JPS6142174B2 - - Google Patents

Info

Publication number
JPS6142174B2
JPS6142174B2 JP56083622A JP8362281A JPS6142174B2 JP S6142174 B2 JPS6142174 B2 JP S6142174B2 JP 56083622 A JP56083622 A JP 56083622A JP 8362281 A JP8362281 A JP 8362281A JP S6142174 B2 JPS6142174 B2 JP S6142174B2
Authority
JP
Japan
Prior art keywords
defrosting
temperature
indoor
coil
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56083622A
Other languages
Japanese (ja)
Other versions
JPS57198940A (en
Inventor
Kazuji Kakubari
Hisashi Tokisaki
Masayuki Shimizu
Kazuo Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP56083622A priority Critical patent/JPS57198940A/en
Publication of JPS57198940A publication Critical patent/JPS57198940A/en
Publication of JPS6142174B2 publication Critical patent/JPS6142174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明はヒートポンプ式空調機の除霜制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defrosting control device for a heat pump air conditioner.

一般にヒートポンプ式空調機で冬期暖房運転を
行なうと、外気温度の低下時室外コイルへの着霜
により熱交換効率が低下してしまい、電力が無駄
となると共に暖房効果がダウンしてしまう致命的
な欠陥を有している。
Generally, when a heat pump type air conditioner is used for heating operation in winter, the heat exchange efficiency decreases due to frost formation on the outdoor coil when the outside air temperature drops, resulting in a fatal loss of power and heating efficiency. It has defects.

この為、一時的に冷媒サイクルを逆転させて室
外コイルの除霜を行ない再び正常な冷媒サイクル
に切換復帰させて暖房運転を行なう繰り返しがな
されており、この制御として、従来室外コイル温
度と外気温度との差温によつて着霜の有無を検出
する差温式除霜装置と、一定時間毎に室外コイル
温度を検出する機械式タイマ除霜装置とが採用さ
れていた。
For this reason, the refrigerant cycle is temporarily reversed to defrost the outdoor coil, and then the refrigerant cycle is switched back to normal and the heating operation is repeated. A differential temperature defrosting device that detects the presence or absence of frost based on the temperature difference between the two types of defrosting devices has been used, and a mechanical timer defrosting device that detects the outdoor coil temperature at regular intervals has been adopted.

しかしながら、前者の差温式除霜装置では外気
温度が低下して室外コイル温度との差温が設定差
温値に達すると必らず除霜が行なわれるので、外
気の湿度が低く室外コイルに着霜していなくても
不必要に除霜を開始してしまう欠点を有してお
り、又、後者の機械式タイマ除霜装置では室外コ
イルが着霜状態に陥いる今一歩の時は除霜を行な
わないで通過してしまい、次に着霜しはじめ外気
温度が大幅に低下しても一定時間後でなければ除
霜が開始されない欠点を有していた。
However, with the former type of differential temperature defrosting device, defrosting is always performed when the outside air temperature drops and the temperature difference between the outdoor coil temperature and the outdoor coil temperature reaches the set temperature difference value. It has the disadvantage that it starts defrosting unnecessarily even when there is no frost, and the latter mechanical timer defrosting device does not defrost when the outdoor coil is in a frosty state. This has the disadvantage that the defrosting process does not start until after a certain period of time, even if the air passes through the air without frosting, and then frost begins to form and the outside temperature drops significantly.

本発明は斯かる点に鑑み、着霜感知に信頼性の
劣る前者方式における外気温度検出、並びに後者
方式におけるタイマ検出を廃止し、代わりに室内
コイル温度を読み取ることにより着霜を確実に検
出するようにし、更にはこの検出時室外コイル温
度も同時に検出して着霜状態を再確認するように
した精度の高い除霜制御装置を提供したものであ
る。
In view of this, the present invention abolishes the outside temperature detection in the former method, which is less reliable in detecting frost formation, and the timer detection in the latter method, and instead reads the indoor coil temperature to reliably detect frost formation. The present invention provides a highly accurate defrosting control device which also detects the outdoor coil temperature at the time of this detection to reconfirm the frosting state.

