tooth j-k is a constant tooth (E), the tooth kl is a constant tooth (E), the tooth 1-m is a constant tooth (E), the tooth m-n is a constant tooth (E). Tooth (E), tooth n-o is a short tooth (Z), tooth op is a constant tooth (E), tooth pq is a constant tooth (E), tooth qr is a short tooth (Z), a tooth. r-s is a constant tooth (E), tooth s-t is a constant tooth (E), tu is a short tooth (Z),
The tooth u-v is a tooth (E), the tooth v-w is a tooth (E), the tooth w-.
x is a constant tooth (E) and tooth xa is a constant tooth (E). That is, the number of equal teeth is N = 18, the number of long teeth is L = 3, and the number of short teeth is M = 3. The effective pitch of the long teeth b-c, e-f, h-i is made equal to D. (1 + 1 / P) = 5.D / 4. The effective pitch of the short teeth n−o, q−r, t−u is D · (1−
1 / P) = 3 · D / 4. When the tooth arrangement of the armature core 4 is blocked in a predetermined direction, the winding groove b
Between n and n (b, c, d, e, f, g, h, i, j, k, l, m, n) start with long teeth and end with equitooth, only long teeth and equitooth Are concentrated intensively and form a long pitch block including three long teeth (not including short teeth). Similarly, between the winding grooves n and b (n, o, p, q, r, s, t, u, v, w, x, a, b) start with short teeth and end with equitooth, Only the short teeth and the equal teeth are partially concentrated, forming a short pitch block including three short teeth (not including long teeth). Regarding the boundary between the long pitch block and the short pitch block, an equitooth that follows the long tooth is included in the long pitch block when viewed from a predetermined direction, and an equitooth that follows the short tooth is included in the short pitch block. Further, since the long pitch block does not include short teeth and the short pitch block does not include long teeth, the long pitch block and the short pitch block can be clearly distinguished. If the number of teeth in the long pitch block is equal to the number of teeth in the short pitch block, the angle formed by the long pitch block is larger than the angle formed by the short pitch block. Long pitch block am in FIG.
Is 9 ・ D + 15 ・ D / 4 = 51 ・ D / 4 = 191.25 ° and short pitch block ma is 9 ・ D + 9 ・ D / 4 = 45 ・ D / 4 = 168.75
It is ゜.

次に、本実施例のコギングトルクについて説明する。す
でに説明したように、コギングトルクは電機子鉄心の巻
線用溝による磁気的不均一性の調波成分と界磁部の磁極
による磁気的な周期・波形の調波成分が整合したときに
生じる。界磁部のマグネット3の磁気的な周期・波形
は、マグネット3の1磁極ピッチ360゜/Pを周期とする
周期関数となっている。従って、マグネット3の1磁極
ピッチを基本周期として、電機子鉄心4の磁気的不均一
性(巻線用溝の配置によって生じる磁気的な変動分)を
考えればよく、一般にその変動量を小さくするならばコ
ギングトルクは小さくなる。マグネット3の1磁極ピッ
チを基本周期として電機子鉄心4の巻線用溝a〜xをみ
たときの位相関係を第6図に示す。A相の巻線群を収納
された巻線用溝a,f,g,l,m,r,s,xは1磁極ピッチの1/24
の最小位相差で位相ずれを設けられ(巻線用溝のa,f,g,
l,m,r,s,xは6個以上に異なる)、その変動範囲は1磁
極ピッチの7/24(1磁極ピッチの1/3以下)になされて
いる。同様に、B相の巻線群を収納された巻線用溝d,e,
j,k,p,q,v,wは1磁極ピッチの1/24の最小位相差で位相
ずれを設けられ、その変動範囲は1磁極ピッチの7/24に
なされている。さらに、C相の巻線群を収納された巻線
用溝b,c,h,i,n,o,t,uは1磁極ピッチの1/24の最小位相
差で位相ずれを設けられ、その変動範囲は1磁極ピッチ
の7/24になされている。また、A相の巻線用溝(a,f,g,
l,m,r,s,x)とB相の巻線用溝(d,e,j,k,p,q,v,w)とC
相の巻線用溝(b,c,h,i,n,o,t,u)の間にはそれぞれ1
磁極ピッチの1/3の位相差がある。第7図に巻線用溝a
〜xによる電機子鉄心4の磁気的変動分の波形を示す。
巻線用溝の開口部に応じて、各巻線用溝による磁気的な
変動分はなだらかに変化する。巻線用溝a〜xは1/24ず
つ位相が異なっているために、合成の磁気的な変動分
(交流分)はかなり小さくなっている。第8図に、第1
図の従来の電動機の磁気的な変動分を示す。巻線用溝a,
g,m,sは同位相となり、巻線用溝b,h,n,tは同位相とな
り、巻線用溝c,i,o,uは同位相となり、巻線用溝d,j,p,v
は同位相となり、巻線用溝e,k,q,wは同位相となり、巻
線用溝f,l,r,xは同位相となるので、第1図の従来の電
動機の合成の磁気的な変動分は非常に大きくなってい
る。第7図と第8図を比較すると、本実施例の電動機の
磁気的な変動分が大幅に小さくなっていることがわか
る。その結果、本実施例のコギングトルクは大幅に低減
されている。
Next, the cogging torque of this embodiment will be described. As described above, cogging torque occurs when the harmonic component of magnetic non-uniformity due to the winding groove of the armature core and the magnetic period / waveform harmonic component due to the magnetic poles of the field part match. . The magnetic period / waveform of the magnet 3 in the field part is a periodic function having a period of one magnetic pole pitch of the magnet 3 of 360 ° / P. Therefore, it is sufficient to consider the magnetic nonuniformity of the armature core 4 (the magnetic variation caused by the arrangement of the winding grooves) with one magnetic pole pitch of the magnet 3 as the basic period, and generally, the variation amount is reduced. Then, the cogging torque becomes smaller. FIG. 6 shows a phase relationship when the winding grooves a to x of the armature core 4 are viewed with one magnetic pole pitch of the magnet 3 as a basic cycle. Winding grooves a, f, g, l, m, r, s, x that house the A-phase winding group are 1/24 of one magnetic pole pitch.
A phase shift is provided by the minimum phase difference of (the winding grooves a, f, g,
l, m, r, s, x differ from six or more), and the variation range is 7/24 of one magnetic pole pitch (1/3 or less of one magnetic pole pitch). Similarly, winding grooves d, e, which house the B-phase winding group,
The j, k, p, q, v, and w are provided with a phase shift with a minimum phase difference of 1/24 of one magnetic pole pitch, and the variation range is set to 7/24 of one magnetic pole pitch. Furthermore, the winding grooves b, c, h, i, n, o, t, u accommodating the C-phase winding group are provided with a phase shift with a minimum phase difference of 1/24 of one magnetic pole pitch, The range of variation is 7/24 of one magnetic pole pitch. In addition, A phase winding groove (a, f, g,
l, m, r, s, x) and B phase winding groove (d, e, j, k, p, q, v, w) and C
1 between each phase winding groove (b, c, h, i, n, o, t, u)
There is a phase difference of 1/3 of the magnetic pole pitch. Fig. 7 shows winding groove a
3 shows waveforms of magnetic fluctuations of the armature core 4 due to x.
Depending on the opening of the winding groove, the amount of magnetic fluctuation due to each winding groove changes gently. Since the winding grooves a to x have different phases by 1/24, the combined magnetic fluctuation (AC) is considerably small. FIG. 8 shows the first
The magnetic variation of the conventional electric motor of the figure is shown. Winding groove a,
g, m, s have the same phase, winding grooves b, h, n, t have the same phase, winding grooves c, i, o, u have the same phase, and winding grooves d, j, p, v
Has the same phase, the winding grooves e, k, q, w have the same phase, and the winding grooves f, l, r, x have the same phase, so the combined magnetic field of the conventional motor shown in FIG. The fluctuation amount is very large. Comparing FIG. 7 and FIG. 8, it can be seen that the magnetic variation of the electric motor of this embodiment is significantly reduced. As a result, the cogging torque of this embodiment is greatly reduced.

