JPH078123B2 - 3-phase DC motor - Google Patents

3-phase DC motor

Info

Publication number
JPH078123B2
JPH078123B2 JP63194122A JP19412288A JPH078123B2 JP H078123 B2 JPH078123 B2 JP H078123B2 JP 63194122 A JP63194122 A JP 63194122A JP 19412288 A JP19412288 A JP 19412288A JP H078123 B2 JPH078123 B2 JP H078123B2
Authority
JP
Japan
Prior art keywords
phase
motor
salient pole
poles
salient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63194122A
Other languages
Japanese (ja)
Other versions
JPH0246153A (en
Inventor
朗 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP63194122A priority Critical patent/JPH078123B2/en
Priority to US07/388,888 priority patent/US5006745A/en
Publication of JPH0246153A publication Critical patent/JPH0246153A/en
Publication of JPH078123B2 publication Critical patent/JPH078123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3相直流モータに係り、特にコギングを大幅に
低減させた有コアの直流モータに関する。
Description: TECHNICAL FIELD The present invention relates to a three-phase DC motor, and more particularly to a cored DC motor with significantly reduced cogging.

〔従来の技術〕[Conventional technology]

従来の3相直流モータにおいて、界磁磁極数Pとコアの
円周上に形成される突極部の数又はスロットの数(以下
スロット数という)Nの組合せは、一般に、P=(3±
1)n,N=3n(但し、nは自然数)となっている。有コ
アモータの場合、磁極の境界(N極とS極の境界)と突
極部の間でコギングが発生し、コギングの次数は通常、
第1表,第2表に示すように、NとPの最小公倍数で発
生する。
In a conventional three-phase DC motor, the combination of the number of field poles P and the number of salient poles or slots (hereinafter referred to as the number of slots) N formed on the circumference of the core is generally P = (3 ±
1) n, N = 3n (where n is a natural number). In the case of a cored motor, cogging occurs between the magnetic pole boundary (the boundary between the N pole and the S pole) and the salient pole portion, and the order of the cogging is usually
As shown in Tables 1 and 2, the least common multiple of N and P occurs.

このような、従来のモータのコギング発生の原理(メカ
ニズム)について、第1表のn=4の場合(8極,12ス
ロット)を例にとって、第4図及び第5図を併せ参照し
ながら説明する。第4図は8極,12スロットの従来の3
相直流モータ10の概略断面図であり、この3相直流モー
タ10のコアC(突極部c1〜c12)の各スロットには巻線
(コイル)Lが巻回されて電機子部を構成し、一定のエ
アギャップgを介して8極に着磁された円筒状のマグネ
ットMが配置され、マグネットMの外周には磁路を形成
するためのヨークYが取付けられている。かかる3相直
流モータはマグネットMとヨークYから成る界磁部と電
機子部のうちいずれか一方が固定され、他方がそれに対
して回転自在となるように構成される。
The principle (mechanism) of such conventional motor cogging generation will be described with reference to FIGS. 4 and 5 by taking the case of n = 4 (8 poles, 12 slots) in Table 1 as an example. To do. Fig. 4 shows the conventional 3 with 8 poles and 12 slots.
FIG. 3 is a schematic cross-sectional view of the three-phase DC motor 10, in which a winding L (coil) L is wound around each slot of the core C (salient pole portions c 1 to c 12 ) of the three-phase DC motor 10 to form an armature portion. A cylindrical magnet M having 8 poles is arranged via a constant air gap g, and a yoke Y for forming a magnetic path is attached to the outer periphery of the magnet M. Such a three-phase DC motor is configured such that one of the field portion composed of the magnet M and the yoke Y and the armature portion is fixed, and the other is rotatable with respect to it.

ここで、界磁磁極(M1〜Mp)はN極又はS極からなる磁
極であり、この磁極のN極の磁極と、S極の磁極とが交
互にヨークYの円周上等間隔にP個(このときP=8)
配置してマグネットMを構成している。
Here, the field magnetic poles (M 1 to Mp) are magnetic poles composed of N poles or S poles, and the N pole magnetic poles and the S pole magnetic poles are alternately arranged at equal intervals on the circumference of the yoke Y. P (at this time P = 8)
Arranged to form the magnet M.

また、突極部はスロットを形成したT字上にコアCから
突出しており、この突極部のスロットに3相の巻線Lが
連続して巻回して電機子部を構成している。
Further, the salient pole portion projects from the core C on the T-shape forming the slot, and the winding L of three phases is continuously wound around the slot of the salient pole portion to form the armature portion.

