JPS6142221B2 - - Google Patents

Info

Publication number
JPS6142221B2
JPS6142221B2 JP52142515A JP14251577A JPS6142221B2 JP S6142221 B2 JPS6142221 B2 JP S6142221B2 JP 52142515 A JP52142515 A JP 52142515A JP 14251577 A JP14251577 A JP 14251577A JP S6142221 B2 JPS6142221 B2 JP S6142221B2
Authority
JP
Japan
Prior art keywords
defect
defects
steel plate
light
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52142515A
Other languages
Japanese (ja)
Other versions
JPS5474792A (en
Inventor
Takeshi Katayama
Kenichi Sakamoto
Tadao Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14251577A priority Critical patent/JPS5474792A/en
Publication of JPS5474792A publication Critical patent/JPS5474792A/en
Publication of JPS6142221B2 publication Critical patent/JPS6142221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles

Description

【発明の詳細な説明】 本発明は、冷間又は熱間圧延鋼板における表面
欠陥の自動検査方法に関するものであり、とりわ
け従来の表面欠陥検査装置では疵の種類によつて
疵有害度(以下欠陥レベルと称す)の評価が異な
り目視検査のように適切な欠陥レベルの評価が困
難であつたのを改善して、検査工程において目視
に代る自動表面検査装置の適用を可能とする表面
欠陥の検査方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic inspection method for surface defects in cold- or hot-rolled steel sheets. This method improves the difficulty in evaluating the appropriate defect level using visual inspection, and enables the application of automatic surface inspection equipment in place of visual inspection in the inspection process. The aim is to provide an inspection method.

ステンレス鋼板、炭素鋼板、あるいは各種メツ
キ鋼板、電磁鋼板等の圧延鋼板の表面欠陥は、こ
れが成品表面の品質を決定する要因であるのみな
らず、途中工程においても欠陥の検査を行い欠陥
の種類によつて欠陥の発生工程をつきとめ又欠陥
の程度によつて次工程での作業条件を決定し又当
該材料の向け先、用途を決定する要因となる等、
品質管理上の重要なポイントである為、従来より
目視による入念な検査が実施されている。しかし
ながら、鋼板の表面欠陥はその種類、程度が多様
であり、その判別、判定には非常な熟練を要する
事、又この検査が通常鋼板の移動中即ち走間で行
なわれる為検査作業者に非常な集中力を要求され
疲労が激しい事、等の官能検査特有の間題点があ
つた。
Surface defects on rolled steel plates such as stainless steel plates, carbon steel plates, various galvanized steel plates, and electrical steel plates are not only a factor that determines the quality of the finished product's surface, but are also inspected during the process to determine the type of defect. Therefore, it is possible to identify the process in which the defect occurs, determine the working conditions for the next process depending on the degree of the defect, and become a factor in determining the destination and use of the material, etc.
Since this is an important point in quality control, careful visual inspection has traditionally been carried out. However, the types and degrees of surface defects on steel sheets vary, and their identification and judgment requires great skill.Also, since this inspection is usually performed while the steel sheet is moving, that is, between runs, it is extremely difficult for the inspection worker to do so. There were problems unique to sensory testing, such as intense concentration and intense fatigue.

このため、従来から鋼板表面欠陥検査を自動化
する為の種々の方法が開発され、又表面欠陥(又
は表面疵)検査装置として市販もされている。而
して従来の光学的表面検査装置は主として被検査
材表面を照明する投光装置と、被検査材表面より
反射され欠陥の特徴を表わす情報の加わつた光を
受けこれを電気信号に変換する受光部、受光部か
ら得られた電気信号を信号処理することにより、
欠陥の有無、欠陥の大きさを判定する信号処理部
分から構成されている。そして通常、検査は鋼板
表面微小部分での光反射率の変化を基本情報とす
るために前記投光部光束あるいは受光部視野のい
ずれか一方(あるいは両方)を非常に挟くしぼ
り、瞬間的には極くせまい範囲(視野)の表面反
射について測定を行なう構成とし、鋼板全表面を
検査するために上記視野を時間的に順次移動する
つまり走査する構成としていた。この走査方式と
しては、投光部を細いビーム状とし、表面を高速
で走査し、この反射光を広視野の受光系で検出す
るいわゆる飛点走査方式と、投光部は広い範囲を
均一照明するものとし受光部を微小視野としこれ
を走査する飛像走査方式とが代表的なものであ
り、特殊なものとして投光部と受光部のいずれを
も走査する飛点飛像型あるいはいずれをも走査し
ない固定型があることは周知である。
For this reason, various methods for automating steel plate surface defect inspection have been developed, and surface defect (or surface flaw) inspection devices are also commercially available. Conventional optical surface inspection equipment mainly consists of a light projector that illuminates the surface of the material to be inspected, and a light that is reflected from the surface of the material to be inspected and that receives information representing the characteristics of defects and converts it into an electrical signal. By processing the electrical signals obtained from the light receiving section and the light receiving section,
It consists of a signal processing section that determines the presence or absence of a defect and the size of the defect. Normally, the inspection is performed by squeezing either the light beam of the light emitter or the field of view of the light receiver (or both) very tightly in order to obtain basic information from changes in light reflectance at minute portions of the surface of the steel plate. The apparatus was configured to measure surface reflection in an extremely narrow range (field of view), and to sequentially move or scan the field of view in order to inspect the entire surface of the steel plate. This scanning method uses the so-called flying spot scanning method, in which the light emitter is shaped like a narrow beam, scans the surface at high speed, and detects the reflected light with a wide-field receiving system, and the light emitter illuminates a wide area uniformly. The typical method is a flying image scanning method in which the light receiving section is used as a micro field of view and scanning this field, and a special method is the flying point flying image method in which both the light emitting section and the light receiving section are scanned, or either one. It is well known that there are fixed types that do not scan either.