さらに、本実施例の各巻線A1,A2,A3,A4,B1,B2,B3,B4,C
1,C2,C3,C4の実効ピッチは(1磁極ピッチの11/12)=1
65度(電気角)以下から(1磁極ピッチの9/12)=135
度(電気角)以上になされている。ここに、巻線の実効
ピッチはその巻線が収納された巻線用溝の中心のなす角
度である。例えば、A相の巻線群についてみれば、A1に
対する巻線用溝a−f間の角度は165゜(3個の等歯と
2個の長歯分)、A2に対する巻線用溝g−l間の角度は
157.5゜(4個の等歯と1個の長歯分)、A3に対する巻
線用溝m−r間の角度は135゜(3個の等歯と2個の短
歯分)、A4に対する巻線用溝s−x間の角度は142.5゜
(4個の等歯と1個の短歯分)である。他のB相、C相
の巻線群についても同様に165度以下から135度以上であ
る。このように、各相の巻線が収納された巻線用溝の変
動範囲を小さくして(1磁極ピッチの1/3以下)、巻線
の実効ピッチの変動範囲を小さくするならば(165度以
下から135度以上)、巻線作業が容易となり、自動化も
可能となる。
Furthermore, each winding A1, A2, A3, A4, B1, B2, B3, B4, C of this embodiment
The effective pitch of 1, C2, C3, C4 is (11/12 of one magnetic pole pitch) = 1
From 65 degrees (electrical angle) or less (9/12 of one magnetic pole pitch) = 135
The angle is above the electrical angle. Here, the effective pitch of the winding is the angle formed by the centers of the winding grooves in which the winding is housed. For example, in the case of the A-phase winding group, the angle between the winding grooves af with respect to A1 is 165 ° (three equal teeth and two long teeth), and the winding groove g− with respect to A2 is − The angle between l is
157.5 ° (4 equal teeth and 1 long tooth), the angle between winding grooves mr for A3 is 135 ° (3 equal teeth and 2 short teeth), winding for A4 The angle between the line grooves s-x is 142.5 ° (4 equal teeth and 1 short tooth). Similarly, for other B-phase and C-phase winding groups, the winding angle is 165 degrees or less to 135 degrees or more. In this way, if the variation range of the winding groove accommodating the windings of each phase is reduced (1/3 or less of one magnetic pole pitch) and the variation range of the effective pitch of the winding is reduced (165 From less than 135 degrees to more than 135 degrees), winding work becomes easier and automation is possible.

また、本実施例では、長歯の実効ピッチD・(1+1/
P)=5・D/4は等歯の実効ピッチDに非常にちかく、か
つ、短歯の実効ピッチD・(1−1/P)=3・D/4は等歯
の実効ピッチDに非常にちかい。従って、電機子鉄心に
長歯や短歯を容易に形成できるという利点もある。
Further, in the present embodiment, the effective pitch of the long teeth D · (1 + 1 /
P) = 5 · D / 4 is very close to the effective pitch D of the constant tooth, and the effective pitch D of the short tooth is D · (1-1 / P) = 3 · D / 4 is the effective pitch D of the constant tooth. Very small. Therefore, there is also an advantage that long and short teeth can be easily formed on the armature core.

さらに、長ピッチブロック内の隣り合う長歯の間に等歯
を配置し、短ピッチブロック内の隣り合う短歯の間に等
歯を配置しているので、巻線の収納空間を均一にするこ
とが容易となる。
Further, since the equal teeth are arranged between the adjacent long teeth in the long pitch block and the equal teeth are arranged between the adjacent short teeth in the short pitch block, the winding storage space is made uniform. It will be easy.