以下本発明の一実施例を図面に基づいて説明す
ると、第1図は分離型ヒートポンプ式空調機の電
気回路図で、除霜と暖房回路のみを抜粋したもの
である。1は電源供給端子V1,V2に定電圧直流
電源2が接続されたマイクロコンピユータで以下
マイコンと称し、この内部の機構は第4図に示す
ように構成されている。まず51はタイマ機構で
あり、タイマ51から一定周期毎の信号を入力
し、この時に室内コイルセンサの検出値を端子
R1から入力する。53は演算機構であり、一定
周期毎に入力した検出値から、この値の勾配変化
を求める演算を行なう。54は比較機構であり、
設定機構55で予め設定された設定勾配(0.8
℃/6分)とこの勾配変化とを比較して、この変
化勾配が設定勾配以上となつた時に除霜信号を出
力する。56はアンドゲート機構であり、除霜信
号と端子R2に与えられる信号とのアンドを行な
う。57は除霜制御機構であり、アンドゲート機
構から除霜信号が与えられると後記する除霜運転
制御を行なう。またこのマイコン1は出力端子00
乃至04から抵抗3乃至7を介して比較器8の基準
端子9に接続され、出力端子00乃至04から〔0、
0、0、0、0〕乃至〔1、1、1、1、1〕ま
での5ビツト32種類の出力信号が出されて32ステ
ツプの基準電圧信号が送り込まれており、この信
号が出されるごとに比較器8の出力端子がアース
電位と短絡されたり開放されたりしている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an electric circuit diagram of a separate heat pump type air conditioner, in which only the defrosting and heating circuits are extracted. Reference numeral 1 denotes a microcomputer having a constant voltage DC power source 2 connected to power supply terminals V 1 and V 2 , hereinafter referred to as a microcomputer, and its internal mechanism is constructed as shown in FIG. First, 51 is a timer mechanism, which inputs a signal every fixed period from the timer 51, and at this time, the detected value of the indoor coil sensor is input to the terminal.
Input from R 1 . Reference numeral 53 denotes an arithmetic mechanism, which performs an arithmetic operation to determine the gradient change of the detected value input at regular intervals. 54 is a comparison mechanism;
The setting gradient (0.8
℃/6 minutes) and this change in slope, and when this change slope exceeds the set slope, a defrost signal is output. 56 is an AND gate mechanism which performs an AND operation between the defrosting signal and the signal applied to the terminal R2 . Reference numeral 57 denotes a defrosting control mechanism, which performs defrosting operation control to be described later when a defrosting signal is given from the AND gate mechanism. Also, this microcomputer 1 has output terminal 0 0
The output terminals 0 to 04 are connected to the reference terminal 9 of the comparator 8 via the resistors 3 to 7, and the output terminals 0 to 04 are connected to the reference terminal 9 of the comparator 8 through the resistors 3 to 7.
32 types of 5-bit output signals from [0, 0, 0, 0] to [1, 1, 1, 1, 1] are output, and a 32-step reference voltage signal is sent, and this signal is output. The output terminal of the comparator 8 is short-circuited to ground potential or opened at each time.

同時に出力端子R1から抵抗10を介して前記
32ステツプの1周期より長いタイミング時間で
9Vの出力電圧が発生しており、このタイミング
時入力端子K1が32ステツプのどのステツプの時
LからHになるかで比較器8の比較端子11に接
続された室内コイルセンサ12で室内コイル温度
を感知して室内コイル温度が設定温度の摂氏30℃
以上か否かを判別し、YESであれば更にマイコ
ン1に内蔵されたタイマー記憶機能により6分間
マスキングしてこの時間で室内コイル温度が摂氏
0.8℃以降したか否かを判別し、更にこの状態が
3回続いたかを否かを判別してこれを記憶してい
る。
At the same time, from the output terminal R1 through the resistor 10,
With a timing time longer than one cycle of 32 steps
An output voltage of 9V is generated, and at this timing, the indoor coil sensor 12 connected to the comparison terminal 11 of the comparator 8 detects the indoor coil depending on which step of 32 steps the input terminal K1 goes from L to H. Detects the temperature and adjusts the indoor coil temperature to the set temperature of 30 degrees Celsius
If it is YES, masking is performed for 6 minutes using the timer memory function built into microcontroller 1, and the indoor coil temperature is set to Celsius during this time.
It is determined whether the temperature has exceeded 0.8°C, and further it is determined whether this state has continued three times or not, and this is stored.