このような光学的欠陥検査装置において必要と
される能力は(1)欠陥の発見能力、(2)発見された欠
陥に対するその有害度即ち欠陥レベルの判定能
力、(3)欠陥の種類識別能力が主要なものである。
The capabilities required for such optical defect inspection equipment are (1) the ability to discover defects, (2) the ability to judge the harmfulness of the discovered defects, that is, the defect level, and (3) the ability to identify the type of defect. This is the main thing.

従来のこの種の検査装置においては前述の如
く、情報の基礎を鋼板表面微小部分での反射率に
置いており、得られた反射率信号の変化から疵の
存在を推定する。そこで通常は前記受光装置出力
信号を適当な前置増幅器により増幅した後、その
ままあるいは更に微分装置により出力変化成分の
みを取り出した後、適当な閾値でレベル弁別する
ことにより、通常表面のノイズ成分と欠陥の区別
及び欠陥レベルの判定を行なつていた。しかし鋼
板の表面欠陥には、多くの種類があり、その形
状、色合い、発生頻度等も被検査鋼板の鋼種、そ
の検査ラインまでの加工工程により大幅に異な
る。特に、検査の最終目的である欠陥レベルの判
定基準は、その鋼板の使用目的によつて疵種類毎
に異なり、又通常目視判定を基礎に定められた規
準を使用するため、疵の種類が異なると前記欠陥
の表面反射率変化が異なるため各種の疵に対する
定量的な欠陥レベル判定が非常に困難であつた。
例えばある種類の欠陥を基準とした判定回路のレ
ベル設定値でそれ以外の他の種類の欠陥レベルの
判定を行うと、誤る可能性が非常に高い。
As mentioned above, in the conventional inspection apparatus of this type, the basis of information is based on the reflectance at minute portions on the surface of the steel plate, and the presence of flaws is estimated from changes in the obtained reflectance signal. Therefore, usually, the output signal of the photodetector is amplified by an appropriate preamplifier, and then either as it is or after extracting only the output change component by a differentiator, the level is discriminated using an appropriate threshold value, so that it can be distinguished from the noise component on the surface. This involved distinguishing between defects and determining the defect level. However, there are many types of surface defects on steel sheets, and their shape, color, frequency of occurrence, etc. vary greatly depending on the type of steel sheet to be inspected and the processing steps up to the inspection line. In particular, the criteria for determining the defect level, which is the ultimate purpose of inspection, differs for each type of flaw depending on the purpose of use of the steel plate, and since standards established based on visual judgment are usually used, the criteria for determining the defect level differ depending on the type of flaw. Since the surface reflectance changes of the defects are different from each other, it has been extremely difficult to quantitatively determine the defect level of various types of defects.
For example, if the level setting value of a determination circuit based on a certain type of defect is used to determine the level of other types of defects, there is a very high possibility of an error.

本発明は、上記欠陥レベルの判定を正確に行な
う目的でなされたものであり、以下にその詳細に
ついて記述する。
The present invention has been made for the purpose of accurately determining the defect level, and the details thereof will be described below.

既に述べた如く、表面欠陥のレベルを判定する
ためには、当該欠陥の種類を知ることが重要な要
素である。欠陥の種類とは、欠陥の性状、成因等
により経験的に分類されたものであり、数多くあ
るが、欠陥レベルの判定を目的とする場合は類似
のものをまとめて後述の数種類の群に分けること
が可能である。欠陥をこの群の内どれに属するも
のであるかを識別できれば、この群毎に判定がで
きるので欠陥レベルの判定が比較的容易となるこ
とは明白である。又これらの疵種類の弁別におい
て、目視では欠陥の形状、色、発生部位等を経験
的に堪案し、一瞬の間に判定しており、この機能
は所謂パターン認識の分野となる。従つて従来の
光学的検査法のようにこれらの疵を部分的な反射
特性のみで捕えることなく、疵を平面的な集合、
即ち像として認識する必要があり、このようにす
れば目視検査に近い疵種類の判別が可能となる。
本発明は、欠陥検査装置に対して目視検査に近い
性能を保有させるため、欠陥を従来の一次元的な
捕え方から二次元的な像として検出し信号処理を
施すものである。
As already mentioned, in order to determine the level of surface defects, it is important to know the type of the defects. Defect types are empirically classified based on the nature and cause of the defect, and there are many types, but when the purpose is to determine the defect level, similar types are grouped together into several groups as described below. Is possible. It is clear that if it is possible to identify which group a defect belongs to, the determination can be made for each group, making it relatively easy to determine the defect level. In addition, in distinguishing between these types of defects, the shape, color, location, etc. of defects are visually observed, and judgments are made in an instant by empirically examining the shape, color, and location of the defects, and this function is in the field of so-called pattern recognition. Therefore, unlike conventional optical inspection methods, these flaws cannot be detected using only partial reflection characteristics, but instead can be detected as a flat collection of flaws.
That is, it is necessary to recognize it as an image, and in this way, it becomes possible to determine the type of flaw in a way similar to visual inspection.
The present invention detects defects as two-dimensional images and performs signal processing instead of the conventional one-dimensional method of detecting defects, in order to provide a defect inspection apparatus with performance close to that of visual inspection.

