JPS6223537B2 - - Google Patents

Info

Publication number
JPS6223537B2
JPS6223537B2 JP635278A JP635278A JPS6223537B2 JP S6223537 B2 JPS6223537 B2 JP S6223537B2 JP 635278 A JP635278 A JP 635278A JP 635278 A JP635278 A JP 635278A JP S6223537 B2 JPS6223537 B2 JP S6223537B2
Authority
JP
Japan
Prior art keywords
armature core
magnetic
grooves
poles
intervals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP635278A
Other languages
Japanese (ja)
Other versions
JPS5499908A (en
Inventor
Makoto Goto
Kazuji Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP635278A priority Critical patent/JPS5499908A/en
Publication of JPS5499908A publication Critical patent/JPS5499908A/en
Publication of JPS6223537B2 publication Critical patent/JPS6223537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【発明の詳細な説明】 本発明は、突極構造の電機子鉄心を有する電動
機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric motor having an armature core having a salient pole structure.

一般に、巻線を施すために電機子鉄心を突極構
造にした電動機は、突極構造でない電動機と比較
して巻線に多くの界磁磁束を鎖交させることがで
きるため、小型、軽量で大きな出力トルクを出す
電動機となる。
In general, motors with a salient pole structure on the armature core for winding are smaller and lighter because they can link more field magnetic flux to the windings than motors without a salient pole structure. This is an electric motor that produces a large output torque.

しかし、電機子鉄心が突極構造という磁気的に
不均一な構造であるために、たとえば界磁部とし
て永久磁石を使用する場合、永久磁石との相互作
用によつてコギング力を発生させるという欠点が
ある。以下、これについて図面を参照して説明す
る。
However, since the armature core has a salient pole structure, which is magnetically non-uniform, when a permanent magnet is used as the field part, for example, it has the disadvantage that cogging force is generated due to interaction with the permanent magnet. There is. This will be explained below with reference to the drawings.

第1図に従来の電動機の一例の要部構成図を示
す。ロータ1に取付けられた永久磁石2は、ほぼ
等角度間隔(45゜)に8極の磁極を有する円環状
の磁石であり、これにより界磁部を構成してい
る。電機子鉄心3は、6個の巻線用突極4a1,4
b1,4c1,4a2,4b2,4c2を有し、それらは、
ほぼ等角度間隔(60゜)に位置し、永久磁石2の
磁極と所要間隙あけて配置されている。上記各巻
線用突極4a1〜4c2には、それぞれ1個の駆動コ
イル5a1,5b1,5c1,5a2,5b2,5c2が巻装
されている。
FIG. 1 shows a diagram of the main parts of an example of a conventional electric motor. A permanent magnet 2 attached to the rotor 1 is an annular magnet having eight magnetic poles spaced at approximately equal angular intervals (45 degrees), and constitutes a field section. The armature core 3 has six winding salient poles 4a 1 , 4
b 1 , 4c 1 , 4a 2 , 4b 2 , 4c 2 , which are
They are located at approximately equal angular intervals (60°), and are arranged with a required gap from the magnetic poles of the permanent magnet 2. One drive coil 5a 1 , 5b 1 , 5c 1 , 5a 2 , 5b 2 , 5c 2 is wound around each of the winding salient poles 4a 1 to 4c 2 .

上記巻線用突極4a1〜4c2は永久磁石2の磁極
との相対位置関係について独立な3相の組すなわ
ち4a1,4a2と4b1,4b2と4c1,4c2とに分か
れている。駆動コイルに鎖交する磁束は巻線用突
極に流入する磁束に等しいから、駆動コイルが3
相の組5a1,5a2,5b1,5b2,5c1,5c2に分
かれている。従つて、たとえばホール素子のごと
き磁気感応素子により、永久磁石2の回転位置を
検出して、トランジスタのごとき半導体スイツチ
により、通電する各相の駆動コイルを順次切換え
て行くならば、ロータ1を同一方向へ連続して回
転させることができる。
The above-mentioned salient winding poles 4a 1 to 4c 2 are divided into independent three-phase groups, ie, 4a 1 , 4a 2 and 4b 1 , 4b 2 and 4c 1 , 4c 2 with respect to the relative positional relationship with the magnetic poles of the permanent magnet 2. ing. Since the magnetic flux interlinking with the drive coil is equal to the magnetic flux flowing into the winding salient pole, the drive coil is
It is divided into phase groups 5a 1 , 5a 2 , 5b 1 , 5b 2 , 5c 1 and 5c 2 . Therefore, if the rotational position of the permanent magnet 2 is detected using a magnetic sensing element such as a Hall element, and the drive coils of each phase to be energized are sequentially switched using a semiconductor switch such as a transistor, then the rotor 1 can be It can be rotated continuously in any direction.