13はトランジスタ14により制御される比較
器で、この出力端子は入力端子K1に分岐接続さ
れると共に抵抗15を介して出力端子R2に接続
されており、この出力端子R2からは上述した出
力端子R1と同様に9Vの出力電圧が発生してこの
タイミング時入力端子K1がLからHになるか否
かでトランジスタ14のOFF動作を感知してい
る。
13 is a comparator controlled by a transistor 14, the output terminal of which is branch-connected to the input terminal K 1 and connected to the output terminal R 2 via a resistor 15; Similar to the output terminal R1 , an output voltage of 9V is generated, and the OFF operation of the transistor 14 is sensed based on whether the input terminal K1 changes from L to H at this timing.

16は分離型ヒートポンプ式空調機のユニツト
間端子、17はこの第1端子と第2端子との間に
接続された圧縮機駆動用リレー、18,19はト
ランジスタ20のON時通電される室外フアン用
リレー及び四方弁用コイル、21はユニツト間端
子16の第3と第4の端子との間に接続され室外
コイル温度が低下して摂氏−3℃以下になると閉
塞し、摂氏5℃以上に上昇した時開放される室外
コイルセンサの接点である。
16 is a terminal between units of a separate heat pump air conditioner, 17 is a compressor drive relay connected between the first terminal and the second terminal, and 18 and 19 are outdoor fans that are energized when the transistor 20 is turned on. The relay and four-way valve coil 21 is connected between the third and fourth terminals of the inter-unit terminal 16, and is closed when the outdoor coil temperature drops to -3°C or lower, and closes when the outdoor coil temperature drops to -3°C or higher. This is the contact point of the outdoor coil sensor that opens when it rises.

R3,R4は暖房運転中L信号が出されている出
力端子でインバータ22,23を夫々介してトラ
ンジスタ24,25にベース接続し、R5は暖房
運転時室内コイル温度が摂氏30℃以下の時H信号
が、30℃以上の時L信号が出されている出力端子
でインバータ26を介して室内フアン用モータ2
7の回転数を切換える速調用リレー28と接続し
ている。
R 3 and R 4 are the output terminals from which the L signal is output during heating operation, and are connected to the bases of transistors 24 and 25 via inverters 22 and 23, respectively, and R 5 is the output terminal where the indoor coil temperature is 30 degrees Celsius or less during heating operation. The indoor fan motor 2 is output via the inverter 26 at the output terminal where the H signal is output when the temperature is 30℃ or higher, and the L signal is output when the temperature is 30℃ or higher.
It is connected to a speed adjustment relay 28 that switches the rotation speed of 7.

尚、29,30は出力端子R1と入力端子K2
の間に並列接続された運転スイツチ及び暖房スイ
ツチ、31はこの運転スイツチ29と同時に開閉
される連動スイツチ、32は9Vの定電圧直流電
源端子33は24Vの定電圧電源端子、34,3
5,36,37,38,39は逆流阻止用ダイオ
ード、40はトランジスタ14のベースエミツタ
間に接続されるダイオード、41,42,43は
逆起電力保護用のダイオードである。
In addition, 29 and 30 are the operation switch and heating switch connected in parallel between the output terminal R 1 and the input terminal K 2 , 31 is an interlocking switch that opens and closes at the same time as this operation switch 29, and 32 is a constant voltage DC of 9V. Power supply terminal 33 is a 24V constant voltage power supply terminal, 34,3
5, 36, 37, 38, and 39 are reverse current blocking diodes, 40 is a diode connected between the base and emitter of the transistor 14, and 41, 42, and 43 are diodes for back electromotive force protection.