かかる構成の3相直流モータ10において、電機子部又は
界磁部の一方を固定して、他の一方を回転させると、N
極とS極の磁極の境界a〜hと突極部の間でコギングを
生じ、各境界a〜hの個所で、夫々第5図(a)〜
(h)に示されるような波形のコギングを発生してい
た。そして、モータ全体のコギングはこれらを合成した
ものとなり、同図(i)に示すような波形となり、1回
転当りのコギングの回数(以下コギング次数という)は
24となっている。これは磁極数(P=8)とスロット数
(N=12)の最小公倍数である。
In the three-phase DC motor 10 having such a configuration, when one of the armature portion and the field portion is fixed and the other is rotated, N
Cogging occurs between the boundaries a to h of the magnetic poles of the pole and the S pole and the salient pole portion, and at the positions of the boundaries a to h, respectively, FIG.
Waveform cogging as shown in (h) was generated. Then, the cogging of the entire motor is a combination of these, and the waveform is as shown in (i) of the figure, and the number of times of cogging per rotation (hereinafter referred to as the cogging order) is
It is 24. This is the least common multiple of the number of magnetic poles (P = 8) and the number of slots (N = 12).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところでかかる従来の3相直流モータ10では、 k=N×P/(NとPの最小公倍数) ………(1) で表わされる複数の場所で同じタイミングで同時にコギ
ングを発生するため、全体のコギングは非常に大きくな
ってしまうという欠点がある。例えば上記8極12スロッ
トのモータ10において、各境界a〜hのうちの1ヶ所で
発生するコギングの大きさをtとすると、全体のコギン
グの大きさTは、 T=kt=12×8t/24=4t となり、各境界a〜hで発生するコギングの4倍にもな
ってしまう。従って、かかるモータ10を例えばVTRのド
ラムモータやキャプスタンモータに使用すると、ジッタ
に悪影響を与えたり、ノイズや振動の発生原因となる等
の問題があった。
By the way, in such a conventional three-phase DC motor 10, since cogging occurs simultaneously at the same timing at a plurality of places represented by k = N × P / (least common multiple of N and P) (1), There is a drawback that cogging becomes very large. For example, in the 8-pole 12-slot motor 10 described above, if the size of the cogging generated at one of the boundaries a to h is t, the total size C of the cogging is T = kt = 12 × 8t / 24 = 4t, which is four times as large as the cogging generated at the boundaries a to h. Therefore, when such a motor 10 is used for a VTR drum motor or a capstan motor, for example, there are problems that the jitter is adversely affected and noise or vibration is generated.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記問題点を解決するために、本発明の3相直流モータ
は、(1)マグネット(M)とヨーク(Y)とからなる
界磁部と、コア(C)と巻線(L1〜L3)とからなる電機
子部とを有する3相直流モータであって、界磁部は、マ
グネット(M)がP極の界磁磁極(M1〜Mp)を構成し、
ヨーク(Y)の円周上に等角度間隔に配置され、電機子
部は、コア(C)が3相の巻線(L1〜L3)を施したN個
の突極部(c1〜cn)を有し、円周上等間隔に配置され、
界磁部に対して固定又は回転自在とされ、界磁磁極(M1
〜Mp)と突極部(c1〜cn)とは、界磁磁極(M1〜Mp)の
極数Pと突極部(c1〜cn)の数Nとの組み合わせがP=
2(4n+3),N=3(2n+1)(nは自然数)であり、
且つ界磁磁極(M1〜Mp)の極数Pと突極部(c1〜cn)の
数Nとの最小公倍数がN×Pに等しくなるよう構成し、
また、(2)3相の巻線(L1〜L3)は、夫々1相分の巻
線が突極部(c1〜cn)に1つおきに巻き方向が交互とな
るように、N/3個の突極部に連続して巻回されるよう構
成した。
In order to solve the above problems, a three-phase DC motor of the present invention, (1) the magnet and the field portion consisting of a yoke (Y) and (M), a core (C) and the winding (L 1 ~L 3 ) A three-phase direct current motor having an armature part composed of and a field part forming a field magnetic pole (M 1 to Mp) in which the magnet (M) is a P pole,
The armature portion is arranged at equal angular intervals on the circumference of the yoke (Y), and the armature portion has N salient pole portions (c 1 ) to which the core (C) is wound with three-phase windings (L 1 to L 3 ). ~ Cn) and are evenly spaced on the circumference,
It is fixed or rotatable with respect to the field part, and the field pole (M 1
˜Mp) and the salient pole portions (c 1 to cn), the number of poles P of the field magnetic poles (M 1 to Mp) and the number N of the salient pole portions (c 1 to cn) are P =
2 (4n + 3), N = 3 (2n + 1) (n is a natural number),
In addition, the least common multiple of the number P of poles of the field magnetic poles (M 1 to Mp) and the number N of salient pole portions (c 1 to cn) is configured to be equal to N × P,
In addition, (2) the three-phase windings (L 1 to L 3 ) are arranged such that the windings of one phase are alternately arranged in the salient pole portions (c 1 to cn). It is configured to be continuously wound around N / 3 salient poles.