次に、この第1図に示す従来例の電機子鉄心の
有する磁気的な変動分とコギング力の関係につい
て説明する。
Next, the relationship between the cogging force and the magnetic fluctuation of the armature core of the conventional example shown in FIG. 1 will be explained.

一般に、永久磁石2と電機子鉄心3の間の磁場
に貯えられた磁気エネルギーが、その両者の相対
位置に応じて変化することにより、コギング力が
生じる。磁気エネルギーは磁束密度の2乗に関係
する量であるから、永久磁石2は1磁極ピツチを
基本周期として、その高調波成分の磁気的な変動
分(永久磁石2の発生磁速密度の2乗に関係する
量)を主に有している。従つて、永久磁石2の1
磁極ピツチを基本周期として、電機子鉄心3の磁
気的な変動分(永久磁石2の表面からみた電機子
鉄心3のパーミアンスに関係する量)を考えれば
良く、一般に、その変動分を小さくするか、変動
の周波数を高くするならば、永久磁石2との相互
作用であるコギング力は小さくなる。
Generally, cogging force is generated when the magnetic energy stored in the magnetic field between the permanent magnet 2 and the armature core 3 changes depending on the relative position of the two. Since magnetic energy is a quantity related to the square of the magnetic flux density, the permanent magnet 2 has a basic period of one magnetic pole pitch, and the magnetic fluctuation of its harmonic component (the square of the magnetic velocity density generated by the permanent magnet 2) (quantities related to). Therefore, 1 of permanent magnet 2
It is sufficient to consider the magnetic fluctuation of the armature core 3 (amount related to the permeance of the armature core 3 viewed from the surface of the permanent magnet 2) with the magnetic pole pitch as the basic period, and in general, it is possible to reduce this fluctuation. , if the frequency of fluctuation is increased, the cogging force, which is the interaction with the permanent magnet 2, becomes smaller.

第1図に示す従来例の電機子鉄心3の磁気的な
変動は、突極の間の溝6a1,6b1,6c1,6a2
6b2,6c2により生じる。それらの溝は、ほぼ同
一の形状をなし、永久磁石2の磁極との相対位置
関係について溝の組すなわち(6a1,6a2と6
b1,6b2と6c1,6c2の間には1磁極ピツチの1/
3の位相差がある。従つて、電機子鉄心3の合成
の磁気的な変動分は第2図に実線で示すようにな
る。なお、第2図の破線a1,a2,b1,b2,c1,c2
は各溝6a1,6a2,6b1,6b2,6c1,6c2によ
る磁気的な変動を表わしている。
The magnetic fluctuations of the conventional armature core 3 shown in FIG. 1 are caused by grooves 6a 1 , 6b 1 , 6c 1 , 6a 2 ,
It is caused by 6b 2 and 6c 2 . These grooves have almost the same shape, and the groove groups (6a 1 , 6a 2 , and 6a
Between b 1 , 6b 2 and 6c 1 , 6c 2 is 1/1 magnetic pole pitch.
There is a phase difference of 3. Therefore, the composite magnetic fluctuation of the armature core 3 becomes as shown by the solid line in FIG. In addition, the broken lines a 1 , a 2 , b 1 , b 2 , c 1 , c 2 in Fig. 2
represents the magnetic fluctuation caused by each groove 6a 1 , 6a 2 , 6b 1 , 6b 2 , 6c 1 , 6c 2 .

第2図から明らかなように、第1図に示す従来
例の電機子鉄心3の磁気的な変動分は3つの山、
谷を有する大きな変動となる。その結果、コギン
グ力もロータの1磁極ピツチの回転に対して、力
の向きが加速・減速・加速の順番に3往復変化す
る。
As is clear from FIG. 2, the magnetic fluctuations of the conventional armature core 3 shown in FIG.
This results in large fluctuations with valleys. As a result, the direction of the cogging force also changes three times in the order of acceleration, deceleration, and acceleration for each rotation of one magnetic pole pitch of the rotor.