鋼板表面に発生する欠陥には、多種多様のもの
があるが、いくつかの観点から分類可能である。
例えばその密度の観点から集合欠陥と単独欠陥に
分類できる。前者は、熱延鋼板における肌荒れ状
スケール疵のごとく欠陥が微少な疵の集合であ
り、個々の疵を見れば問題とならないが、その集
合の密度、範囲の広さ等の集合の性状が欠陥の程
度を決定するようなものである。後者は、たとえ
欠陥がある程度密集していても、密集の程度は問
題とはならないが、中に含まれる最大(最も影響
の大なる)の疵により定まるような場合であり、
このような疵は一般には単独に存在することが多
い。この他疵にはカキ疵と呼ばれる深さのある複
数条の根跡からなる疵、短いカキ疵状の多数の疵
が圧延方向に列をなす共ずれ疵などもあり、これ
らは集合欠陥と単独欠陥の中間とも又は集合欠陥
ともとれる。そして欠陥を集合欠陥に属するもの
として扱うかあるいは単独欠陥に属するものとし
て扱うかは、通常鋼板の種類あるいは用途により
即ち検査目的により決まつてくる。
There are a wide variety of defects that occur on the surface of steel sheets, but they can be classified from several viewpoints.
For example, defects can be classified into collective defects and single defects based on their density. The former is a collection of minute defects such as rough scale defects on hot-rolled steel sheets, and although it is not a problem when looking at individual defects, the characteristics of the collection, such as the density and breadth of the collection, are defects. It is like determining the degree of The latter is a case where even if the defects are densely packed to some extent, the degree of crowding does not matter, but is determined by the largest (most influential) defect contained therein.
Generally, such flaws often exist singly. Other types of flaws include oyster flaws, which consist of multiple deep roots, and misalignment flaws, where many short oyster-like flaws line up in a row in the rolling direction. It can be considered as an intermediate defect or as a collective defect. Whether a defect is treated as a collective defect or as an individual defect is usually determined by the type or use of the steel sheet, that is, by the purpose of the inspection.

欠陥の分類の他の1つは、欠陥の形による分類
であり、これは単独欠陥に適用される。即ち、欠
陥が鋼板の圧延方向に長く、幅方向に短かい線状
疵、幅方向にひろがつており長さ方向には短かい
幅方向疵、双方に短かい点状疵、双方に長い即ち
広い面積を有する面状疵等がそれである。又これ
らの疵が集まり1つの集合欠陥を構成することも
ある。以上述べた欠陥の特徴は、いずれも欠陥部
での光学的反射特性の平面(二次元)分布状態に
ある。即ち二次元平面内での光反射特性の欠陥部
分における特徴を抽出することにより、欠陥の種
類を識別することが可能であり、種類を識別する
ことができれば次に識別した各欠陥を種類毎にそ
の程度(レベル)を判定することは容易である。
Another type of defect classification is classification by defect shape, which is applied to single defects. In other words, linear defects where the defects are long in the rolling direction of the steel plate and short in the width direction, widthwise defects which are spread in the width direction and short in the length direction, dotted defects which are short on both sides, and long or short defects on both sides. This includes planar defects that have a large area. Further, these defects may be collected to form one collective defect. The characteristics of the defects described above are all in the planar (two-dimensional) distribution state of optical reflection characteristics at the defective portion. In other words, it is possible to identify the type of defect by extracting the light reflection characteristics of the defective part in a two-dimensional plane. It is easy to judge the degree (level).

本発明においては上記欠陥の特性に立脚して、
欠陥の像を二次元的に検出し信号処理を行ない、
欠陥の特徴を抽出して欠陥の種類判定を行なうも
のであり、欠陥種類の判定を行なう場合の信号処
理手法としては二次元フーリエ変換法を用い、二
次元距離空間における像に対する欠陥の鮮鋭さ、
周期性、方向性に関する情報から、二次元周波数
空間でのパワースペクトルを求め、該二次元周波
数空間上のパワースペクトルパターンから欠陥種
類を識別するものである。以下本発明の詳細を図
面に基づいて説明する。
In the present invention, based on the characteristics of the above defects,
Detects the defect image two-dimensionally and performs signal processing,
The defect type is determined by extracting the characteristics of the defect, and the two-dimensional Fourier transform method is used as the signal processing method to determine the defect type.
A power spectrum in a two-dimensional frequency space is obtained from information regarding periodicity and directionality, and the defect type is identified from the power spectrum pattern in the two-dimensional frequency space. The details of the present invention will be explained below based on the drawings.

第1図および第2図はステンレス鋼板の連続焼
鈍酸洗ライン出側での表面検査に本発明を適用
し、熱延コイルの各種表面欠陥像に対し、二次元
フーリエ変換を施し、パワースペクトルの二次元
分布を測定した結果を示す。第1図の欠陥は圧延
方向と幅方向にほぼ独立にパワーを有しており、
相関のある成分が少ない。即ち、二次元パワース
ペクトル平面上で、パワーの大部分は圧延方向の
周波数Frが零である直線1上および幅方向での
周波数Fwが零である直線2上にあり、このこと
は欠陥の大多数は巾方向および圧延方向とも周期
性がなく、散在する点または島状疵であるという
事実を示している。第2図はパワースペクトルが
圧延方向において周期性を持つており、板巾方向
においては周期性がない疵であることを示してい
る。
Figures 1 and 2 show the application of the present invention to the surface inspection of stainless steel plates at the exit side of a continuous annealing and pickling line, where various surface defect images of hot-rolled coils are subjected to two-dimensional Fourier transformation, and the power spectrum is The results of measuring the two-dimensional distribution are shown. The defect in Figure 1 has power almost independently in the rolling direction and width direction,
There are few correlated components. That is, on the two-dimensional power spectrum plane, most of the power is on straight line 1, where the frequency Fr in the rolling direction is zero, and on straight line 2, where the frequency Fw in the width direction is zero, which indicates that the size of the defect is This indicates the fact that a large number of defects have no periodicity in both the width direction and the rolling direction, and are scattered dots or island-like defects. FIG. 2 shows that the power spectrum has periodicity in the rolling direction and is a defect with no periodicity in the width direction.