第9図(a),(b),(c),(d)に本発明の他の
実施例を示す。第9図(a)は、第5図の構成におい
て、巻線用溝の配置(歯の配置)を変えたものであり、
歯e−f,f−g,g−hを長歯とし、歯m−n,r−s,w−xを
短歯とし、他の歯を等歯としたものである。等歯や長歯
や短歯の実効ピッチは前述の第5図の実施例と同様であ
る。
9 (a), (b), (c) and (d) show another embodiment of the present invention. FIG. 9 (a) shows the arrangement of the winding grooves (the arrangement of teeth) in the configuration of FIG.
The teeth e-f, f-g, g-h are long teeth, the teeth m-n, r-s, w-x are short teeth, and the other teeth are equal teeth. The effective pitch of the constant teeth, the long teeth and the short teeth is the same as that of the embodiment shown in FIG.

第9図(b)は、第5図の構成において、巻線用溝の配
置(歯の配置)を変えたものであり、歯b−c,c−d,h−
iを長歯とし、歯n−o,o−p,t−uを短歯とし、他の歯
を等歯としたものである。等歯や長歯や短歯の実効ピッ
チは前述の第5図の実施例と同様である。
FIG. 9 (b) shows a configuration in which the arrangement of the winding grooves (the arrangement of the teeth) in the configuration of FIG. 5 is changed, and the teeth b-c, c-d, h-
i is a long tooth, teeth n-o, op-tu, and tu are short teeth, and the other teeth are equal teeth. The effective pitch of the constant teeth, the long teeth and the short teeth is the same as that of the embodiment shown in FIG.

第9図(c)は、第5図の構成において、巻線用溝の配
置(歯の配置)を変えたものであり、歯f−g,l−mの
2個を長歯とし、歯r−s,x−aの2個を短歯とし、他
の歯を等歯としたものである。長歯f−gの実効ピッチ
はD・(1+2/P)=6・D/4(等歯の実効ピッチDの6/
4)であり、長歯1−mの実効ピッチはD・(1+1/P)
=5・D/4であり、短歯r−sの実効ピッチはD・(1
−2/P)=2・D/4であり、短歯x−aの実効ピッチはD
・(1−1/P)=3・D/4である。このように、2個の長
歯を含む長ピッチブロックと2個の短歯を含む短ピッチ
ブロックを配することによっても、コギントルクを低減
することができる。
FIG. 9 (c) is a view in which the arrangement of the winding grooves (teeth arrangement) in the configuration of FIG. 5 is changed, and two teeth fg and l-m are long teeth, and Two of r-s and x-a are short teeth, and the other teeth are equal teeth. The effective pitch of the long teeth f-g is D · (1 + 2 / P) = 6 · D / 4 (6 / of the effective pitch D of equal teeth)
4), and the effective pitch of the long tooth 1-m is D · (1 + 1 / P)
= 5 · D / 4, and the effective pitch of the short teeth r−s is D · (1
−2 / P) = 2 · D / 4, and the effective pitch of the short teeth x−a is D
・ (1-1 / P) = 3 ・ D / 4. In this way, the cogging torque can be reduced also by disposing the long pitch block including two long teeth and the short pitch block including two short teeth.

第9図(d)は、第5図の構成において、巻線用溝の配
置(歯の配置)を変えたものであり、歯f−g,h−iの
2個を長歯とし、歯n−o,r−s,x−aの3個を短歯と
し、他の歯を等歯としたものである。長歯f−gの実効
ピッチはD・(1+2/P)=6・D/4(等歯の実効ピッチ
Dの6/4)であり、長歯h−iの実効ピッチはD・(1
+1/P)=5・D/4であり、短歯n−o,r−s,x−aの実効
ピッチはD・(1−1/P)=3・D/4である。このよう
に、2個の長歯を含む長ピッチブロックと3個の短歯を
含む短ピッチブロックを配置することによっても、コギ
ントルクを低減することができる。
FIG. 9 (d) is a view in which the arrangement of the winding grooves (the arrangement of teeth) in the configuration of FIG. 5 is changed, and two teeth fg and hi are long teeth, and Three of n-o, r-s, and x-a are short teeth, and the other teeth are equal teeth. The effective pitch of the long tooth f−g is D · (1 + 2 / P) = 6 · D / 4 (6/4 of the effective pitch D of the constant tooth), and the effective pitch of the long tooth hi is D · (1
+ 1 / P) = 5 · D / 4, and the effective pitch of the short teeth n−o, r−s, x−a is D · (1-1 / P) = 3 · D / 4. Thus, the cogging torque can also be reduced by disposing the long pitch block including two long teeth and the short pitch block including three short teeth.

前述の各実施例においては、界磁部のマグネット3の磁
極数をP=4としたが、本発明はそのような場合に限ら
れるのではない。
Although the number of magnetic poles of the magnet 3 of the field magnet portion is P = 4 in each of the above-described embodiments, the present invention is not limited to such a case.