以上の如く構成されており、次に暖房と除霜の
運転動作を第2図イの主フローチヤート及び第2
図ロのサブルーチンフローチヤートに基づいて説
明する。
The system is configured as described above, and next, the heating and defrosting operations are explained in the main flowchart in Figure 2A and in the second diagram.
The explanation will be based on the subroutine flowchart shown in FIG.

運転スイツチ29と連動スイツチ31並びに暖
房スイツチ30を投入すると出力端子R3,R4
らH信号が出されて夫々インバータ22,23に
てLに反転されトランジスタ24,25がONす
る。併せて暖房運転開始時は室内コイル温度が冷
えて摂氏30℃以下にある為40分のマスク時間内で
は第2図ロのサブルーチンフローチヤートの如く
出力端子R5からはH信号が出されているのでイ
ンバータ26でLに反転されて速調用リレー28
は励磁されており、このリレー接点44が低速側
端子45に投入されて室内フアンモータ27は低
速回転され室内へ冷風が吹出されるのを防止して
いる。
When the operation switch 29, the interlocking switch 31, and the heating switch 30 are turned on, H signals are output from the output terminals R3 and R4 , which are inverted to L by the inverters 22 and 23, respectively, and the transistors 24 and 25 are turned on. In addition, since the indoor coil temperature is cold and below 30 degrees Celsius at the start of heating operation, an H signal is output from output terminal R5 within the 40 minute mask time as shown in the subroutine flowchart in Figure 2 B. Therefore, it is reversed to L by the inverter 26 and the speed control relay 28
is energized, and the relay contact 44 is connected to the low-speed side terminal 45 to rotate the indoor fan motor 27 at a low speed to prevent cold air from being blown into the room.

同時に前述の如くトランジスタ25のONによ
りユニツト間端子16の第2端子を介して圧縮機
駆動用リレー17が励磁されると共にトランジス
タ24のONによりダイオード40、ユニツト間
端子16の第4端子を介して電圧がかかつてトラ
ンジスタ20がONし、室外フアン用リレー18
はユニツト間端子16の第2端子を、四方弁用コ
イル19は同端子16の第3端子を介して夫々通
電され、四方弁が暖房サイクルに切換わると共に
圧縮機及び室外フアンが駆動されて暖房運転が開
始される。
At the same time, as mentioned above, when the transistor 25 is turned on, the compressor driving relay 17 is excited via the second terminal of the inter-unit terminal 16, and when the transistor 24 is turned on, the relay 17 is excited via the diode 40 and the fourth terminal of the inter-unit terminal 16. When the voltage rises, transistor 20 turns on, and outdoor fan relay 18
is energized through the second terminal of the inter-unit terminal 16, and the four-way valve coil 19 is energized through the third terminal of the same terminal 16, and the four-way valve switches to the heating cycle, and the compressor and outdoor fan are driven to perform heating. Driving begins.

而して斯かる暖房運転により室内コイルは圧縮
機から吐出された高温高圧冷媒の凝縮熱により温
度上昇し、室内コイル温度が摂氏30℃以上になる
と第2図ロのサブルーチンフローチヤートの如く
出力端子R5からの信号はLに切換わり、インバ
ータ26でHに反転されて速調用リレー28が解
磁され、このリレー接点44が図示の如く高速側
端子46に切換わつて室内フアンモータ27は高
速運転される。
Due to this heating operation, the temperature of the indoor coil rises due to the heat of condensation of the high-temperature, high-pressure refrigerant discharged from the compressor, and when the temperature of the indoor coil exceeds 30 degrees Celsius, the output terminal is activated as shown in the subroutine flowchart in Figure 2 (b). The signal from R 5 is switched to L, and is inverted to H by the inverter 26 to demagnetize the speed control relay 28, and this relay contact 44 is switched to the high speed side terminal 46 as shown in the figure, and the indoor fan motor 27 is operated at high speed. be driven.