又欠陥の特徴は上記2直線軸上において特定の
周波数帯域内のエネルギーEの全体に対する比率
でも判別できる。即ち例えばスケール疵の如く、
細かい欠陥の集合したものは比較的周波数の高い
成分にエネルギーが集中しており、一方カキ疵等
太い線状の欠陥を有するものは、板幅方向の低い
周波数帯にエネルギーが集中する。従つてパワー
スペクトルの板幅方向周波数軸1において、比較
的高いある周波数帯でのエネルギーの全エネルギ
ーに対する比率及び、比較的低い周波数帯におけ
るエネルギーの全エネルギーに対する比率を見る
ことにより、スケール疵、カキ疵の特徴を抽出す
ることが可能となる。
Moreover, the characteristics of a defect can also be determined by the ratio of the energy E within a specific frequency band to the total on the two linear axes. That is, for example, scale defects,
A collection of fine defects has energy concentrated in a relatively high frequency component, while a defect with thick linear defects such as oyster scratches has energy concentrated in a low frequency band in the board width direction. Therefore, by looking at the ratio of energy in a relatively high frequency band to the total energy and the ratio of energy in a relatively low frequency band to the total energy on the frequency axis 1 in the board width direction of the power spectrum, it is possible to detect scale flaws and cracks. It becomes possible to extract the characteristics of the flaw.

表面疵種類識別用パラメータとしては同時に出
願した特願昭52−142516号(特開昭54−74793
号)「鋼板の表面欠陥検査方法」において詳述し
たように下記の式で定義されるDFw、DFrおよ
びRw、Rrを用いると便利である。
As parameters for identifying types of surface flaws, Japanese Patent Application No. 52-142516 (Japanese Unexamined Patent Publication No. 54-74793) filed at the same time.
No.) As detailed in ``Steel plate surface defect inspection method'', it is convenient to use DFw, DFr and Rw, Rr defined by the following formulas.

パラメータDFw、DFrは圧延方向(添字rで
示す)と巾方向(添字wで示す)の各周波数成分
の比を示しており、正常ならDFw=0、DFr=
0であるが、圧延方向または巾方向のパワースペ
クトルが他方のそれに対して強いときその程度に
応じてDFw<0、DFr<0となる。パラメータ
Rw、Rrは巾、圧延各方向におけるパワースペク
トルの強さを示しており、Rw<(35〜)40、Rr
<(35〜)40なら正常、Rw(35〜)40、Rr
(35〜)40なら異常、つまり疵有りである。な
お、判定値35〜40についてはサンプルデータ乃至
オンラインデータを用いて実験的に求めるものと
する。
Parameters DFw and DFr indicate the ratio of each frequency component in the rolling direction (indicated by subscript r) and the width direction (indicated by subscript w), and if normal, DFw = 0, DFr =
However, when the power spectrum in the rolling direction or the width direction is stronger than the other power spectrum, DFw<0 and DFr<0 depending on the degree. parameters
Rw and Rr indicate the strength of the power spectrum in each direction of width and rolling, Rw<(35~)40, Rr
<(35~)40 is normal, Rw(35~)40, Rr
(35~) If it is 40, it is abnormal, that is, there is a flaw. Note that the determination values 35 to 40 are determined experimentally using sample data or online data.

この他画像として捉えられた欠陥像の幅(板幅
方向長さ)、長さ(圧延方向長さ)、面積(画像全
面に占める率)にも特徴があり、前記パワースペ
クトルとこれらを組合せて具体的な欠陥の種類の
識別が可能である。これらのパラメータを利用し
た表面欠陥の識別手順を第3図に示す。
In addition, the width (length in the sheet width direction), length (length in the rolling direction), and area (percentage of the entire image) of the defect image captured as an image also have characteristics, and these can be combined with the power spectrum described above. Identification of specific defect types is possible. FIG. 3 shows a procedure for identifying surface defects using these parameters.

第3図において31〜35は論理判定ブロツク
であり、それぞれ真の場合にパスし、偽の場合分
岐する。これらのブロツクにおいて31はDFw
=0か否かつまり板幅方向軸における変化成分が
大か否か、32はRw40か否かつまり板幅方向
において欠陥特性周波数特性帯域成分が大か否
か、33はDFr=0か否かつまり圧延方向軸にお
ける変化成分が大か否か、34はRr40か否か
つまり圧延方向における欠陥特性周波数帯域成分
が大か否か、35は欠陥面積が大か否か、なる論
理判定基準を示している。このフローにより、欠
陥A(肌荒れ状スケール)、欠陥B(カキ疵)、欠
陥C(共ズレ疵)、欠陥A′、A″(巾方向には薄弱
な肌荒れ状スケール疵)、欠陥B′、B″(巾方向に
は薄弱なカキ疵)、欠陥D、E(未定義疵)の5
種の欠陥を判定することが可能である。
In FIG. 3, numerals 31 to 35 are logic decision blocks, which pass if true and branch if false. In these blocks 31 is DFw
= 0 or not, that is, whether the change component in the sheet width direction axis is large. 32 is Rw40 or not, that is, whether the defect characteristic frequency characteristic band component is large in the sheet width direction. 33 is DFr = 0 or not. In other words, whether the change component in the rolling direction axis is large or not, 34 is Rr40 or not, that is, whether the defect characteristic frequency band component in the rolling direction is large or not, and 35 is the logical judgment criterion whether the defect area is large or not. ing. Due to this flow, defect A (rough skin scale), defect B (oyster flaw), defect C (co-slip flaw), defect A', A'' (rough skin scale flaw that is weak in the width direction), defect B', B'' (weak scratches in the width direction), defects D, E (undefined defects) 5
It is possible to determine seed defects.