〔実施例〕〔Example〕

本発明の3相直流モータ(以下単に「モータ」とも記
す)の主な特徴は、コギングを低減させるために、スロ
ット数Nと磁極数Pとの選択(関係性)に工夫を凝し、
上記のような関係に設定したところにある。その具体的
な数値を第3表に示す。
The main feature of the three-phase DC motor (hereinafter also simply referred to as “motor”) of the present invention is that the selection (relationship) between the number of slots N and the number of magnetic poles P is devised in order to reduce cogging.
It has been set to the above relationship. The concrete numerical values are shown in Table 3.

このような組合せにした場合、磁極とコアの円周上等間
隔に形成される突極部の位置が全てずれているために、
従来モータのように同じタイミングで発生するコギング
同士が加算されることは全く無い。また、一般にコギン
グの次数が高いほどコギングは少くなるが、本発明の場
合、第1〜2表に示した従来例と比較して、第3表に示
したようなコギングの次数が高くなる組合せとなってお
り、従って、コギングが極めて少なく回転が滑らかな3
相直流モータを実現できた。(なお、コギングを少なく
するためには、着磁波形を操作したり、コアに補助溝や
補極を設ける等の方法があるが、着磁波形を操作する方
法は条件設定が困難であり、補助溝は総磁束量が減るた
めトルクが低下する。また、補極は特にモータを小型化
した場合、巻線スペースが減少し、トルクが低下する。
本発明の3相直流モータの場合はかかる操作は全く不要
なので、組立てが容易であり、しかもトルクの低下を招
くこともない。) ところで、本発明の3相直流モータの如き磁極数Pとス
ロット数Nの組合せにした場合、磁極に対する突極部の
位相が全てずれているため、互いに位相のずれの少ない
複数個の突極部にコイルを巻回して1つの相を形成しな
ければならない。そこで、本発明のモータの場合は、1
つおきの突極部にコイルの巻き方向を反転させながら、
N/3(相数)個の突極部に巻回して1つの相を形成した
ものである。
In the case of such a combination, the positions of the salient pole portions formed at equal intervals on the circumference of the magnetic pole and the core are displaced,
Unlike conventional motors, cogging that occurs at the same timing is never added together. Generally, the higher the degree of cogging, the less the degree of cogging. However, in the case of the present invention, a combination in which the degree of cogging as shown in Table 3 becomes higher than that in the conventional example shown in Tables 1 and 2. Therefore, the cogging is extremely small and the rotation is smooth.
A phase DC motor was realized. (In order to reduce cogging, there are methods such as operating the magnetizing waveform and providing an auxiliary groove or a compensating pole in the core, but the method of operating the magnetizing waveform is difficult to set conditions, The auxiliary groove reduces the total magnetic flux, thus reducing the torque, and the auxiliary pole reduces the winding space and torque when the motor is downsized.
In the case of the three-phase DC motor of the present invention, such an operation is completely unnecessary, so that the assembly is easy and the torque is not lowered. By the way, when the number of magnetic poles P and the number of slots N are combined as in the case of the three-phase DC motor of the present invention, the salient pole portions are all out of phase with respect to the magnetic poles. A coil must be wound around the part to form one phase. Therefore, in the case of the motor of the present invention, 1
While reversing the winding direction of the coil on every other salient pole,
It is formed by winding around N / 3 (number of phases) salient poles.

次に、本発明になる3相直流モータの具体的な実施例に
ついて、従来例と比較しながら説明する。第3図は第4
図に示した従来のモータの平面展開図である。図示の如
く、突極部c1,c4,c7,c10は磁極に対して同位相であり、
第1相のコイルL1は突極部c1に対して反時計(ccw)方
向に巻回したとすれば、突極部c4,c7,c10も同様にccw方
向に巻回してu相を形成している。又、他の2相のコイ
ルL2,L3についても同様にしてv相,w相を形成してい
る。
Next, specific examples of the three-phase DC motor according to the present invention will be described in comparison with conventional examples. Figure 3 is number 4
It is a plane development view of the conventional motor shown in the figure. As shown, the salient pole portions c 1 , c 4 , c 7 , and c 10 have the same phase with respect to the magnetic poles,
If the first-phase coil L 1 is wound counterclockwise (ccw) with respect to the salient pole portion c 1 , the salient pole portions c 4 , c 7 , and c 10 are also wound in the ccw direction in the same manner. It forms the u phase. Further, the v-phase and w-phase are similarly formed for the other two-phase coils L 2 and L 3 .