第10図に本発明の他の実施例を表わす要部平面展開図を
示す。第10図において、ロータ2に取りつけられたマグ
ネット3は等角度間隔に6極の磁極を有し、電機子鉄心
4の36個の巻線用溝a〜j′および36個の歯に所定間隔
あけて対向している。電機子鉄心4の36個の巻線用溝に
は、A,B,C相の巻線群からなる3層の巻線群が巻装され
ている(図示を省略する)。すなわち、巻線用溝aから
fに渡って巻線A1が巻装され、巻線用溝gからlに渡っ
て巻線A2が巻装され、巻線用溝mからrに渡って巻線A3
が巻装され、巻線用溝sからxに渡って巻線A4が巻装さ
れ、巻線用溝yからd′に渡って巻線A5が巻装され、巻
線用溝e′からj′に渡って巻線A6が巻装され、巻線A1
〜A6がその巻回方向を考慮して直列に接続されて第A相
の巻線群を形成している。同様に、巻線用溝eからjに
渡って巻線B1が巻装され、巻線用溝kからpに渡って巻
線B2が巻装され、巻線用溝qからvに渡って巻線B3が巻
装され、巻線用溝wからb′に渡って巻線B4が巻装さ
れ、巻線用溝c′からh′に渡って巻線B5が巻装され、
巻線用溝i′からdに渡って巻線B6が巻装され、巻線B1
〜B6がその巻回方向を考慮して直列に接続されて第B相
の巻線群を形成している。さらに、巻線用溝iからnに
渡って巻線C1が巻装され、巻線用溝oからtに渡ってC2
が巻装され、巻線用溝uからzに渡って巻線C3が巻装さ
れ、巻線用溝a′からf′に渡って巻線C4が巻装され、
巻線用溝g′からbに渡って巻線C5が巻装され、巻線用
溝cからhに渡って巻線C6が巻装され、巻線C1〜C6がそ
の巻回方向を考慮して直列に接続されて第C相の巻線群
を形成している。本実施例の駆動回路は、第2図の構成
と同様であり、説明を省略する。
FIG. 10 is a plan development view of the essential parts showing another embodiment of the present invention. In FIG. 10, the magnet 3 attached to the rotor 2 has 6 magnetic poles at equal angular intervals, and the 36 winding grooves a to j ′ of the armature core 4 and the 36 teeth have predetermined intervals. Open and face each other. The 36 winding grooves of the armature core 4 are wound with a three-layer winding group consisting of A, B, and C phase winding groups (not shown). That is, the winding A1 is wound from the winding grooves a to f, the winding A2 is wound from the winding grooves g to l, and the winding A is wound from the winding grooves m to r. A3
Is wound, the winding A4 is wound from the winding groove s to x, the winding A5 is wound from the winding groove y to d ', and the winding groove e'to j The winding A6 is wound across the ‘
.. A6 are connected in series in consideration of the winding direction to form a phase A winding group. Similarly, the winding B1 is wound over the winding grooves e to j, the winding B2 is wound over the winding grooves k to p, and the winding B is wound over the winding grooves q to v. The wire B3 is wound, the winding B4 is wound from the winding groove w to b ', and the winding B5 is wound from the winding groove c'to h'.
The winding B6 is wound from the winding groove i'to the winding groove d, and the winding B1
B6 are connected in series in consideration of the winding direction to form a B-phase winding group. Further, the winding C1 is wound over the winding grooves i to n, and C2 is wound over the winding grooves o to t.
Is wound, the winding C3 is wound over the winding grooves u to z, and the winding C4 is wound over the winding grooves a ′ to f ′.
The winding C5 is wound over the winding grooves g ′ to b, the winding C6 is wound over the winding grooves c to h, and the windings C1 to C6 are taken into consideration in the winding direction. Are connected in series to form a C-th phase winding group. The drive circuit of this embodiment has the same configuration as that of FIG.

第10図の実施例においては、電機子鉄心4の巻線用溝a
〜j′の配置を不等角度間隔となし、巻線用溝の間に形
成される歯の実効ピッチを不均一にしている。等歯の実
効ピッチはD=60゜/P=10゜(ここに、Pは界磁部の磁
極数であり、P=6)であり、長歯の実効ピッチはDよ
りも大きく、短歯の実効ピッチはDよりも小さい。歯a
−bは等歯(E)、歯b−cは長歯(R)、歯c−dは
等歯(E)、歯d−eは等歯(E)、歯e−fは長歯
(R)、歯f−gは等歯(E)、歯g−hは等歯
(E)、歯h−jは長歯(R)、歯i−jは等歯
(E)、歯j−kは等歯(E)、歯k−lは長歯
(R)、歯l−mは等歯(E)、歯m−nは等歯
(E)、歯n−oは長歯(R)、歯o−pは等歯
(E)、歯p−qは等歯(E)、歯q−rは等歯
(E)、歯r−sは等歯(E)、歯s−tは等歯
(E)、歯t−uは短歯(Z)、歯u−vは等歯
(E)、歯v−wは等歯(E)、歯w−xは短歯
(Z)、歯x−yは等歯(E)、歯y−zは等歯
(E)、z−a′は短歯(Z)、歯a′−b′は等歯
(E)、歯b′−c′は等歯(E)、歯c′−d′は短
歯(Z)、歯d′−e′は等歯(E)、歯e′−f′は
等歯(E)、歯f′−g′は短歯(Z)、歯g′−h′
は等歯(E)、歯h′−i′は等歯(E)、歯i′−
j′は等歯(E)、歯j′−aは等歯(E)である。す
なわち、等歯の個数はN=26、長歯の個数はL=5、短
歯の個数はM=5である。長歯b−c,e−f,h−i,k−l,n
−oの実効ピッチは、D・(1+1/P)=7・D/6に等し
くなされている。短歯t−u,w−x,z−a′,c′−d′,
f′−g′の実効ピッチは、D・(1−1/P)=5・D/6
に等しくなされている。巻線用溝bからtの間(b,c,d,
e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t)は長歯から始まっ
て等歯で終わり、長歯と等歯のみが部分的に集中してお
り、長歯を5個含む長ピッチブロックを形成している
(短歯を含まない)。同様に、巻線用溝tからbの間
(t,u,v,w,x,y,z,a′,b′,c′,e′,f′,g′,h′,i′,
j′,a,b)は短歯から始まって等歯で終わり、短歯と等
歯のみが部分的に集中しており、短歯を5個含む短ピッ
チブロックを形成している(長歯を含まない)。
In the embodiment shown in FIG. 10, the winding groove a of the armature core 4 is used.
The arrangement of ~ j 'is arranged at unequal angular intervals to make the effective pitch of the teeth formed between the winding grooves non-uniform. The effective pitch of the constant teeth is D = 60 ° / P = 10 ° (where P is the number of magnetic poles in the field part, P = 6), and the effective pitch of the long teeth is larger than D, Has an effective pitch smaller than D. Tooth a
-B is a constant tooth (E), tooth b-c is a long tooth (R), tooth cd is a constant tooth (E), tooth d-e is a constant tooth (E), tooth ef is a long tooth (E). R), the tooth f-g is a constant tooth (E), the tooth g-h is a constant tooth (E), the tooth h-j is a long tooth (R), the tooth i-j is a constant tooth (E), the tooth j-. k is a constant tooth (E), tooth kl is a long tooth (R), tooth 1-m is a constant tooth (E), tooth mn is a constant tooth (E), tooth n-o is a long tooth (R). ), The tooth op is a tooth (E), the tooth pq is a tooth (E), the tooth qr is a tooth (E), the tooth r-s is a tooth (E), and the tooth st. Is a tooth (E), tooth t-u is a short tooth (Z), tooth u-v is a tooth (E), tooth v-w is a tooth (E), tooth w-x is a tooth (Z). , Tooth x-y is a constant tooth (E), tooth yz is a constant tooth (E), z-a 'is a short tooth (Z), tooth a'-b' is a constant tooth (E), tooth b '. -C 'is a constant tooth (E), tooth c'-d' is a short tooth (Z), and tooth d'-e 'is a constant tooth (E). ), Teeth e'-f 'is equal teeth (E), the teeth f'-g' is Tanha (Z), the teeth g '-h'
Is a tooth (E), tooth h'-i 'is a tooth (E), tooth i'-
j ′ is a constant tooth (E), and tooth j′-a is a constant tooth (E). That is, the number of equal teeth is N = 26, the number of long teeth is L = 5, and the number of short teeth is M = 5. Long tooth bc, ef, h-i, k-l, n
The effective pitch of −o is made equal to D · (1 + 1 / P) = 7 · D / 6. Short teeth t-u, w-x, z-a ', c'-d',
The effective pitch of f'-g 'is D · (1-1 / P) = 5 · D / 6
Is made equal to. Between winding grooves b to t (b, c, d,
e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) start from the long tooth and end with the equitooth, and only the long tooth and the equitooth Partially concentrated, forming a long pitch block containing 5 long teeth (not including short teeth). Similarly, between the winding grooves t and b (t, u, v, w, x, y, z, a ', b', c ', e', f ', g', h ', i' ,
j ′, a, b) starts from the short tooth and ends with the equitooth, and only the short tooth and the equitooth are partially concentrated to form a short pitch block including five short teeth (long tooth). Not included).