本方式により通常発生する自然欠陥に対し90%
以上の欠陥種類の自動識別能力を保有することが
可能であり、従来技術から著るしい改善を示し
た。なお本発明における方法では更に、欠陥の発
生している位置即ちストリツプの長手方向におい
て先端、中間、尾端の別あるいは、幅方向におい
てエツヂ部であるか中央部かの別についての情報
を付加し、識別精度を向上させることが可能であ
る。
90% of natural defects that normally occur with this method
It is possible to have the ability to automatically identify the above defect types, and represents a significant improvement over the prior art. Furthermore, in the method of the present invention, information is added regarding the position where the defect occurs, that is, whether the defect occurs at the tip, middle, or tail in the longitudinal direction of the strip, or whether it is at the edge or the center in the width direction. , it is possible to improve identification accuracy.

第4図に本発明に基づく、欠陥検査装置の基本
的な1構成図を示す。図において41は被検査材
である鋼板であり、42はこの表面に生じている
欠陥を示す。43は照明用の光源である。44は
疵部での反射光を光像等の像に変換する光学系、
45は光学系44により変換された像を電気的信
号に変換する撮像部、46は得られた映像情報に
対して、欠陥特徴を抽出する為の処理を行なう二
次元信号処理部、47は二次元信号処理部46に
より得られた処理後の情報から疵種別を判定する
ための特徴パラメータDFw、DFr、Rw、Rrの識
別判定部、48は得られた各特徴パラメータにつ
いてその大きさを判定するレベル判別部、49は
各特徴パラメータのレベル相互関係から第3図に
示したフローにより欠陥の種類程度を判定する欠
陥判定部、50は判定された欠陥を表示し、作業
者に知らせ、又図示しない検査情報処理装置に欠
陥情報DIを出力する出力表示装置である。
FIG. 4 shows a basic configuration diagram of a defect inspection device based on the present invention. In the figure, 41 is a steel plate which is a material to be inspected, and 42 indicates defects occurring on this surface. 43 is a light source for illumination. 44 is an optical system that converts the reflected light from the flaw into an image such as a light image;
45 is an imaging section that converts the image converted by the optical system 44 into an electrical signal; 46 is a two-dimensional signal processing section that processes the obtained image information to extract defect characteristics; and 47 is a two-dimensional signal processing section. An identification/determination unit 48 for identifying feature parameters DFw, DFr, Rw, and Rr for determining the type of flaw from the processed information obtained by the dimensional signal processing unit 46 determines the size of each of the obtained feature parameters. A level determination unit 49 determines the type and extent of defects according to the flow shown in FIG. 3 based on the level correlation of each feature parameter; This is an output display device that outputs defect information DI to an inspection information processing device.

第4図においては欠陥の像は光学系44により
撮像部45に結ばれ、電気信号4aに変換されて
信号処理部46へ送られる。信号処理部46では
欠陥像情報に対して平均値、トレンドの除去等必
要な前処理を施した後二次元フーリエ変換処理が
行なわれる。信号処理部46の出力4bは欠陥画
像に対応する周波数空間像であり、この二次元ス
ペクトル分布パターンに基づき予め選定した特徴
パラメータDFw、DFr、Rw、Rrを演算し、その
大きさの信号4cをそれぞれのレベル判別部48
へ出力する。レベル判別部48では各特徴パラメ
ータ毎にレベル判定を行ない、数レベルの判定を
付けてその信号4dを欠陥判定部49へ送る。欠
陥判定部49では各パラメータのレベルの相互関
係から、欠陥の種類及び大きさを判定し、この結
果4eは表示出力部50で外部へ出力する。
In FIG. 4, an image of the defect is focused on an imaging section 45 by an optical system 44, converted into an electrical signal 4a, and sent to a signal processing section 46. In the signal processing section 46, the defect image information is subjected to necessary preprocessing such as removal of average values and trends, and then subjected to two-dimensional Fourier transform processing. The output 4b of the signal processing unit 46 is a frequency spatial image corresponding to the defect image, and preselected feature parameters DFw, DFr, Rw, and Rr are calculated based on this two-dimensional spectral distribution pattern, and a signal 4c of the magnitude is calculated. Each level discrimination section 48
Output to. The level determination unit 48 performs level determination for each characteristic parameter, and sends the signal 4d with several levels of determination to the defect determination unit 49. The defect determining section 49 determines the type and size of the defect from the correlation between the levels of each parameter, and the result 4e is outputted to the outside by the display output section 50.

前記特徴パラメータの選定及びパラメータ判別
部でのレベル設定は、欠陥検査を適用する対象の
鋼板製造プロセス毎に異なる。又信号処理の方式
も、二次元フーリエ変換の他に二次元アダマール
変換あるいは二次元での相関関数等もあるのでこ
れらの信号処理手法の2以上を併用することも有
効であり、対象検査物体により適当な手段を選べ
ばよい。
The selection of the characteristic parameters and the level setting in the parameter determination section differ depending on the steel plate manufacturing process to which the defect inspection is applied. In addition, as for signal processing methods, in addition to two-dimensional Fourier transform, there are also two-dimensional Hadamard transform, two-dimensional correlation function, etc., so it is effective to use two or more of these signal processing methods together, depending on the object to be inspected. Just choose an appropriate method.