また、各突極部間の間隔は、電気角ψで ψ=(360゜/N)×(P/2) ……………(2) (但し、N:スロット数,P/2:極対数) で表わされ、第3図の従来モータ10の場合、例えば、磁
極に対して突極部c1,c2間の位相差は電気角ψで、ψ
=(360゜/12)×8/2=120゜となって、上述のように
コイルを形成することによって3相のモータを形成して
いる。この場合、4つの突極部が磁極に対して同位相で
あるため、第4図及び第5図を用いて説明したように、
同位相で発生するコギングがそのまま加算され、第3図
示の従来例の場合、全体にコギングトルクは1つの突極
部が発生するコギングトルクの略4倍となってしまう。
なお同図において、●→,→○は夫々コイルの巻き始
め,巻き終りを示す。
In addition, the space between each salient pole is the electrical angle ψ = ψ = (360 ° / N) × (P / 2) …………… (2) (However, N: number of slots, P / 2: pole In the case of the conventional motor 10 shown in FIG. 3, for example, the phase difference between the salient pole portions c 1 and c 2 with respect to the magnetic pole is the electrical angle ψ 1 ,
1 = (360 ° / 12) × 8/2 = 120 °, and a three-phase motor is formed by forming the coil as described above. In this case, since the four salient pole portions have the same phase with respect to the magnetic poles, as described with reference to FIGS. 4 and 5,
The cogging generated in the same phase is added as it is, and in the case of the conventional example shown in FIG. 3, the cogging torque becomes about four times the cogging torque generated by one salient pole portion as a whole.
In the figure, ● → and → ○ indicate the start and end of winding of the coil, respectively.

<第1実施例> 次に、本発明の3相直流モータの具体的構成例につい
て、第1図を参照しながら説明する。第1図は第3表に
示した磁極数Pとスロット数Nの組合せにおいて、n=
1(14極9スロット)の3相直流モータを示す平面展開
図である。この図において、第3図に示した従来例と同
一部分には同一符号を付し、その詳細な説明は省略す
る。9個の突極部c1〜c9は磁極に対して全て位相がずれ
ているため、互いにずれ方の少ない3つの突極を選んで
1つの相を形成する。本発明に係るモータのPとNの組
合せでは、前述の如く1つおきの突極部にコイルの巻き
方向を反転させて巻回すれば良い。即ち、第1図におい
て例えば突極部c1にccw方向にコイルL1を巻回したとす
ると、磁極に対して突極部c1,c3間の位相差ψは、第
2式より電気角でψ=(360゜/9)×7×2=560゜=
360゜+200゜となり、これは実質的に電気角200゜と見
做せるのでコイルを時計(cw)方向に巻回すれば、逆起
電力波形(以下、“逆起波形”と記載する)の位相差ψ
′は、ψ′=200゜−180゜=20゜となる。同様に、
突極部c5に対してcw方向に巻回すれば、突極部c3に対し
て位相差は20゜となる。このようにc1(ccw)→c3(c
w)→c5(ccw)となるように、3つの突極部に1つおき
にコイルL1を巻回することにより、u相を形成してい
る。
<First Embodiment> Next, a specific configuration example of the three-phase DC motor of the present invention will be described with reference to FIG. FIG. 1 shows a combination of the number of magnetic poles P and the number of slots N shown in Table 3, where n =
FIG. 3 is a plan development view showing a 1-phase (14-pole, 9-slot) three-phase DC motor. In this figure, the same parts as those of the conventional example shown in FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted. Nine salient poles c 1 to c 9 because it has all the phase shifted with respect to the magnetic pole, to form a one phase to choose three salient less deviation way to each other. In the combination of P and N of the motor according to the present invention, the winding direction of the coil may be reversed around every other salient pole portion as described above. That is, if the coil L 1 is wound around the salient pole portion c 1 in the ccw direction in FIG. 1 , the phase difference ψ 2 between the salient pole portions c 1 and c 3 with respect to the magnetic poles is Electrical angle ψ 2 = (360 ° / 9) × 7 × 2 = 560 ° =
It becomes 360 ° + 200 °, which can be regarded as an electrical angle of 200 °, so if the coil is wound in the clock (cw) direction, the counter electromotive force waveform (hereinafter referred to as “counterelectromotive waveform”) Phase difference ψ
2 ′ is φ 2 ′ = 200 ° −180 ° = 20 °. Similarly,
If it is wound around the salient pole portion c 5 in the cw direction, the phase difference becomes 20 ° with respect to the salient pole portion c 3 . Thus c 1 (ccw) → c 3 (c
The u phase is formed by winding the coil L 1 every other three salient pole portions so that w) → c 5 (ccw).