尚、暖房運転開始時、室外コイル温度が摂氏−
30℃以上の時は室外コイルセンサーの接点21が
開放されているのでトランジスタ14はOFFし
ている。逆に低外気温により摂氏−3℃以下まで
冷えている時は接点21が投入されトランジスタ
14がONし、比較器13の比較端子47の電圧
レベルが分圧抵抗48,49により上昇して基準
端子50を上回わりアース電位から開放されて出
力端子R2から入力端子K1に信号が入るが、暖房
運転開始時は室外コイル温度が摂氏−3℃以下で
あつても着霜状態になく、従つて40分のマスク時
間(所定時間)の間はマスク機構が働き、除霜に
入るのを防止している。
Furthermore, when starting heating operation, the outdoor coil temperature is -
When the temperature is above 30°C, the contact 21 of the outdoor coil sensor is open, so the transistor 14 is turned off. On the other hand, when the outside temperature is cold to -3 degrees Celsius or lower, the contact 21 is closed and the transistor 14 is turned on, and the voltage level at the comparison terminal 47 of the comparator 13 is increased by the voltage dividing resistors 48 and 49 to become the reference. The voltage exceeds terminal 50 and is disconnected from the ground potential, and a signal is input from output terminal R 2 to input terminal K 1. However, when heating operation starts, even if the outdoor coil temperature is -3 degrees Celsius or lower, there is no frost formation. Therefore, during the 40 minute mask time (predetermined time), the mask mechanism works to prevent defrosting.

暖房運転の継続により室外コイルに着霜しはじ
め、霜で覆われてくると室外コイル内での冷媒蒸
発作用が低下し、これに伴なつて室内コイル温度
も徐々に低下していき、これを室外コイルセンサ
12で検出する。室内コイル温度が設定された摂
氏30℃よりも高いか否かを判別し、低くてYES
と出ると更に室内コイル温度が6分間で摂氏0.8
℃下降したか否かを半別させ、下降温度勾配がこ
の設定勾配を上回つてYESと出ればこの状態が
3回連続して行なわれたか否かを更に判別させ、
第3図に示すように設定勾配を一点鎖線の如く上
回つていればYESと出るが、同図破線の如く下
回つていればNOと出て再び下降温度勾配を判別
させる。斯かる判別によりYESと出ると次に室
外コイル温度が摂氏−3℃以下か否かを判別させ
る。室外コイル温度が摂氏−3℃以下の時は前述
したように室外コイルセンサの接点21が投入さ
れ、出力端子R2から入力端子K1に信号が入つて
YESと判別され、出力端子R4からの信号がHか
らLに、出力端子R5からの信号がLからHに切
換わつてトランジスタ25がOFFし、圧縮機駆
動用リレー17及び室外フアン用リレー18が解
磁されて圧縮機及び室外フアンが停止すると共に
速調用リレー28が励磁されて接点44が切換わ
り室内フアンモータ27が低速回転となる。
Due to continued heating operation, frost begins to form on the outdoor coil, and as it becomes covered with frost, the refrigerant evaporation effect within the outdoor coil decreases, and the temperature of the indoor coil gradually decreases. It is detected by the outdoor coil sensor 12. Determines whether the indoor coil temperature is higher than the set 30 degrees Celsius, and if it is lower, YES
Then, the indoor coil temperature becomes 0.8 degrees Celsius in 6 minutes.
It is divided into half whether or not the temperature has decreased, and if the falling temperature gradient exceeds the set gradient and YES is output, it is further determined whether this state has occurred three times in a row.
As shown in FIG. 3, if the set gradient is exceeded as shown by the dashed line, YES will be output, but if it is below the set gradient, as shown by the broken line in the same figure, NO will be output and the descending temperature gradient will be determined again. If YES is output from this determination, then it is determined whether the outdoor coil temperature is below -3 degrees Celsius. When the outdoor coil temperature is below -3 degrees Celsius, the contact 21 of the outdoor coil sensor is closed as described above, and a signal is input from the output terminal R 2 to the input terminal K 1 .
It is determined as YES, the signal from output terminal R 4 switches from H to L, the signal from output terminal R 5 switches from L to H, transistor 25 turns OFF, and compressor drive relay 17 and outdoor fan relay switch. 18 is demagnetized, the compressor and the outdoor fan stop, and the speed regulating relay 28 is energized and the contact 44 is switched, causing the indoor fan motor 27 to rotate at a low speed.