なお通常使用される画像−電気信号変換器例え
はテレビカメラに利用されるビジコン等の撮像管
あるいは、フオトダイオード、電荷転送素子
(CCD)等を多数配列した固体撮像素子による画
像変換装置は画面の分解能に限界があり、通常1
画面を500×500点、多くとも1000×1000点程度の
画素に分解することができるに過ぎない。従つて
冷間圧延鋼板の如く、板幅が1500mm程度にも達す
る場合には、全幅を一画面で見ることは数mm以下
の微少欠陥を見落すか、あるいは欠陥に対し前述
の解析が可能となる画素数が対応しないため誤つ
た結論を得る結果となる。この為、撮像部(画像
変換器)における静止時の観側面積の大きさ(以
下視野と称す)は最大100mm×100mm程度に限定さ
れる。従つて鋼板の全幅を検査する為に視野を板
幅方向に順次移動(走査)させるかあるいは板幅
方向に撮像部を複数台並べ視野が全幅を覆うよう
にする必要がある。この目的の為の視野の走査機
構の1例を第5図に示す。
An example of commonly used image-to-electrical signal converters is an image pickup tube such as a vidicon used in a television camera, or an image conversion device using a solid-state image sensor that has a large array of photodiodes, charge transfer devices (CCD), etc. Resolution is limited, usually 1
It is only possible to break down the screen into 500 x 500 pixels, or at most 1000 x 1000 pixels. Therefore, when the width of a cold-rolled steel plate reaches approximately 1,500 mm, viewing the entire width on one screen may overlook minute defects of several mm or less, or it may be difficult to perform the above-mentioned analysis on defects. Since the numbers of pixels do not correspond, an incorrect conclusion will be obtained. For this reason, the size of the viewing area (hereinafter referred to as the field of view) of the imaging unit (image converter) when it is stationary is limited to a maximum of about 100 mm x 100 mm. Therefore, in order to inspect the entire width of a steel plate, it is necessary to sequentially move (scan) the field of view in the width direction of the steel plate or to arrange a plurality of imaging units in the width direction of the steel plate so that the field of view covers the entire width. An example of a field scanning mechanism for this purpose is shown in FIG.

第5図において56は回転鏡、57は駆動用モ
ーター、58は回転鏡56からの光ビームを静止
光学系54へ投射するための補助鏡である。回転
鏡56の回転により撮像部55の視野が鋼板51
の幅方向に走査され、鋼板51の走行(板幅方向
に直角方向)により板全面の検査が可能となる。
これら走査機構においては、走査幅全体にわたり
欠陥の像を良好に撮像部上に結ばせることが重要
である。この為補助鏡58、回転鏡56、光学系
54を含めた全体学系の適切な設計が必要であ
り、又走査幅を比較的小さくとることにより、実
用上支障ない程度の良好な画像を容易に得ること
ができる。この為、広幅の鋼板の検査を行なう為
には、上記走査幅を200mm〜500mm程度に限定し、
これを複数台板幅方向に併置することにより、全
板幅検査を可能とすることができる。
In FIG. 5, 56 is a rotating mirror, 57 is a drive motor, and 58 is an auxiliary mirror for projecting the light beam from the rotating mirror 56 onto the stationary optical system 54. Due to the rotation of the rotating mirror 56, the field of view of the imaging unit 55 changes to the steel plate 51.
The entire surface of the plate can be inspected by running the steel plate 51 (in a direction perpendicular to the width direction of the plate).
In these scanning mechanisms, it is important to form a good image of the defect on the imaging section over the entire scanning width. For this reason, it is necessary to appropriately design the entire optical system including the auxiliary mirror 58, rotating mirror 56, and optical system 54, and by making the scanning width relatively small, it is easy to obtain a good image that does not cause any practical problems. can be obtained. Therefore, in order to inspect wide steel plates, the above scanning width should be limited to about 200 mm to 500 mm.
By arranging a plurality of these in parallel in the width direction of the base board, it is possible to inspect the entire board width.

なお第4図の信号処理部46においては通常画
像信号4aはデイジタル情報に変換された後図示
しない記憶装置に蓄積され、前記信号処理がデイ
ジタル的に為される(本処理は通常小型の電子計
算機システムにより実行される。)。鋼板の走間検
査を行なう場合、欠陥部を含む鋼板表面の像は
刻々信号処理部47に送付される。このため前記
欠陥像のデイジタル信号処理量はかなり多いた
め、板全面の像について全てを処理することは時
間的に困難であり、又これを可能とすることは検
査装置の価格を増大させる為好ましくない。この
為前記信号処理は、鋼板上の欠陥存在部の像に対
してのみ行なう方式とするとよい。この為、撮像
部45上に得られた鋼板表面像に対し、信号処理
を施すか否かの予備選別が必要となり、又選別さ
れた画像情報の蓄積が必要である。該予備選別の
為には、従来の光学的検査装置の併用が有効であ
る。第6図にこれの1例を示す。
In the signal processing unit 46 of FIG. 4, the image signal 4a is normally converted into digital information and then stored in a storage device (not shown), and the signal processing is performed digitally (this processing is usually performed using a small electronic computer). (performed by the system). When carrying out a running inspection of a steel plate, images of the surface of the steel plate including defective parts are sent to the signal processing section 47 every moment. For this reason, since the amount of digital signal processing for the defect image is quite large, it is difficult in terms of time to process all the images of the entire surface of the board, and it is preferable to make this possible because it increases the cost of the inspection equipment. do not have. For this reason, it is preferable that the signal processing is performed only on the image of the defective portion on the steel plate. For this reason, it is necessary to pre-select whether or not to perform signal processing on the steel plate surface image obtained on the imaging unit 45, and it is also necessary to accumulate the selected image information. For this preliminary selection, it is effective to use a conventional optical inspection device in combination. An example of this is shown in FIG.