また、突極部c4は突極部c1に対して位相ψが、ψ
(360゜/9)×7×3=840゜=2×360゜+120゜から明
らかな如く実質的な電気角は120゜ずれており、上記と
同様、突極部c4にccw方向,突極部c6にcw方向,突極部c
8にccw方向へコイルL2を巻回して{即ち、c4(ccw)→c
6(cw)→c8(ccw)}v相を形成している。同様に、突
極部c4に対いて実質的な電気角が120゜ずれている突極
部c7を巻き始めとして、c7(ccw)→c9(cw)→c2(cc
w)となるように3つの突極部にコイルL3を巻回するこ
とにより、w相を形成し、これらu〜w相のコイルで3
相となる直流モータ1のコイルLを構成している。
Further, the salient pole portion c 4 has a phase ψ 3 with respect to the salient pole portion c 1 , and ψ 3 =
(360 ° / 9) × 7 × 3 = 840 ° = 2 × 360 ° apparent as substantial electrical angle + 120 ° are 120 ° out similar to the above, ccw direction salient pole portion c 4, butt Cw direction on pole c 6 , salient pole c
Wind the coil L 2 around 8 in the ccw direction (ie c 4 (ccw) → c
6 (cw) → c 8 (ccw)} v phase is formed. Similarly, starting the winding of salient pole portion c 7 whose actual electrical angle is shifted by 120 ° with respect to salient pole portion c 4 , c 7 (ccw) → c 9 (cw) → c 2 (cc
w) is formed by winding the coil L 3 around the three salient poles so that the w-phase coil is formed by the coils of u to w phases.
The coil L of the direct-current motor 1 that is in phase is configured.

第6図は、かかる3相直流モータ1の各相の逆起波形を
示す図で、第6図(A)中の曲線αは突極部c1に巻回さ
れたコイルより生じる逆起波形、曲線βは突極部c3に巻
回されたコイルにより逆起波形、曲線γは突極部c5に巻
回されたコイルにより逆起波形、曲線δは突極部c1,c3,
c5に巻回されたコイルにより合成波形,即ちu相の逆起
波形である。同様にして、第6図(B)の曲線ξは突極
部c4,c6,c8に巻回されたコイルによる逆起波形ε,ζ,
ηの合成波形,即ちv相の逆起波形であり、第6図
(C)の曲線μは突極部c7,c9,c2に巻回されたコイルに
より逆起波形θ,κ,λの合成波形,即ちw相の逆起波
形である。
FIG. 6 is a diagram showing the counter electromotive waveform of each phase of the three-phase DC motor 1, and the curve α in FIG. 6 (A) is the counter electromotive waveform generated by the coil wound around the salient pole portion c 1 . , The curve β is the counter electromotive waveform due to the coil wound around the salient pole portion c 3 , the curve γ is the counter electromotive waveform due to the coil wound around the salient pole portion c 5 , and the curve δ is the salient pole portions c 1 and c 3 ,
It is a composite waveform by the coil wound around c 5 , that is, a u-phase back electromotive waveform. Similarly, the curve ξ in FIG. 6 (B) is the back electromotive force waveform ε, ζ, generated by the coils wound around the salient pole portions c 4 , c 6 , c 8 .
It is a composite waveform of η, that is, a v-phase counter-electromotive waveform, and the curve μ in FIG. 6 (C) is the counter-electromotive waveforms θ, κ, which are formed by the coils wound around the salient pole portions c 7 , c 9 , c 2 . It is a composite waveform of λ, that is, a w-phase back electromotive waveform.

かかる3相直流モータ1の諸特性を、これに最も極数及
びスロット数の近い従来のモータとの比較において測定
したところ、コギングトルクは従来のモータに比べて大
幅に減少していることが確認された。
When the characteristics of the three-phase DC motor 1 were measured in comparison with a conventional motor having the closest number of poles and slots, it was confirmed that the cogging torque was significantly reduced as compared with the conventional motor. Was done.