一般に、コギング力の各成分の大きさは、電機
子鉄心が有する該当成分の大きさと、界磁部であ
る永久磁石が有する該当成分の大きさの積に関係
し、その積が小さくなればコギング力の該当成分
の大きさも小さくなる。また、永久磁石が有する
成分は、通常高次の成分になる程、その大きさは
減衰する。従つて、電機子鉄心が有する磁気的な
変動分の大きさを小さくするか、または変動の支
配的な成分の次数を高次にするならば、コギング
力は小さくなる。
Generally, the magnitude of each component of cogging force is related to the product of the magnitude of the component in the armature core and the magnitude of the component in the permanent magnet, which is the field part, and if the product is small, cogging The magnitude of the corresponding component of force also becomes smaller. Further, the magnitude of the components of a permanent magnet generally decreases as the components become higher-order components. Therefore, if the magnitude of the magnetic fluctuation of the armature core is reduced or the order of the dominant component of the fluctuation is made higher, the cogging force will be reduced.

本発明は、上述の考えに基づき、巻線用突極の
界磁部に対する実効的対向幅すなわち対向ピツチ
を不平等にすることにより、界磁のための永久磁
石の1磁極ピツチを基本周期とするときの磁極と
の相対位置関係について独立な位相となる電機子
鉄心の突極間の溝の相数を多くして、上述の条件
を実現し、コギング力の小さい電動機を提供する
ものである。
Based on the above-mentioned idea, the present invention makes the pitch of one magnetic pole of the permanent magnet for the field equal to the fundamental period by making the effective opposing widths, that is, the opposing pitches of the salient poles for winding with respect to the field part unequal. The above conditions are realized by increasing the number of phases in the grooves between the salient poles of the armature core, which have independent phases with respect to the relative positional relationship with the magnetic poles when moving the armature core, thereby providing an electric motor with small cogging force. .

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第3図は本発明の一実施例の要部構成図であ
る。ロータ1に取付けられた永久磁石2は等角度
間隔または、ほぼ等角度間隔(45゜)に8極の磁
極を有する円環状のものであり、これは第1図の
従来例と同様である。電機子鉄心13は、等角度
間隔または、ほぼ等角度間隔(60゜)に6個の巻
線用突極14a1,14b1,14c1,14a2,14
b2,14c2を放射状に有している。ここで、巻線
用突極14a1,14c1,14b2の両側に位置する
溝すなわちa1とa2,a3とa4,a5とa6
の中心間のピツチは約67.5゜であり、また、巻線
用突極14b1,14a2,14c2の両側に位置する
溝すなわちa2とa3,a4とa5,a6とa1
の中心間のピツチは約52.5゜となつている。すな
わち、電機子鉄心13の突極の両側に位置する溝
の中心間隔は2種類のピツチ(67.5゜と52.5゜)
になされている。
FIG. 3 is a diagram showing the main part of an embodiment of the present invention. The permanent magnet 2 attached to the rotor 1 is an annular magnet having eight magnetic poles at equal angular intervals or approximately at equal angular intervals (45 degrees), as in the conventional example shown in FIG. The armature core 13 has six winding salient poles 14a 1 , 14b 1 , 14c 1 , 14a 2 , 14 at equal angular intervals or approximately at equal angular intervals (60°).
It has b 2 , 14c 2 radially. Here, the grooves located on both sides of the winding salient poles 14a 1 , 14c 1 , 14b 2 , namely a1 and a2, a3 and a4, a5 and a6
The pitch between the centers is about 67.5°, and the grooves located on both sides of the winding salient poles 14b 1 , 14a 2 , 14c 2 , i.e., a2 and a3, a4 and a5, a6 and a1
The center-to-center pitch is approximately 52.5°. In other words, there are two types of center spacing between the grooves located on both sides of the salient poles of the armature core 13 (67.5° and 52.5°).
is being done.

また、各巻線用突極14a1〜14c2には、それ
ぞれ1個の駆動コイル15a1,15b1,15c1
15a2,15b2,15c2が巻装されている。
Further, each of the winding salient poles 14a 1 to 14c 2 has one drive coil 15a 1 , 15b 1 , 15c 1 ,
15a 2 , 15b 2 , and 15c 2 are wound.

本実施例においても第1図の従来例と同様に、
駆動コイル15a1〜15c2は独立な3相の組すな
わち15a1,15a2と15b1,15b2と15c1
15c2とに分かれている。従つて、この場合に
も、たとえばホール素子のごとき磁気感応素子に
より、永久磁石2の回転位置を検出して、第4図
に例示するごとき半導体スイツチ回路7により、
通電する各相の駆動コイルを順次切換えて行くな
らば、ロータ1を同一方向へ連続して回転させる
ことができる。
In this embodiment, similarly to the conventional example shown in FIG.
The drive coils 15a 1 to 15c 2 are independent three-phase sets, namely 15a 1 , 15a 2 and 15b 1 , 15b 2 and 15c 1 ,
It is divided into 15c and 2 . Therefore, in this case as well, the rotational position of the permanent magnet 2 is detected by a magnetic sensing element such as a Hall element, and the semiconductor switch circuit 7 as illustrated in FIG.
If the energized drive coils of each phase are sequentially switched, the rotor 1 can be continuously rotated in the same direction.