次に、本実施例のコギングトルクについて説明する。マ
グネット3の1磁極ピッチ360゜/Pを基本周期として電
機子鉄心4の巻線用溝a〜j′をみたときの位相関係を
第11図に示す。A相の巻線群を収納された巻線用溝a,f,
g,l,m,r,s,x,y,d′,e′,j′は磁極ピッチの1/36の最小
位相差で位相ずれを設けられ(巻線用溝a,f,g,l,m,r,s,
x,y,d′,e′,j′の位相はすべて異なる)、その変動範
囲は1磁極ピッチの11/36(1/3以下)になされている。
同様に、B相の巻線群を収納された巻線用溝d,e,j,k,p,
q,v,w,b′,c′,h′,i′は1磁極ピッチの1/36の最小位
相差で位相ずれを設けられ、その変動範囲は1磁極ピッ
チの11/36になされている。さらに、C相の巻線群を収
納された巻線用溝b,c,h,i,n,o,t,u,z,a′,f′,g′は1
磁極ピッチの1/36の最小位相差で位相ずれを設けられ、
その変動範囲は1磁極ピッチの11/36になされている。
また、A相の巻線用溝群(a,f,g,l,m,r,s,x,y,d′,e′,
j′)とB相の巻線用溝群(d,e,j,k,p,q,v,w,b′,c′,
h′,i′)とC相の巻線用溝群(b,c,h,i,n,o,t,u,z,
a′,f′,g′)の間にはそれぞれ1磁極ピッチの1/3の位
相差がある。その結果、電機子鉄心4の合成の磁気的な
変動分が小さくなり、本実施例のコギングトルクは大幅
に低減されている。
Next, the cogging torque of this embodiment will be described. FIG. 11 shows the phase relationship when the winding grooves a to j ′ of the armature core 4 are viewed with the basic pitch of one magnetic pole pitch of the magnet 3 of 360 ° / P. Winding grooves a, f, which house the A-phase winding group
g, l, m, r, s, x, y, d ′, e ′, j ′ are phase-shifted with a minimum phase difference of 1/36 of the magnetic pole pitch (winding grooves a, f, g, l, m, r, s,
The phases of x, y, d ', e', and j'are all different), and the variation range is 11/36 (1/3 or less) of one magnetic pole pitch.
Similarly, the winding grooves d, e, j, k, p, which house the B-phase winding group,
q, v, w, b ', c', h ', i' are provided with a phase shift with a minimum phase difference of 1/36 of one magnetic pole pitch, and the variation range is set to 11/36 of one magnetic pole pitch. There is. Further, the winding grooves b, c, h, i, n, o, t, u, z, a ′, f ′, g ′ for accommodating the C-phase winding group are 1
A phase shift is provided with a minimum phase difference of 1/36 of the magnetic pole pitch,
The fluctuation range is 11/36 of one magnetic pole pitch.
A-phase winding groove group (a, f, g, l, m, r, s, x, y, d ′, e ′,
j ') and B-phase winding groove groups (d, e, j, k, p, q, v, w, b', c ',
h ', i') and C-phase winding groove group (b, c, h, i, n, o, t, u, z,
There is a phase difference of 1/3 of one magnetic pole pitch between a ', f', g '). As a result, the magnetic variation of the composition of the armature core 4 is reduced, and the cogging torque of this embodiment is greatly reduced.