<第2実施例> 次に、本発明の3相直流モータの第2実施例について、
第2図の平面展開図を参照しながら説明する。この図に
おいて、第1図に示した第1実施例と同一部分には同一
符号を付し、その詳細な説明は省略する。第2実施例の
3相直流モータ2は、第3表において磁極数Pとスロッ
ト数Nの組合せが、n=2(22極15スロット)の場合で
ある。かかる3相直流モータ2の前記モータ1との相違
点は、第1図と第2図との比較から明らかなように、マ
グネットMの磁極数及び突極部の数(スロット数)が増
加し、1つおきの5個の突極部(例えばc1,c3,c5,c7,
c9)に巻き方向を反転させて巻回して1つの相を形成し
ている。この場合も突極部c1〜c15は磁極に対して全て
位相がずれており、互いにずれ方の少ない5つ(15スロ
ット/3相)を選んで1つの相を形成している。
Second Embodiment Next, a second embodiment of the three-phase DC motor of the present invention will be described.
This will be described with reference to the plan development view of FIG. In this figure, the same parts as those in the first embodiment shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. In the three-phase DC motor 2 of the second embodiment, the combination of the number of magnetic poles P and the number of slots N in Table 3 is n = 2 (22 poles and 15 slots). The difference between the three-phase DC motor 2 and the motor 1 is that the number of magnetic poles of the magnet M and the number of salient pole portions (the number of slots) increase, as is clear from the comparison between FIGS. 1 and 2. Every other five salient poles (eg c 1 , c 3 , c 5 , c 7 ,
c 9) in to the winding reversing the direction to form a one phase winding. In this case as well, the salient pole portions c 1 to c 15 are all out of phase with the magnetic poles, and one phase is formed by selecting five (15 slots / 3 phases) with little deviation from each other.

即ち、第2図に示すように、突極部c1にccw方向にコイ
ルL1を巻回したとすると、突極部c3に対しては、磁極に
対する突極部c1,c3間の位相差ψは電気角で、第2式
よりψ=(360゜/15)×11×2=528゜=360゜+168
゜(なお、11は極対数である)より実質的な電気角は16
8゜となり、突極部c3に対してコイルL1をcw方向に巻回
すれば、逆起波形の位相差ψ′はψ′=180゜−168
゜=12゜となる。更に、突極部c5,c7,c9に夫々ccw,cw,c
cw方向となるようにコイルL1を巻回し、u相を形成して
いる。またv相のコイルL2は、突極部c11(ccw)→c13
(cw)→c15(ccw)→c2(cw)→c4(ccw)の順で5つ
の突極部にコイルを巻回することにより形成されてい
る。また、w相は、c6(ccw)→c8(cw)→c10(ccw)
→c12(cw)→c14(ccw)の順に5つの突極部にコイルL
3を巻回して形成している。この場合、突極部c1とc11
び突極部c11とc6とはいずれも実質的な電気角で120゜位
相がずれているので、これらu〜w相で3相となる直流
モータ2のコイルLが構成されるわけである。
That is, as shown in FIG. 2, assuming that the coil L 1 is wound around the salient pole portion c 1 in the ccw direction, the salient pole portion c 3 has a space between the salient pole portions c 1 and c 3 with respect to the magnetic pole. The phase difference ψ 4 of is the electrical angle, and from the second formula ψ 4 = (360 ° / 15) × 11 × 2 = 528 ° = 360 ° + 168
゜ (11 is the number of pole pairs), the effective electrical angle is 16
When the coil L 1 is wound around the salient pole portion c 3 in the cw direction, the phase difference ψ 4 ′ of the counter electromotive waveform is ψ 4 ′ = 180 ° −168 °
゜ = 12 ゜. In addition, salient poles c 5 , c 7 , and c 9 are ccw, cw, and c, respectively.
The coil L 1 is wound in the cw direction to form the u phase. The v-phase coil L 2 has a salient pole portion c 11 (ccw) → c 13
(Cw) → c 15 (ccw) → c 2 (cw) → c 4 (ccw) in this order by winding coils around the five salient pole portions. The w phase is c 6 (ccw) → c 8 (cw) → c 10 (ccw)
→ c 12 (cw) → c 14 (ccw) in order of 5 L
It is formed by winding 3 . In this case, since the salient pole portions c 1 and c 11 and the salient pole portions c 11 and c 6 are out of phase with each other by a substantial electrical angle of 120 °, these DC phases are three phases in u to w phases. The coil L of the motor 2 is constructed.

これら各u〜w相の逆起波形は、第7図(A)〜(C)
に示す通りであり、第6図(A)〜(C)との相違点
は、各相毎に突極部の数(スロット数)が2つ増えたこ
とであり、その他の動作原理に関しては第6図と同じな
ので、各突極部c1〜c15によって生じる逆起波形にその
突極部の同一符号を付すことにより、詳細な説明は省略
する。
The counter electromotive waveforms of these u to w phases are shown in FIGS. 7 (A) to 7 (C).
The difference from FIGS. 6 (A) to 6 (C) is that the number of salient pole portions (the number of slots) is increased by 2 for each phase, and other operating principles are as follows. Since it is the same as that in FIG. 6, the counter electromotive waveforms generated by the salient pole portions c 1 to c 15 are denoted by the same reference numerals as those of the salient pole portions, and detailed description thereof will be omitted.