次に、本実施例の電機子鉄心13の磁気的な変
動分について述べる。
Next, magnetic fluctuations in the armature core 13 of this embodiment will be described.

電機子鉄心13の突極の両側に位置する溝の6
個の中心間隔が2種類のピツチ(67.5゜と52.5
゜)になるように6個の溝を不等角度間隔に配置
し、永久磁石2の1磁極ピツチを基本周期として
みるときの永久磁石2の磁極との相対位置関係に
ついて、突極の間に形成された6個の溝a1〜a
6はすべて独立な位相になされている(溝の中心
位相がすべて異なり、隣接する中心位相の間隔が
(1磁極ピツチ)/12以上離れるようなされてい
る)。実際には、6個の溝の中心位相の間隔は
(1磁極ピツチ)/6の等間隔になされている。
その結果、各溝の磁気的な変動の関係は第5図に
破線で示すごとくとなり、電機子鉄心13の合成
の磁気的変動分は同図に実線で示すようになる。
これを、第1図の従来例の磁気的変動分(第2図
の実線)と比較すると、磁気的な変動の大きさは
小さくなり、かつ変動の支配的な成分の次数は高
次になつている。従つて、本実施例の電動機のコ
ギング力は従来例と比較して小さくなつている。
6 of the groove located on both sides of the salient pole of the armature core 13
There are two types of center spacing (67.5° and 52.5°).
6 grooves are arranged at unequal angular intervals so that Six grooves a1 to a formed
6 are all made to have independent phases (the center phases of the grooves are all different, and the distance between adjacent center phases is at least (1 magnetic pole pitch)/12). Actually, the center phase intervals of the six grooves are set at equal intervals of (1 magnetic pole pitch)/6.
As a result, the relationship between the magnetic fluctuations of each groove becomes as shown by the broken line in FIG. 5, and the composite magnetic fluctuation of the armature core 13 becomes as shown by the solid line in the same figure.
Comparing this with the magnetic fluctuation of the conventional example in Figure 1 (solid line in Figure 2), the magnitude of the magnetic fluctuation is smaller and the order of the dominant component of the fluctuation is higher. ing. Therefore, the cogging force of the electric motor of this embodiment is smaller than that of the conventional example.

前述の第3図の実施例に示すように、電機子鉄
心の突極の両側に位置する溝の中心間隔を不平等
(2種類以上のピツチ)となすように溝を不等角
度間隔に配置するならば、永久磁石の1磁極ピツ
チを基本周期としてみるときの永久磁石の磁極と
の相対位置関係について、電機子鉄心の溝の位相
を容易にずらすことができるために、コギング力
を簡単に低減できる。このとき、永久磁石の1磁
極ピツチを基本周期としてみるときの永久磁石の
磁極との相対位置関係について、電機子鉄心の溝
の位相をすべて独立とし、かつ、その位相間隔を
(1磁極ピツチ)/(突極数)に等しく、また
は、ほぼ等しくするならば、コギング力の低減効
果も大きくなる。特に、1相の駆動コイルが巻装
された巻線用突極の個数および、その突極幅のば
らつき方が、各相において同等となるようにする
ならば、発生トルクの相間のばらつきは生じな
い。また、前述の第3図の実施例のように、界磁
部である永久磁石の磁極数に比較して、駆動コイ
ルが巻装された巻線用突極の個数を少なくするな
らば、巻線個数が少なく製造の簡単な電動機とな
し得る。
As shown in the embodiment shown in FIG. 3 above, the grooves are arranged at unequal angular intervals so that the center intervals of the grooves located on both sides of the salient poles of the armature core are unequal (two or more types of pitches). If so, the phase of the groove in the armature core can be easily shifted with respect to the relative positional relationship with the magnetic pole of the permanent magnet when one magnetic pole pitch of the permanent magnet is considered as the basic period, so the cogging force can be easily reduced. Can be reduced. At this time, regarding the relative positional relationship with the magnetic poles of the permanent magnet when one magnetic pole pitch of the permanent magnet is considered as the basic period, the phases of the grooves of the armature core are all independent, and the phase interval is (1 magnetic pole pitch). /(number of salient poles) or approximately equal, the effect of reducing cogging force will also be greater. In particular, if the number of winding salient poles around which a single-phase drive coil is wound and the variation in the width of the salient poles are made equal for each phase, the generated torque will not vary between phases. do not have. Furthermore, as in the embodiment shown in FIG. The electric motor can be easily manufactured with a small number of wires.