さらに、本実施例の各巻線A1,A2,A3,A4,A5,A6,B1,B2,B
3,B4,B5,B6,C1,C2,C3,C4,C5,C6の実効ピッチは(1磁極
ピッチの8/9)=160度(電気角)以下から(1磁極ピッ
チの7/9)=140度(電気角)以上になされている。ここ
に、巻線の実効ピッチはその巻線が収納された巻線用溝
の中心のなす角度である。例えば、A相の巻線群につい
てみれば、A1の巻装された巻線用溝a−f間の角度は16
0゜、A2の巻装された巻線用溝g−l間の角度は160゜、
A3の巻装された巻線用溝m−r間の角度は155゜、A4の
巻装された巻線用溝s−x間の角度は140゜、A5の巻装
された巻線用溝y−d′間の角度は140゜、A6の巻装さ
れた巻線用溝e′−j′間の角度は145゜である。他の
B相、C相の巻線群についても同様に160度以下から140
度以上である。このように、各相の巻線が収納された巻
線用溝の変動範囲を小さくして(1磁極ピッチの1/3以
下)、かつ、巻線の実効ピッチの変動範囲を小さくする
ならば(160度以下から140度以上)、巻線作業が容易と
なり、自動化も可能となる。
Furthermore, each winding A1, A2, A3, A4, A5, A6, B1, B2, B of this embodiment
Effective pitch of 3, B4, B5, B6, C1, C2, C3, C4, C5, C6 is (8/9 of 1 pole pitch) = 160 degrees (electrical angle) or less (7/9 of 1 pole pitch) = 140 degrees (electrical angle) or more. Here, the effective pitch of the winding is the angle formed by the centers of the winding grooves in which the winding is housed. For example, looking at the A-phase winding group, the angle between the winding grooves a-f wound around A1 is 16
0 °, the angle between the winding groove g-1 wound around A2 is 160 °,
The angle between the winding winding grooves m and r of A3 is 155 °, the angle between the winding winding grooves sx of A4 is 140 °, and the winding winding groove of A5 is A The angle between y-d 'is 140 °, and the angle between the winding grooves e'-j' of the wound A6 is 145 °. For other B-phase and C-phase winding groups as well, from 160 degrees to 140 degrees
More than a degree. In this way, if the variation range of the winding groove in which the winding of each phase is housed is made small (1/3 or less of one magnetic pole pitch) and the variation range of the effective pitch of the winding is made small, (From 160 degrees or less to 140 degrees or more), winding work becomes easy and automation is possible.

また、本実施例では、長歯の実効ピッチD・(1+1/
P)=7・D/6は等歯の実効ピッチDに非常にちかく、か
つ、短歯の実効ピッチD・(1−1/P)=5・D/6も等歯
の実効ピッチに非常にちかい。従って、電機子鉄心に長
歯や短歯を容易に形成できる。
Further, in the present embodiment, the effective pitch of the long teeth D · (1 + 1 /
P) = 7 ・ D / 6 is very close to the effective pitch D of the equitooth, and the effective pitch D of the short tooth is D ・ (1-1 / P) = 5 ・ D / 6 is also very effective to the effective pitch of the equitooth. Close to you. Therefore, long teeth and short teeth can be easily formed on the armature core.

各種の実施例について説明してきたが、本発明はそのよ
うな実施例に限定されるものではない。例えば、第5図
の実施例と第10図の実施例を組み合わせて、界磁部の磁
極数がP=10極の電動機を構成できる。また、第5図の
実施例の構成を単純に2倍にして、2倍の磁極数と巻線
用溝数の電動機を構成できる。また、等歯の存在はかな
らずしも必要ではない。
Although various embodiments have been described, the invention is not limited to such embodiments. For example, the embodiment shown in FIG. 5 and the embodiment shown in FIG. 10 can be combined to construct an electric motor in which the number of magnetic poles in the field portion is P = 10. Further, the configuration of the embodiment shown in FIG. 5 can be simply doubled to construct an electric motor having double the number of magnetic poles and the number of winding grooves. Also, the presence of equal teeth is not always necessary.

一般に、P極(ここに、Pは4以上の整数)の界磁磁極
を円周上に所定角度間隔に有する界磁部と、3相巻線が
巻装された6P個の巻線用溝および巻線用溝の間に形成さ
れる歯を有する電機子鉄心とを具備し、前記界磁部と電
機子鉄心のうちでいずれか一方が他方に対して回転自在
となされた電動機の場合には、前記電機子鉄心は、実効
ピッチがD=60゜/Pより大きいL個(ここに、Lは整
数)の長歯と、実効ピッチがDより小さいM個(ここ
に、Mは整数)の短歯を有し、前記長歯と短歯の個数を L≧2 M≧2 となすことによって、巻線用溝の位相を簡単に変動させ
ることができ、コギングトルクを低減できる。
Generally, a field portion having field poles of P poles (where P is an integer of 4 or more) at predetermined angular intervals on the circumference, and 6P winding grooves in which three-phase windings are wound. And an armature core having teeth formed between the winding grooves, and in the case of an electric motor in which one of the field part and the armature core is rotatable with respect to the other. The above-mentioned armature core has L long teeth (where L is an integer) with an effective pitch larger than D = 60 ° / P and M pieces with an effective pitch smaller than D (where M is an integer). By setting the number of the long teeth and the number of the short teeth to L ≧ 2 M ≧ 2, it is possible to easily change the phase of the winding groove and reduce the cogging torque.

さらに、電機子鉄心に実効ピッチがDに等しいN個(こ
こに、Nは整数)の等歯も設け、長歯と等歯のみが部分
的に集中している長ピッチブロックおよび短歯と等歯の
みが部分的に集中している短ピッチブロックを同数個有
し、長ピッチブロックと短ピッチブロックは交互に円周
上に配置され、少なくとも1個の長ピッチブロック内に
少なくとも2個の長歯を含み、かつ、少なくとも1個の
短ピッチブロック内に少なくとも2個の短歯を含み、隣
接する一対の長ピッチブロックと短ピッチブロックのな
す角度が(360゜/P)・Q(ここに、Qは2以上の整
数)となるときに、長ピッチブロック内の長歯の実効ピ
ッチをD・(1+G/Q)(ここに、Gは1以上でQ/2以下
の整数)に等しくし、短ピッチブロック内の短歯の実効
ピッチをD・(1−H/Q)(ここに、Hは1以上でQ/2以
下の整数)に等しくすることにより、容易にコギングト
ルクを小さくできる。
Further, the armature core is also provided with N (where N is an integer) equal teeth whose effective pitch is equal to D, such as long pitch blocks and short teeth in which only long teeth and equal teeth are partially concentrated. It has the same number of short pitch blocks in which only teeth are partially concentrated, long pitch blocks and short pitch blocks are alternately arranged on the circumference, and at least two long pitch blocks are included in at least one long pitch block. Including at least one tooth and at least two short teeth in at least one short pitch block, the angle between a pair of adjacent long pitch block and short pitch block is (360 ° / P) · Q (where , Q is an integer of 2 or more), the effective pitch of the long teeth in the long pitch block is made equal to D · (1 + G / Q) (where G is an integer of 1 or more and Q / 2 or less). , The effective pitch of the short teeth in the short pitch block is D ・ (1-H / Q) Here, H is by equal to Q / 2 an integer) with one or more, can be easily reduced cogging torque.