次に30秒マスク時間を設けて後述の四方弁切換
わり時冷媒音が出ないように冷媒圧力が高低圧バ
ランするのを待ち、その後出力端子R3からの信
号がHからLに切換わつてインバータ22でHに
反転されトランジスタ24がOFFしてトランジ
スタ20もOFFし、四方弁用コイル19が解磁
されて四方弁が切換わり除霜サイクル(冷房サイ
クルと同じ)に切換わる。
Next, set a mask time of 30 seconds and wait for the refrigerant pressure to balance between high and low pressures so that there is no refrigerant sound when switching the four-way valve, which will be described later.After that, the signal from output terminal R3 switches from H to L. It is inverted to H by the inverter 22, the transistor 24 is turned off, the transistor 20 is also turned off, the four-way valve coil 19 is demagnetized, the four-way valve is switched, and the defrosting cycle (same as the cooling cycle) is started.

而して6秒マスク時間を設けて冷媒圧力が高低
圧バランスするのを待つて出力端子R4からの信
号がHに切換つてインバータ23でLに反転さ
れ、トランジスタ25がONして圧縮機駆動用リ
レー17が励磁され、圧縮機が駆動して除霜運転
に入る。斯かる除霜運転時、前述したように室内
フアンモータ27は低速回転されることにより冷
風吹出しを防止しており、且つ室外フアンは停止
している。
After setting a mask time of 6 seconds and waiting for the refrigerant pressure to balance between high and low pressures, the signal from the output terminal R4 switches to H and is inverted to L by the inverter 23, turning on the transistor 25 and driving the compressor. The relay 17 is energized, the compressor is driven, and the defrosting operation begins. During such defrosting operation, as described above, the indoor fan motor 27 is rotated at a low speed to prevent blowing out of cold air, and the outdoor fan is stopped.

除霜運転により室外コイルに付着している霜は
冷媒凝縮熱にて溶け、室外コイル温度が上昇して
摂氏5℃に到達すると室外コイルセンサの接点2
1が開放されてトランジスタ14がOFFし比較
器13が接地短絡されるので出力端子R2からの
出力が入力端子K1にかからなくなりこの端子K1
がLとなる。これに判別してYESと出ると出力
端子R3がLからHに切換わりインバータ22で
Hに反転されてトランジスタ24がONし、トラ
ンジスタ20もONして室外フアン用リレー18
と四方弁用コイル19が通電され、室外フアンが
再運転すると共に四方弁が暖房サイクルに切換わ
つて暖房運転が再開始される。
The frost adhering to the outdoor coil during defrosting operation is melted by the heat of condensation of the refrigerant, and when the outdoor coil temperature rises and reaches 5 degrees Celsius, contact 2 of the outdoor coil sensor
1 is opened, the transistor 14 is turned off, and the comparator 13 is short-circuited to ground, so the output from the output terminal R2 is no longer applied to the input terminal K1 , and this terminal K1
becomes L. When this is determined and YES is output, the output terminal R3 switches from L to H, which is inverted to H by the inverter 22, turning on the transistor 24, and turning on the transistor 20, which turns on the outdoor fan relay 18.
The four-way valve coil 19 is energized, the outdoor fan is restarted, the four-way valve is switched to the heating cycle, and the heating operation is restarted.

この再開始時には室内フアン用モータ27は低
速回転を維持して冷風吹出しを防止しており、室
内コイル温度が摂氏30℃に到達する第2図ロのサ
ブルーチンフローチヤートにより出力端子R5
らの信号がHからLに切換わりインバータ26で
Hに反転された速調用リレー28が解磁され室内
フアン用モータ27は高速回転に切換わる。
At this restart, the indoor fan motor 27 maintains low speed rotation to prevent cold air from being blown out, and the signal from the output terminal R5 is output according to the subroutine flowchart of FIG. 2B when the indoor coil temperature reaches 30 degrees Celsius. is switched from H to L, and the speed control relay 28, which has been inverted to H by the inverter 26, is demagnetized and the indoor fan motor 27 is switched to high speed rotation.