〔効 果〕[Effect]

本発明になる3相直流モータは以上の如く構成し特に、
3相の巻線を施されたN個の突極部が形成された上記コ
アを上記界磁磁極と異なる位相間隔で設けたことによ
り、コギングが同一のタイミングで発生しないようにす
ることが可能となる。即ち、コギング発生によるコギン
グトルクを格段に減少させることができるので、振動、
モータのジッタ、騒音等の発生を大幅に低減することが
可能となる。従って、従来の3相直流モータの問題点を
ことごとく解消すると共に、本発明なるモータをVTR,HD
D,FDD等の装置に搭載した場合には、格段の高性能化を
実現できるという、実用上優れた特徴を有する。
The three-phase DC motor according to the present invention is configured as described above, and in particular,
It is possible to prevent cogging from occurring at the same timing by providing the core having N salient pole portions with three-phase windings formed at a phase interval different from that of the field magnetic poles. Becomes That is, since the cogging torque due to the generation of cogging can be significantly reduced, vibration,
It is possible to significantly reduce the occurrence of motor jitter and noise. Therefore, all the problems of the conventional three-phase DC motor can be solved, and the motor of the present invention can be applied to VTR, HD
When it is installed in devices such as D and FDD, it has a practically excellent feature that it can realize remarkably high performance.

また更に、上記巻線スロットに形成される磁極幅を変更
したり、磁極数を増減したりすることによらず、例え
ば、同一の磁極幅を持つ上記突極部を上記界磁磁極と異
なる位相間隔で設け、互いに位相のずれが比較的少ない
複数個の突極部にコイルを巻回して1つの相を形成する
ことができるため、突極部に巻回するコイルの方向を交
互に反転させるだけでコギングの発生するタイミングを
ずらし、上記したようにコギングトルクを格段に減少さ
せることができるので、例えば、コイルの巻回作業等の
モータの組み立て工程の効率あるいは作業性を損なうこ
とがないという効果がある。
Furthermore, without changing the magnetic pole width formed in the winding slot or increasing or decreasing the number of magnetic poles, for example, the salient pole portion having the same magnetic pole width is different in phase from the field magnetic pole. Since the coils can be wound around a plurality of salient pole portions which are provided at intervals and have a relatively small phase shift from each other to form one phase, the directions of the coils wound around the salient pole portions are alternately inverted. The cogging torque can be significantly reduced as described above by only shifting the timing of cogging, so that the efficiency or workability of the motor assembling process such as coil winding work is not impaired. effective.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明になる3相直流モータの第1
及び第2実施例の平面展開図、第3図及び第4図は従来
の代表的な3相直流モータの夫々平面展開図及び概略断
面図、第5図は従来の3相直流モータのコギング発生原
理説明用波形図、第6図は本発明の3相直流モータの第
1実施例の動作説明用逆起波形図、第7図は本発明モー
タの第2実施例の動作説明用逆起波形図である。 1,2……3相直流モータ、C……コア、突極部……c1〜c
15、L……巻線(コイル)、M……マグネット、N……
スロット数、P……磁極数、Y……ヨーク、g……エア
ギャップ。
1 and 2 show a first three-phase DC motor according to the present invention.
And a plan development view of the second embodiment, FIGS. 3 and 4 are plan development views and schematic sectional views of a conventional typical three-phase DC motor, respectively, and FIG. 5 is cogging generation of the conventional three-phase DC motor. FIG. 6 is a waveform diagram for explaining the principle, FIG. 6 is a back electromotive waveform diagram for explaining the operation of the first embodiment of the three-phase DC motor of the present invention, and FIG. 7 is a back electromotive waveform for the operation explanation of the second embodiment of the motor of the present invention. It is a figure. 1,2 …… 3-phase DC motor, C …… Core, salient poles …… c 1 to c
15 , L ... Winding (coil), M ... Magnet, N ...
Number of slots, P ... Number of magnetic poles, Y ... Yoke, g ... Air gap.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】マグネット(M)とヨーク(Y)とからな
る界磁部と、コア(C)と巻線(L1〜L3)とからなる電
機子部とを有する3相直流モータであって、 界磁部は、マグネット(M)がP極の界磁磁極(M1〜M
p)を構成し、ヨーク(Y)の円周上に等角度間隔に配
置され、 電機子部は、コア(C)が3相の巻線(L1〜L3)を施し
たN個の突極部(c1〜cn)を有し、円周上等間隔に配置
され、界磁部に対して固定又は回転自在とされ、 界磁磁極(M1〜Mp)と突極部(c1〜cn)とは、界磁磁極
(M1〜Mp)の極数Pと突極部(c1〜cn)の数Nとの組み
合わせが P=2(4n+3),N=3(2n+1)(nは自然数)であ
り、 且つ界磁磁極(M1〜Mp)の極数Pと突極部(c1〜cn)の
数Nとの最小公倍数がN×Pに等しい 3相直流モータ。
1. A three-phase DC motor having a field magnet portion including a magnet (M) and a yoke (Y), and an armature portion including a core (C) and windings (L 1 to L 3 ). In the field part, the magnet (M) is a P-field magnetic pole (M 1 ~ M
p), arranged at equal angular intervals on the circumference of the yoke (Y), and the armature part has N cores (C) with three-phase windings (L 1 to L 3 ). It has salient poles (c 1 to cn), is arranged at equal intervals on the circumference, is fixed or rotatable with respect to the field magnet, and has magnetic poles (M 1 to Mp) and salient poles (c). 1 to cn) means a combination of the number P of poles of the field magnetic poles (M 1 to Mp) and the number N of salient pole portions (c 1 to cn) P = 2 (4n + 3), N = 3 (2n + 1) (N is a natural number), and the least common multiple of the pole number P of the field magnetic poles (M 1 to Mp) and the number N of the salient pole portions (c 1 to cn) is equal to N × P.
【請求項2】3相の巻線(L1〜L3)は、夫々1相分の巻
線が突極部(c1〜cn)に1つおきに巻き方向が交互とな
るように、N/3個の突極部に連続して巻回される 特許請求の範囲第1項記載の3相直流モータ。
2. The three-phase windings (L 1 to L 3 ) are arranged such that windings for one phase are alternately arranged in the salient pole portions (c 1 to cn). The three-phase DC motor according to claim 1, which is continuously wound around N / 3 salient pole portions.
JP63194122A 1988-08-03 1988-08-03 3-phase DC motor Expired - Lifetime JPH078123B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63194122A JPH078123B2 (en) 1988-08-03 1988-08-03 3-phase DC motor
US07/388,888 US5006745A (en) 1988-08-03 1989-08-03 Polyphase direct current motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194122A JPH078123B2 (en) 1988-08-03 1988-08-03 3-phase DC motor