前述の第5図の実施例では、P=4,N=18(>P),
(P>)L=3≧2,(P>)M=3≧2であり、Q=P
=4,G=1,H=1である。また、前述の第9図(c)の実
施例では、P=4,N=20(>P),(P>)L=2≧2,
(P>)M=2≧2であり、Q=P=4,G=1またはG
=2=Q/2,H=1またはH=2=Q/2である。
In the embodiment of FIG. 5 described above, P = 4, N = 18 (> P),
(P>) L = 3 ≧ 2, (P>) M = 3 ≧ 2, and Q = P
= 4, G = 1, H = 1. In the embodiment shown in FIG. 9 (c), P = 4, N = 20 (> P), (P>) L = 2 ≧ 2,
(P>) M = 2 ≧ 2, Q = P = 4, G = 1 or G
= 2 = Q / 2, H = 1 or H = 2 = Q / 2.

また、前述の第5図の実施例のように、界磁部の1磁極
ピッチを基本周期とするときに所定相の巻線が収納され
た巻線用溝の位相の変動範囲を1磁極ピッチの1/3以下
にすれば、巻線が複雑にならない。さらに、巻線の実効
ピッチを165度以下から135度以上にすれば、巻線作業の
自動化も容易に実現できる。
Further, as in the embodiment of FIG. 5 described above, when the pitch of one magnetic pole of the field magnet section is used as the basic period, the variation range of the phase of the winding groove accommodating the winding of the predetermined phase is set to one magnetic pole pitch. If it is set to 1/3 or less, the winding will not be complicated. Further, if the effective pitch of the winding is set to 165 degrees or less to 135 degrees or more, automation of winding work can be easily realized.

以上の実施例では、内側にマグネットを配置し外側に電
機子鉄心を配置したが、その関係が逆であってもよい。
また、円環状のマグネットに限らず、複数個のマグネッ
ト磁極片によって界磁部を構成してもよい。その他、本
発明の主旨を変えずして種々の変更が可能である。
In the above embodiments, the magnet is arranged inside and the armature core is arranged outside, but the relationship may be reversed.
Further, the field magnet portion is not limited to the ring-shaped magnet, but may be composed of a plurality of magnet magnetic pole pieces. Besides, various modifications can be made without changing the gist of the present invention.