以上詳述したように本発明装置はヒートポンプ
式空調機の室内コイル温度の下降勾配変化が設定
勾配以上となつた時除霜を開始するようにしたも
ので、以下の特徴と有している。
As described in detail above, the device of the present invention is configured to start defrosting when the downward gradient change in indoor coil temperature of a heat pump air conditioner exceeds a set gradient, and has the following features.

外気温度の低下に伴ない室内コイル温度も追
従して徐々に降下するものの一旦室外コイルに
着霜しはじめると霜によつて外気との熱交換換
が遮られて室内コイル温度が異常に低下してし
まう現象を捉えて検知するようにしたので、確
実に着霜の有無を判別することができる。
As the outside air temperature drops, the indoor coil temperature follows and gradually drops, but once frost begins to form on the outdoor coil, the frost blocks heat exchange with the outside air and the indoor coil temperature drops abnormally. Since the phenomenon of frost formation is captured and detected, it is possible to reliably determine the presence or absence of frost formation.

近年ヒートポンプ式空調機は暖房運転開始時
冷風が室内に吹出されるのを防止する為に室内
コイルセンサが設けられており、このセンサを
着霜検出用として併用することにより製造コス
トを割安にすることができる。
In recent years, heat pump air conditioners have been equipped with an indoor coil sensor to prevent cold air from being blown into the room when heating operation starts, and manufacturing costs can be reduced by using this sensor in combination to detect frost formation. be able to.

また、暖房運転開始時にはマスク機構の働き
で室外コイルが着霜していても最小時間(例え
ば40分間)は暖房運転が維持され、運転開始と
同時に除霜運転が行なわれるのを防止できるも
のである。さらに除霜運転中には室内フアンを
低速にして除霜時間の短縮と冷風防止とを同時
に行なつている。
In addition, when heating operation starts, the mask mechanism maintains heating operation for a minimum period of time (for example, 40 minutes) even if the outdoor coil is frosted, and prevents defrosting operation from starting at the same time as operation starts. be. Furthermore, during defrosting operation, the indoor fan is set at low speed to shorten defrosting time and prevent cold air at the same time.

尚、室内コイル温度が設定温度まで低下した時
併せて室内コイル温度の下降温度勾配を読み取る
ようにすれば着霜検知の精度を高めることができ
る。
Note that the accuracy of frost detection can be improved by reading the decreasing temperature gradient of the indoor coil temperature when the indoor coil temperature drops to the set temperature.

又、本発明装置に室内コイル温度が設定温度以
下になつた時室外コイル温度が設定温度となつた
時室外コイル温度が設定温度になつたかもしくは
既になつているかを判別要因として組み込むこと
により着霜の有無を再確認でき、一層精度の高い
着霜検知を行なうことができる。
Furthermore, by incorporating into the device of the present invention whether the indoor coil temperature has fallen below the set temperature, the outdoor coil temperature has reached the set temperature, and whether the outdoor coil temperature has reached the set temperature or has already reached the set temperature, frosting can be prevented. The presence or absence of frost can be reconfirmed, and frost formation detection can be performed with even higher accuracy.