第6図に、本発明の別の実施例の要部構成図を
示す。これを説明すると、ロータ1に取付けられ
た永久磁石2は、前述の第3図の実施例で使用し
たものと同様である。電機子鉄心23は、6個の
巻線用突極24a1,24b1,24c1,24a2,2
4b2,24c2と、それらの間に位置せる6個の補
助突極30a,30b,30c,30d,30
e,30fを含めて成り、これは例えば硅素鋼板
の積層体により、上記各突極を一体的に形成して
いる。ここで、巻線用突極24a1,24c1,24
b2の両側に位置する溝間すなわち溝β1とβ2
間、β5とβ6間、β9とβ10間の角度間隔は
約56.25゜であり、また、巻線用突極24b1,2
4a2,24c2の両側に位置する溝間すなわち溝β
3とβ4間、β7とβ8間、β11とβ12間の
角度間隔は約41.25゜であり、各補助突極30a
〜30fの両側に位置する溝間すなわち溝β2と
β3間、β4とβ5間、β6とβ7間、β8とβ
9間、β10とβ11間、β12とβ1間の角度
間隔は約11.25゜となつている。このように、電
機子鉄心23の突極の両側に位置する溝の12個の
中心間隔が3種類のピツチ(56.25゜と41.25゜と
11.25゜)になすように12個の溝を不等角間隔に
配置し、永久磁石2の1磁極ピツチを基本周期と
してみるときの永久磁石2の磁極との相対位置関
係について、突極の間に形成された12個の溝β1
〜β12はすべて独立な位相になされている(溝
の中心位相がすべて異なり、隣接する中心位相の
間隔が(1磁極ピツチ)/24以上離れるようなさ
れている)。実際には、12個の溝の中心位相の間
隔は(1磁極ピツチ)/12の等間隔になされてい
る。従つて電機子鉄心23に有する磁気的な合成
変動分は第7図に実線で示すようになる。なお、
同図の破線は上記各溝β1〜β12の磁気的な変
動分を示している。
FIG. 6 shows a main part configuration diagram of another embodiment of the present invention. To explain this, the permanent magnets 2 attached to the rotor 1 are similar to those used in the embodiment shown in FIG. 3 described above. The armature core 23 includes six winding salient poles 24a 1 , 24b 1 , 24c 1 , 24a 2 , 2
4b 2 , 24c 2 and six auxiliary salient poles 30a, 30b, 30c, 30d, 30 located between them
e and 30f, and each of the salient poles is integrally formed of, for example, a laminate of silicon steel plates. Here, the winding salient poles 24a 1 , 24c 1 , 24
Between the grooves located on both sides of b 2 , that is, grooves β1 and β2
The angular intervals between β5 and β6, and between β9 and β10 are approximately 56.25°, and the salient poles for winding 24b 1 , 2
Between the grooves located on both sides of 4a 2 and 24c 2 , that is, the groove β
The angular intervals between 3 and β4, between β7 and β8, and between β11 and β12 are approximately 41.25°, and each auxiliary salient pole 30a
Between the grooves located on both sides of ~30f, that is, between grooves β2 and β3, between β4 and β5, between β6 and β7, between β8 and β
The angular intervals between β10 and β11, and between β12 and β1 are approximately 11.25°. In this way, the spacing between the centers of the 12 grooves located on both sides of the salient poles of the armature core 23 has three different pitches (56.25° and 41.25°).
11.25°), and the relative positional relationship with the magnetic poles of the permanent magnet 2 when one magnetic pole pitch of the permanent magnet 2 is considered as the basic period, is between the salient poles. 12 grooves β1 formed in
- β12 are all made to have independent phases (the center phases of the grooves are all different, and the distance between adjacent center phases is set to be more than (1 magnetic pole pitch)/24). Actually, the center phase intervals of the 12 grooves are set at equal intervals of (1 magnetic pole pitch)/12. Therefore, the magnetic composite fluctuation in the armature core 23 is as shown by the solid line in FIG. In addition,
The broken lines in the figure indicate the magnetic fluctuations of each of the grooves β1 to β12.

すなわち、第6図に示す実施例においては12個
の山、谷を有する変動となつている。
That is, in the embodiment shown in FIG. 6, the fluctuation has 12 peaks and troughs.