発明の効果 本発明は、界磁部の磁極数よりも巻線用溝の数が多い電
動機において、巻線用溝の配置を特殊となすことにより
コギングトルクを大幅に低減したものである。従って、
本発明に基いて、例えばロボットの関節駆動用電動機や
NC機器の駆動用電動機を構成するならば、高精度の回転
駆動や位置制御が可能となる。
EFFECTS OF THE INVENTION The present invention significantly reduces the cogging torque by specially arranging the winding grooves in an electric motor in which the number of winding grooves is larger than the number of magnetic poles in the field unit. Therefore,
Based on the present invention, for example, an electric motor for driving a joint of a robot,
If an electric motor for driving NC equipment is configured, highly accurate rotation drive and position control are possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の電動機を表わす要部構造図、第2図は駆
動回路の構成図、第3図は第1図の電動機の平面展開
図、第4図は界磁部のマグネットの磁束密度の分布を表
わす図、第5図は本発明の電動機の一実施例を表わす平
面展開図、第6図はマグネットの1磁極ピッチを基本周
期として第5図の電機子鉄心をみたときの巻線用溝の位
相関係を示す図、第7図は第5図の実施例の磁気的変動
分を表わす図、第8図は第1図の従来例の磁気的変動分
を表わす図、第9図(a),(b),(c),(d)は
それぞれ本発明の他の実施例を表わす図、第10図は本発
明の電動機の他の実施例を表わす平面展開図、第11図は
マグネットの1磁極ピッチを基本周期として第10図の電
機子鉄心をみたときの巻線用溝の位相関係を示す図であ
る。 2……ロータ、3……マグネット、4……電機子鉄心、
5,a〜x,a〜j……巻線用溝、6……歯、A1〜A4,B1〜B4,
C1〜C4……巻線。
FIG. 1 is a structural diagram of a main part of a conventional electric motor, FIG. 2 is a configuration diagram of a drive circuit, FIG. 3 is a plan development view of the electric motor of FIG. 1, and FIG. 4 is a magnetic flux density of a magnet of a field part. FIG. 5 is a developed plan view showing an embodiment of the electric motor of the present invention, and FIG. 6 is a winding when the armature core of FIG. 5 is viewed with one magnetic pole pitch of the magnet as a basic period. FIG. 7 is a diagram showing the phase relationship of the groove for use, FIG. 7 is a diagram showing the magnetic variation of the embodiment of FIG. 5, FIG. 8 is a diagram showing the magnetic variation of the conventional example of FIG. 1, and FIG. 11 (a), (b), (c), and (d) are views showing another embodiment of the present invention, FIG. 10 is a plan development view showing another embodiment of the electric motor of the present invention, and FIG. FIG. 11 is a diagram showing a phase relationship of winding grooves when the armature core of FIG. 10 is viewed with one magnetic pole pitch of a magnet as a basic cycle. 2 ... Rotor, 3 ... Magnet, 4 ... Armature iron core,
5, a to x, a to j ... Winding groove, 6 ... Tooth, A1 to A4, B1 to B4,
C1 to C4 ... Winding.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】P極(ここに、Pは4以上の整数)の永久
磁石磁極を円周上に所定角度間隔に有する界磁部と、前
記永久磁石磁極と所定間隙あけて設けられ、3相の巻線
が巻装された6P個の巻線用溝および前記巻線用溝の間に
形成される歯を有する電機子鉄心とを具備し、前記界磁
部と前記電機子鉄心のうちでいずれか一方が他方に対し
て回転自在となされた電動機であって、前記電機子鉄心
の各歯の実効ピッチを前記各歯の両端の前記巻線用溝の
中心のなす角度とするとき、前記電機子鉄心は、実効ピ
ッチがD=60゜/Pに等しいN個(ここに、Nは4以上の
整数)の等歯と、実効ピッチがDより大きいL個(ここ
に、Lは2以上の整数)の長歯と、実効ピッチがDより
小さいM個(ここに、Mは2以上の整数)の短歯を有
し、さらに、前記電機子鉄心の歯の並びを所定方向にブ
ロック化したとき、前記長歯から始まって前記等歯で終
わり、少なくとも2個の前記長歯と少なくとも2個の前
記等歯が部分的に隣接して集中している長ピッチブロッ
ク、および、前記短歯から始まって前記等歯で終わり、
少なくとも2個の前記短歯と少なくとも2個の前記等歯
が部分的に隣接して集中している短ピッチブロックを円
周上に交互に配置され、さらに、前記長歯と前記長歯の
間に少なくとも1個の前記等歯が配置され、前記短歯と
前記短歯の間に少なくとも1個の前記等歯が配置され、
前記長歯と前記短歯の間に少なくとも1個の前記等歯が
配置されたことを特徴とする電動機。
1. A field portion having permanent magnet magnetic poles of P pole (where P is an integer of 4 or more) at a predetermined angular interval on the circumference, and a permanent magnet magnetic pole provided with a predetermined gap therebetween. A 6P winding groove around which a phase winding is wound and an armature core having teeth formed between the winding groove, wherein the field part and the armature core are In any one of the above is an electric motor that is rotatable with respect to the other, when the effective pitch of each tooth of the armature core is an angle formed by the centers of the winding grooves at both ends of each tooth, The armature core has N equal teeth (where N is an integer of 4 or more) having an effective pitch equal to D = 60 ° / P and L teeth having an effective pitch greater than D (here, L is 2). The above electric machine, and M short teeth with an effective pitch smaller than D (here, M is an integer of 2 or more). When the arrangement of teeth of the iron core is blocked in a predetermined direction, starting from the long tooth and ending with the equal tooth, at least two long teeth and at least two equal teeth are partially adjacent and concentrated. A long pitch block, and starting from the short tooth and ending at the equal tooth,
Short pitch blocks in which at least two short teeth and at least two equal teeth are partially adjacent and concentrated are alternately arranged on the circumference, and further, between the long teeth and the long teeth. At least one of the equal teeth is arranged in the, and at least one of the equal teeth is arranged between the short tooth and the short tooth,
An electric motor, wherein at least one equal tooth is arranged between the long tooth and the short tooth.
【請求項2】P>L、かつ、P>Mとしたこと特徴とす
る特許請求の範囲第1項に記載の電動機。
2. The electric motor according to claim 1, wherein P> L and P> M.
JP59144903A 1984-07-11 1984-07-11 Electric motor Expired - Lifetime JPH0685628B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59144903A JPH0685628B2 (en) 1984-07-11 1984-07-11 Electric motor
DE8585304941T DE3578281D1 (en) 1984-07-11 1985-07-10 ELECTRIC ROTATOR.
EP85304941A EP0170452B1 (en) 1984-07-11 1985-07-10 Rotating electric motor
US06/753,964 US4692645A (en) 1984-07-11 1985-07-11 Rotating electric motor with reduced cogging torque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59144903A JPH0685628B2 (en) 1984-07-11 1984-07-11 Electric motor

Publications (2)

Publication Number Publication Date
JPS6122746A JPS6122746A (en) 1986-01-31
JPH0685628B2 true JPH0685628B2 (en) 1994-10-26

Family

ID=15372985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59144903A Expired - Lifetime JPH0685628B2 (en) 1984-07-11 1984-07-11 Electric motor

Country Status (1)

Country Link
JP (1) JPH0685628B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078123B2 (en) * 1988-08-03 1995-01-30 日本ビクター株式会社 3-phase DC motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144902A (en) * 1983-02-07 1984-08-20 Nippon Mining Co Ltd Process controlling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144902A (en) * 1983-02-07 1984-08-20 Nippon Mining Co Ltd Process controlling method

Also Published As

Publication number Publication date
JPS6122746A (en) 1986-01-31

Similar Documents

Publication Publication Date Title
US4692646A (en) Rotating electric motor with reduced cogging torque
US4692645A (en) Rotating electric motor with reduced cogging torque
US4631510A (en) Harmonically graded airgap reluctance-type rotating electric resolver
EP1498699B1 (en) Rotational angle sensor and rotary electric machine comprising it
JPS6223537B2 (en)
JPS6142258A (en) Motor
JPS61221559A (en) Generator
JPH0685628B2 (en) Electric motor
JPH0685629B2 (en) Electric motor
JPH0681468B2 (en) Electric motor
JPS61221560A (en) Rotary electric machine
JPH02276443A (en) Motor
JPH02269448A (en) Motor
JPS61196746A (en) Motor
JPH071999B2 (en) Electric motor
JPH02276448A (en) Motor
JPS61221555A (en) Generator
JPH02269445A (en) Motor
JPH02276445A (en) Motor
JPH02276441A (en) Motor
JPS61221556A (en) Generator
JPH0681469B2 (en) Electric motor
JPH02269456A (en) Motor
JPS6142255A (en) Motor
JPH02276444A (en) Motor