このように本発明によれば安価で且つ着霜検知
精度が高い新規な除霜制御装置を得ることがで
き、有用なものである。
As described above, according to the present invention, it is possible to obtain a novel defrosting control device that is inexpensive and has high frost detection accuracy, and is thus useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す電気回路
図、第2図イ,ロはこの主フローチヤートとサブ
ルーチンフローチヤート、第3図は時間一室内コ
イル温度の特性図、第4図は第1図に示したマイ
コンの機構を示すブロツク図である。 12……室内コイルセンサ、21……室外コイ
ルセンサ。
Figure 1 is an electric circuit diagram showing one embodiment of the device of the present invention, Figures 2A and 2B are the main flowchart and subroutine flowchart, Figure 3 is a characteristic diagram of indoor coil temperature versus time, and Figure 4 is 2 is a block diagram showing the mechanism of the microcomputer shown in FIG. 1. FIG. 12... Indoor coil sensor, 21... Outdoor coil sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方弁、室内コイル、減圧器、室外
コイルを用いて暖房サイクルと冷房(除霜)サイ
クルとを構成し、かつ室内コイル用の室内フアン
及び室外コイル用の室外フアンを有するヒートポ
ンプ式空調機の除霜制御装置において、室内コイ
ル温度を検出する室内コイルセンサと、このセン
サの検出値を一定周期毎に入力するタイマ機構
と、この一定周期毎に入力した検出値からこの値
の勾配変化を求める演算機構と、この変化勾配と
設定勾配とを比べる比較機構と、空調器の暖房運
転開始から所定時間の間比較機構の出力を遮断す
るマスク機構と、比較機構の出力で暖房サイクル
から除霜サイクルに切換え、室外フアンを停止
し、かつ室内フアンを低速にする除霜制御機構と
を備えたことを特徴とするヒートポンプ式空調機
の除霜制御装置。
1 Heat pump type that uses a compressor, four-way valve, indoor coil, pressure reducer, and outdoor coil to configure a heating cycle and a cooling (defrosting) cycle, and has an indoor fan for the indoor coil and an outdoor fan for the outdoor coil. In a defrosting control device for an air conditioner, there is an indoor coil sensor that detects the indoor coil temperature, a timer mechanism that inputs the detected value of this sensor at regular intervals, and a slope of this value from the detected value input at every regular cycle. A calculation mechanism that calculates the change, a comparison mechanism that compares this change slope with a set slope, a mask mechanism that cuts off the output of the comparison mechanism for a predetermined period of time from the start of heating operation of the air conditioner, and a control mechanism that uses the output of the comparison mechanism to control the heating cycle. A defrosting control device for a heat pump air conditioner, comprising a defrosting control mechanism that switches to a defrosting cycle, stops an outdoor fan, and slows down an indoor fan.
JP56083622A 1981-05-29 1981-05-29 Defrosting controller for heat pump type air conditioner Granted JPS57198940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56083622A JPS57198940A (en) 1981-05-29 1981-05-29 Defrosting controller for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56083622A JPS57198940A (en) 1981-05-29 1981-05-29 Defrosting controller for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS57198940A JPS57198940A (en) 1982-12-06
JPS6142174B2 true JPS6142174B2 (en) 1986-09-19

Family

ID=13807577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56083622A Granted JPS57198940A (en) 1981-05-29 1981-05-29 Defrosting controller for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS57198940A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219660A (en) * 1983-05-25 1984-12-11 シャープ株式会社 Air conditioner
CN108361917A (en) * 2018-02-14 2018-08-03 青岛海尔空调器有限总公司 Air conditioner defrosting control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040774A (en) * 1983-08-15 1985-03-04 Nippon Denso Co Ltd Device for controlling fuel temperature in fuel injection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040774A (en) * 1983-08-15 1985-03-04 Nippon Denso Co Ltd Device for controlling fuel temperature in fuel injection device

Also Published As

Publication number Publication date
JPS57198940A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US4102389A (en) Heat pump control system
US4939909A (en) Control apparatus for air conditioner
EP0462524B1 (en) Defrost control method for a heat pump
JPH09280698A (en) Defrosting control method of air conditioner
JPS5926860B2 (en) I can't wait to see what's going on.
JPS6040774B2 (en) Defrosting control method for heat pump air conditioner
JPS6112175B2 (en)
JPS6142174B2 (en)
US4254633A (en) Control apparatus for an air conditioner
JPS6080046A (en) Air-conditioning device
JPS5911813B2 (en) How to operate a heat pump air conditioner
JPH089574Y2 (en) Control device for air conditioner
JPS5920586Y2 (en) Heat pump air conditioner
JP2000297958A (en) Air conditioner
JPS6151218B2 (en)
JPH0783522A (en) Controlling method for air conditioner
US2072767A (en) Refrigeration
JPH0113978Y2 (en)
JPH05223360A (en) Air conditioner
JPS5913547Y2 (en) Air conditioner control circuit
JPH0544981A (en) Detecting method for abnormality of outdoor fan motor for air conditioner
JPS5932674B2 (en) Electric compressor protection device
JPH063313B2 (en) Heat pump type air conditioner
JPS6118350Y2 (en)
JPS6240270Y2 (en)