また、各巻線用突極24a1,24b1,24c1
24a2,24b2,24c2には、それぞれ1個の駆
動コイル25a1,25b1,25c1,25a2,25
b2,25c2が巻装されている。上記駆動コイルは
3相の組すなわち25a1,25a2と25b1,25
b2と25c1,25c2とに分かれており、その駆動
の仕方については前述の実施例と同様である。
Moreover, each winding salient pole 24a 1 , 24b 1 , 24c 1 ,
24a 2 , 24b 2 , 24c 2 each have one drive coil 25a 1 , 25b 1 , 25c 1 , 25a 2 , 25
b 2 and 25c 2 are wound. The drive coil has three phases, namely 25a 1 , 25a 2 and 25b 1 , 25
b 2 , 25c 1 and 25c 2 , and how they are driven is the same as in the previous embodiment.

第6図の実施例に示すように、巻線用突極の間
は永久磁石の磁極の間に位置する補助突極を設け
るならば、電機子鉄心が有する磁気的な変動の次
数は高くなり、かつ、その変動量も容易に小さく
できるため、コギング力の小さな電動機とし得
る。また、本実施例の各巻線用突極の磁束の流入
する幅(実効的な対向ピツチ)は、前述の第3図
の実施例と比較して永久磁石の1磁極ピツチに近
づいている。そのため、各巻線用突極に流入する
磁束すなわち駆動コイルに鎖交する磁束の最大値
が大きくなり、効率も良くなる。
As shown in the embodiment of FIG. 6, if an auxiliary salient pole is provided between the winding salient poles and located between the magnetic poles of the permanent magnet, the order of magnetic fluctuations in the armature core will be increased. , and the amount of variation thereof can be easily reduced, resulting in an electric motor with small cogging force. Furthermore, the width (effective opposing pitch) through which the magnetic flux flows into each of the winding salient poles in this embodiment is closer to one magnetic pole pitch of the permanent magnet than in the embodiment shown in FIG. 3 described above. Therefore, the maximum value of the magnetic flux flowing into each winding salient pole, that is, the magnetic flux interlinking with the drive coil becomes large, and efficiency is also improved.

なお、第3図,第6図に示した本発明の実施例
のように、巻線用突極と補助突極を同一の磁性体
にて一体的に形成すると、各突極間の溝の形状、
配置の精度が良くなり、本発明の効果は、より安
定するが、しかし、本発明はそのような構造に限
定されるものではなく、たとえば巻線用突極構成
体と補助突極構成体とを別々の磁性部材にて形成
しても良い。この場合には巻線用突極構成体に巻
線を施した後に両突極構成体を磁気的結合をもつ
て組立てれば良く、巻線作業が容易になる。
Note that when the winding salient pole and the auxiliary salient pole are integrally formed of the same magnetic material as in the embodiment of the present invention shown in FIGS. 3 and 6, the grooves between each salient pole are shape,
The accuracy of the arrangement is improved, and the effect of the present invention is more stable. However, the present invention is not limited to such a structure. For example, the present invention is not limited to such a structure. may be formed from separate magnetic members. In this case, after winding the salient pole structure for winding, it is sufficient to assemble both salient pole structures with magnetic coupling, which facilitates the winding work.

また、以上は、永久磁石の磁極との相対位置関
係について独立な3相の巻線用突極を有する3相
駆動方式の電動機について説明したが、本発明
は、そのような駆動方式に限らず、他の一般的な
多相駆動方式でも実施可能である。
Furthermore, although the above description has been made regarding a three-phase drive type electric motor having three phases of winding salient poles that are independent in their relative positional relationship with the magnetic poles of the permanent magnet, the present invention is not limited to such a drive type. , it is also possible to implement other general multi-phase drive systems.

特に、電機子鉄心が有する合成の磁気的な変動
分の支配的な成分の次数をlとした場合、 (2m+1)相(m≧1)の場合に、 (2m+1)<l ……(1) 2m相(m≧2)の場合に、 m<l ……(2) とするならば、本発明の効果を容易に得ることが
できる。
In particular, when the order of the dominant component of the composite magnetic fluctuation of the armature core is l, in the case of (2m+1) phase (m≧1), (2m+1)<l...(1) In the case of a 2m phase (m≧2), if m<l...(2), the effects of the present invention can be easily obtained.

更に前述の本発明の各実施例においては、ロー
タに界磁部を設けたが、本発明はその様な構造の
みに限らず、界磁部を固定子とし電機子鉄心を回
転子としても良いし、また、外転型に限らず、内
転型であつても良い。また、電機子鉄心の各突極
は硅素鋼板の積層体に限らず、鉄板を折り曲げて
形成しても良い。
Further, in each of the above-described embodiments of the present invention, the rotor is provided with a field part, but the present invention is not limited to such a structure, and the field part may be used as a stator and the armature core may be used as a rotor. However, it is not limited to the abduction type, but may be an adduction type. Further, each salient pole of the armature core is not limited to a laminate of silicon steel plates, and may be formed by bending a steel plate.