第6図は第5図と類似の光学系の1例を示し、
本図において69は半透過鏡であり、画像変換部
64,65へ行く鋼板表面反射光の一部を光学系
68を通して光電変換素子70へ導き、この出力
信号を欠陥選別信号処理部67に入力し、前記デ
イジタル信号処理必要性の有無の判定を行なう。
信号処理部67は欠陥部での反射光量変化あるい
はその微分値を基に判定を行なうもので、従来公
知の表面欠陥検査装置における信号処理と類似の
機能を有する。61は被検査材、62は欠陥、6
3は投射光、66は回転鏡である。
Figure 6 shows an example of an optical system similar to Figure 5,
In this figure, 69 is a semi-transmissive mirror, which guides a part of the light reflected from the steel plate surface going to the image converters 64 and 65 to the photoelectric conversion element 70 through the optical system 68, and inputs this output signal to the defect selection signal processing unit 67. Then, it is determined whether or not the digital signal processing is necessary.
The signal processing unit 67 performs determination based on the change in the amount of reflected light at the defective portion or its differential value, and has a function similar to the signal processing in a conventionally known surface defect inspection device. 61 is the material to be inspected, 62 is the defect, 6
3 is a projection light, and 66 is a rotating mirror.

本発明は更に第4図と異なる構成で実施するこ
とも可能である。即ち第4図に示す二次元の信号
処理部46ではデイジタル信号処理を採用し、多
様な処理を可能とするのが通例であるが、この場
合処理時間がかかり超高速ラインでは処理遅れが
生じる可能性がある。この様な場合、デイジタル
処理の一部を光学的に行なうことができ、これに
より処理時間の短縮が可能である。第7図に光学
的な二次元フーリエ変換を採用した例を示す。本
図において73はレーザー等で代表されるコヒー
レント光源であり、第4図における照明用光源4
3の代りに設置する。コヒーレント光により照射
された鋼板表面の反射光の回析パターンが、表面
反射特性のフーリエ変換であり、その強度分布が
二次元パワースペクトルとなることは公知であ
る。即ち反射光路上に置いた結像面78に鋼板7
1上の欠陥72のパワースペクトル像が得られ
る。従つて画像変換器75はパワースペクトル像
を電気信号の形に変換することになり、以後の信
号処理内容を簡素化することができる。
The present invention can also be implemented with a configuration different from that shown in FIG. That is, the two-dimensional signal processing unit 46 shown in FIG. 4 typically employs digital signal processing to enable a variety of processing, but in this case, processing time is required and processing delays may occur on ultra-high-speed lines. There is sex. In such a case, part of the digital processing can be performed optically, thereby reducing processing time. FIG. 7 shows an example in which optical two-dimensional Fourier transformation is adopted. In this figure, 73 is a coherent light source typified by a laser, etc., and the illumination light source 4 in FIG.
Install in place of 3. It is well known that the diffraction pattern of reflected light on the surface of a steel plate irradiated with coherent light is a Fourier transform of surface reflection characteristics, and its intensity distribution becomes a two-dimensional power spectrum. That is, the steel plate 7 is placed on the imaging surface 78 placed on the reflected optical path.
A power spectrum image of the defect 72 on 1 is obtained. Therefore, the image converter 75 converts the power spectral image into an electrical signal, and the subsequent signal processing can be simplified.

以上本発明によれば、従来の表面欠陥検査装置
において実現できなかつた表面欠陥の種類判別が
可能となり、欠陥レベルの判定精度が向上すると
共に、欠陥種類毎の分類情報により前後工程の品
質管理も可能になる等の効果があり、従来の目視
に代る表面疵検査の完全自動化が可能となつた。
As described above, according to the present invention, it is possible to distinguish the types of surface defects, which could not be achieved with conventional surface defect inspection equipment, and the accuracy of defect level determination is improved.In addition, the classification information for each defect type allows for quality control in pre- and post-processes. It has become possible to fully automate surface flaw inspection instead of conventional visual inspection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はパワースペクトル分布の
実測例を示すグラフ、第3図は欠陥種類の判別要
領を示す流れ図、第4図〜第7図は本発明による
欠陥検査装置の概要を示す説明図である。 図面で41,51,61,71は鋼板、42,
62,72は欠陥、43,63,73は光源であ
る。
Figures 1 and 2 are graphs showing actual measurement examples of power spectrum distributions, Figure 3 is a flowchart showing procedures for determining defect types, and Figures 4 to 7 are explanations showing an overview of the defect inspection apparatus according to the present invention. It is a diagram. In the drawing, 41, 51, 61, 71 are steel plates, 42,
62 and 72 are defects, and 43, 63, and 73 are light sources.