Publications (2)

Publication Number Publication Date
JPH0246153A JPH0246153A (en) 1990-02-15
JPH078123B2 true JPH078123B2 (en) 1995-01-30

Family

ID=16319278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194122A Expired - Lifetime JPH078123B2 (en) 1988-08-03 1988-08-03 3-phase DC motor

Country Status (1)

Country Link
JP (1) JPH078123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115641B1 (en) * 2003-07-21 2012-02-17 콜모겐 코포레이션 Highly efficient permanent magnet brushless motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133192A (en) * 2005-11-11 2007-05-31 Ricoh Co Ltd Dc brushless motor, light deflector, optical scanning device, and image forming apparatus
DE102005045503A1 (en) * 2005-09-23 2007-03-29 Militzer, Michael, Dr.-Ing. Electrical prime mover for use as synchronous machine in elevator, has secondary part-magnet poles facing primary part, where ratio of secondary part-magnet poles to primary part-magnet pole amounts to certain ratio

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685628B2 (en) * 1984-07-11 1994-10-26 松下電器産業株式会社 Electric motor
JPS62166759A (en) * 1986-01-18 1987-07-23 Nippon Densan Kk Brushless motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115641B1 (en) * 2003-07-21 2012-02-17 콜모겐 코포레이션 Highly efficient permanent magnet brushless motor

Also Published As

Publication number Publication date
JPH0246153A (en) 1990-02-15

Similar Documents

Publication Publication Date Title
US5006745A (en) Polyphase direct current motor
TWI414130B (en) Single-phase brushless motor
JPH04208039A (en) Dc polyphase motor
JPH04289759A (en) Brushless motor
JPH083188Y2 (en) Brushless motor
JP2001169517A (en) Capacitor motor
JPH078123B2 (en) 3-phase DC motor
JPH02142350A (en) Motor provided with polyphase dc core
JPH05161325A (en) Synchronous motor with a reduced cogging torque
JPH0810970B2 (en) Multi-phase permanent magnet type synchronous machine
JP2598770Y2 (en) Rotating electric machine
JPH08182280A (en) Generator
JPH03198645A (en) Three-phase brushless motor
JPS5952626B2 (en) Rotor DC excitation type pulse motor
JPH04322152A (en) Three-phase brushless motor
JP2611291B2 (en) Permanent magnet field two-phase multi-pole synchronous machine
JP2001309584A (en) Stator structure of rotary electric machine
JPH0690538A (en) Brushless motor
JPH027270B2 (en)
JP2993380B2 (en) 4-phase brushless motor
JPH034133Y2 (en)
JPH07298597A (en) Dc brushless motor
JP3713116B2 (en) 3-phase hybrid stepping motor
JPH0747981Y2 (en) Brushless motor
JPH09215290A (en) Four-pole motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14