以上の説明から明らかなように、本発明は、駆
動コイル数が少なく製造の容易な、しかもコギン
グ力の小さい電動機を安価に実現し得るもので、
特に滑らかな回転トルクを必要とするレコードプ
レーヤやテープレコーダのごとき音響機器、ビデ
オテープレコーダのごとき映像機器の回転駆動源
に使用して多大の効果をもたらすものである。
As is clear from the above description, the present invention is capable of realizing an electric motor with a small number of drive coils, easy to manufacture, and low cogging force at low cost.
In particular, it can be used as a rotation drive source for audio equipment such as record players and tape recorders, and video equipment such as video tape recorders, which require smooth rotational torque, to bring about great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電動機の要部構成図、第2図は
電機子鉄心が有する磁気的な変動分を表わす図、
第3図は本発明の一実施例の要部構成図、第4図
は駆動回路構成の一例を示す要部回路図、第5図
は第3図の実施例における電機子鉄心が有する磁
気的な変動分を表わす図、第6図は本発明の別の
実施例の要部構成図、第7図は第6図の実施例に
おける電機子鉄心が有する磁気的な変動分を表わ
す図である。 1……ロータ、2……永久磁石、13,23…
…電機子鉄心、14a1〜14c2,24a1〜24c2
……巻線用突極、15a1〜15c2,25a1〜25
c2……駆動コイル、6a1〜6c2,a1〜a6,β
1〜β12……溝、30a〜30f……補助突
極。
Figure 1 is a configuration diagram of the main parts of a conventional electric motor, Figure 2 is a diagram showing magnetic fluctuations in the armature core,
FIG. 3 is a main part configuration diagram of an embodiment of the present invention, FIG. 4 is a main part circuit diagram showing an example of the drive circuit configuration, and FIG. 5 is a magnetic FIG. 6 is a diagram showing the main part configuration of another embodiment of the present invention, and FIG. 7 is a diagram showing the magnetic variation of the armature core in the embodiment of FIG. 6. . 1... Rotor, 2... Permanent magnet, 13, 23...
...Armature core, 14a 1 ~ 14c 2 , 24a 1 ~ 24c 2
... Salient poles for winding, 15a 1 to 15c 2 , 25a 1 to 25
c 2 ... Drive coil, 6a 1 to 6c 2 , a1 to a6, β
1 to β12...Groove, 30a to 30f...Auxiliary salient pole.

Claims (1)

【特許請求の範囲】 1 等ピツチ間隔、または、ほぼ等ピツチ間隔に
N、S極を交互に4極以上配置され、実質的に永
久磁石を円環状の形状に形成された界磁部と、全
周にわたつてくまなく前記界磁部の磁極に対向す
るように配置されたT個(Tは6以上の整数)の
突極を有する電機子鉄心と、前記突極の間に形成
されたT個の溝に収納された2m+1相(mは1
以上の整数で、2m+1はT/2以下の整数)の
駆動コイルを具備し、前記界磁部と前記電機子鉄
心のうち、いずれか一方を他方に対して回転自在
とした電動機であつて、前記電機子鉄心の各突極
の両側に位置する溝によつて作られるT個の中心
間隔が複数のピツチとなるように前記溝を不等角
度間隔に配置し、かつ、前記界磁部の1磁極ピツ
チを基本周期とするときの前記電機子鉄心のT個
の前記溝の中心位相をすべて異ならせ、隣接する
前記中心位相の位相間隔を少なくとも(1磁極ピ
ツチ)/2T以上離れるようにしたことを特徴と
する電動機。 2 界磁部の1磁極ピツチを基本周期とするとき
の電機子鉄心の溝の中心位相の隣接する位相間隔
をすべて(1磁極ピツチ)/Tに等しく、また
は、ほぼ等しくしたことを特徴とする特許請求の
範囲第1項に記載の電動機。 3 Tを(2m+1)の2以上の整数倍にしたこ
とを特徴とする特許請求の範囲第1項に記載の電
動機。
[Scope of Claims] 1. A field section in which four or more N and S poles are arranged alternately at equal pitch intervals or approximately equal pitch intervals, and a permanent magnet is substantially formed in an annular shape; formed between an armature core having T salient poles (T is an integer of 6 or more) arranged so as to face the magnetic poles of the field portion all around the circumference, and the salient poles; 2m + 1 phase (m is 1) stored in T grooves
(wherein 2m+1 is an integer equal to or less than T/2) drive coils, and one of the field part and the armature core is rotatable relative to the other, The grooves are arranged at unequal angular intervals so that the T center intervals formed by the grooves located on both sides of each salient pole of the armature core are a plurality of pitches, and The center phases of the T grooves in the armature core are all different when one magnetic pole pitch is a basic period, and the phase interval between adjacent center phases is set to be at least (one magnetic pole pitch)/2T or more apart. An electric motor characterized by: 2. It is characterized in that when one magnetic pole pitch of the field part is taken as the basic period, the adjacent phase intervals of the center phases of the grooves of the armature core are all equal to or almost equal to (1 magnetic pole pitch)/T. An electric motor according to claim 1. 3. The electric motor according to claim 1, wherein T is an integral multiple of 2 or more of (2m+1).
JP635278A 1978-01-23 1978-01-23 Electric motor Granted JPS5499908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP635278A JPS5499908A (en) 1978-01-23 1978-01-23 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP635278A JPS5499908A (en) 1978-01-23 1978-01-23 Electric motor