Claims (1)

【特許請求の範囲】 1 被検査鋼板表面に投光し、反射光を集光して
光電変換および二次元フーリエ変換を行ない、そ
の周波数空間でのパワースペクトル分布を考慮し
て欠陥の特徴を表面疵種類識別用パラメータとし
て抽出してこれに基ずいて欠陥の種類を識別し、
識別された欠陥種類に従つて欠陥信号に対するス
レシユホルドレベルを定めて欠陥有害度の判定を
行なうことを特徴とする鋼板の表面欠陥検査方
法。 2 鋼板表面ノンコヒーレントな光を投射し、反
射光を撮像部に結像させて光電変換し、得られた
電気的画像信号に対し二次元フーリエ変換を行な
うことを特徴とする特許請求の範囲第1項記載の
鋼板の表面欠陥検査方法。 3 鋼板表面にコヒーレントな光を投射し、反射
光路上に置いた結像面に得られる二次元フーリエ
変換像を光電変換することを特徴とした特許請求
の範囲第1項記載の鋼板の表面欠陥検査方法。
[Claims] 1. Light is projected onto the surface of the steel sheet to be inspected, and the reflected light is focused to perform photoelectric conversion and two-dimensional Fourier transformation, and the characteristics of defects are detected on the surface by taking into consideration the power spectrum distribution in the frequency space. The parameter is extracted as a parameter for identifying the defect type, and the type of defect is identified based on this.
1. A method for inspecting surface defects on a steel sheet, characterized in that a threshold level for a defect signal is determined according to the identified defect type to determine the degree of harmfulness of the defect. 2. Claim No. 2, characterized in that non-coherent light is projected onto the surface of a steel plate, the reflected light is imaged on an imaging section, photoelectrically converted, and two-dimensional Fourier transform is performed on the obtained electrical image signal. The method for inspecting surface defects of a steel plate according to item 1. 3. A surface defect on a steel plate according to claim 1, characterized in that coherent light is projected onto the surface of the steel plate and a two-dimensional Fourier transform image obtained on an imaging plane placed on a reflected optical path is photoelectrically converted. Inspection method.
JP14251577A 1977-11-28 1977-11-28 Surface defect inspection method of steel plates Granted JPS5474792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14251577A JPS5474792A (en) 1977-11-28 1977-11-28 Surface defect inspection method of steel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14251577A JPS5474792A (en) 1977-11-28 1977-11-28 Surface defect inspection method of steel plates

Publications (2)

Publication Number Publication Date
JPS5474792A JPS5474792A (en) 1979-06-15
JPS6142221B2 true JPS6142221B2 (en) 1986-09-19

Family

ID=15317140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14251577A Granted JPS5474792A (en) 1977-11-28 1977-11-28 Surface defect inspection method of steel plates

Country Status (1)

Country Link
JP (1) JPS5474792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314021U (en) * 1986-07-14 1988-01-29
JPS6314020U (en) * 1986-07-14 1988-01-29
JPS6314019U (en) * 1986-07-14 1988-01-29

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754844A (en) * 1980-09-19 1982-04-01 Nippon Steel Corp Flaw signal processing apparatus
EP0572336B1 (en) * 1992-05-29 2001-03-14 Eastman Kodak Company Coating density analyzer and method using image processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059081A (en) * 1973-09-26 1975-05-22
JPS5080885A (en) * 1973-11-15 1975-07-01
US3944978A (en) * 1974-09-09 1976-03-16 Recognition Systems, Inc. Electro-optical method and apparatus for making identifications
JPS51145387A (en) * 1975-06-10 1976-12-14 Toshiba Corp Fault detecting device
JPS5292579A (en) * 1976-01-28 1977-08-04 Toyo Boseki Method of discriminating defects of sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059081A (en) * 1973-09-26 1975-05-22
JPS5080885A (en) * 1973-11-15 1975-07-01
US3944978A (en) * 1974-09-09 1976-03-16 Recognition Systems, Inc. Electro-optical method and apparatus for making identifications
JPS51145387A (en) * 1975-06-10 1976-12-14 Toshiba Corp Fault detecting device
JPS5292579A (en) * 1976-01-28 1977-08-04 Toyo Boseki Method of discriminating defects of sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314021U (en) * 1986-07-14 1988-01-29
JPS6314020U (en) * 1986-07-14 1988-01-29
JPS6314019U (en) * 1986-07-14 1988-01-29

Also Published As

Publication number Publication date
JPS5474792A (en) 1979-06-15

Similar Documents

Publication Publication Date Title
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
CA2146911C (en) Lumber defect scanning including multi-dimensional pattern recognition
KR101867256B1 (en) Apparatus for inspecting surface defects of steel sheet and method for inspecting surface defects
JP2006292747A (en) Method and system for eddy current test
JPH0434068A (en) Inspection of top cleanliness
GB2051349A (en) Automatic defecting inspection apparatus
JP2000036044A (en) Defect integrating processor and defect integrating processing method
JPS6142221B2 (en)
JP5181912B2 (en) Surface defect inspection method, surface defect inspection apparatus, steel sheet manufacturing method, and steel sheet manufacturing apparatus
JPH06148098A (en) Surface defect inspection apparatus
US5278411A (en) Residual ink measurement
JP4094399B2 (en) Steel plate wrinkle inspection method and apparatus
JPH07198627A (en) Metallic surface defect inspection device
JP3905741B2 (en) Optical member inspection method
Barker et al. A design study of an automatic system for on-line detection and classification of surface defects on cold-rolled steel strip
JPH07333197A (en) Automatic surface flaw detector
JPS6142222B2 (en)
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JP2861338B2 (en) Optical inspection equipment
JP2022013285A (en) Machine learning method
JPS63269006A (en) Apparatus for inspecting flatness
JPH04238207A (en) Defect inspecting device
JPH0882604A (en) Method for inspecting surface defect of steel plate
US5402228A (en) On-line dirt counter
JP2004125629A (en) Defect detection apparatus