Publications (2)

Publication Number Publication Date
JPS5499908A JPS5499908A (en) 1979-08-07
JPS6223537B2 true JPS6223537B2 (en) 1987-05-23

Family

ID=11635966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP635278A Granted JPS5499908A (en) 1978-01-23 1978-01-23 Electric motor

Country Status (1)

Country Link
JP (1) JPS5499908A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8122006V0 (en) * 1980-06-06 1981-06-05 Papst Motoren Kg DIRECT CURRENT MOTOR, WITHOUT COLLECTORS AND EXTERNAL ROTOR.
KR920000717B1 (en) * 1984-07-25 1992-01-20 가부시기가이샤 히다찌세이사꾸쇼 Brushless motor
JPS62138052A (en) * 1985-12-09 1987-06-20 Nippon Densan Kk Brushless motor
JPS63178752A (en) * 1987-01-16 1988-07-22 Nippon Fueroo Furuideikusu Kk Motor
US4858044A (en) * 1987-05-04 1989-08-15 Seagate Technology, Inc. Disc drive spindle motor with low cogging torque
JP2681940B2 (en) * 1987-09-11 1997-11-26 トヨタ自動車株式会社 Brushless motor
US4933584A (en) * 1988-12-22 1990-06-12 General Electric Company Electronically commutated motor having skewed magnetics
JPH02193558A (en) * 1989-01-18 1990-07-31 Toyota Motor Corp Ac rotary device
JP3012245B2 (en) * 1989-01-18 2000-02-21 トヨタ自動車株式会社 AC rotating machine
JP3428896B2 (en) * 1998-05-07 2003-07-22 オークマ株式会社 Motor with reduced torque ripple
JP2000050542A (en) * 1998-07-23 2000-02-18 Okuma Corp Reluctance motor
JP2000134891A (en) * 1998-10-28 2000-05-12 Okuma Corp Synchronous motor and controller therefor
US10277099B2 (en) * 2013-09-02 2019-04-30 Mitsubishi Electric Corporation Synchronous motor

Also Published As

Publication number Publication date
JPS5499908A (en) 1979-08-07

Similar Documents

Publication Publication Date Title
US4424463A (en) Apparatus for minimizing magnetic cogging in an electrical machine
US4680494A (en) Multiphase motor with facially magnetized rotor having N/2 pairs of poles per face
US5006745A (en) Polyphase direct current motor
US4874975A (en) Brushless DC motor
US4692645A (en) Rotating electric motor with reduced cogging torque
US4276490A (en) Brushless DC motor with rare-earth magnet rotor and segmented stator
US4629924A (en) Multiphase motor with magnetized rotor having N/2 pairs of poles at its periphery
JPS6341307B2 (en)
JPH07503598A (en) Brushless DC motor/generator
EP0182702B2 (en) Brushless DC motor
US7342330B2 (en) Hybrid type double three-phase electric rotating machine
JPS6114743B2 (en)
JPS6223537B2 (en)
US4006375A (en) Stepping motor
JP3220559B2 (en) Linear pulse motor
JPS62201048A (en) Two-phase brushless motor
JP3220535B2 (en) Linear pulse motor
JP3182196B2 (en) Three-phase hybrid type stepping motor
JPH0799769A (en) Linear pulse motor
US5438227A (en) Linear pulse motor
JPS6046633B2 (en) Electric motor
EP0349546B1 (en) Electric motor
JPS6030195B2 (en) straight electric machine
WO1989010653A1 (en) Synchronous motor
JPS60128857A (en) Hybrid polyphase type stepping motor