JPS59219660A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS59219660A
JPS59219660A JP58093657A JP9365783A JPS59219660A JP S59219660 A JPS59219660 A JP S59219660A JP 58093657 A JP58093657 A JP 58093657A JP 9365783 A JP9365783 A JP 9365783A JP S59219660 A JPS59219660 A JP S59219660A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
detected
air conditioner
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58093657A
Other languages
Japanese (ja)
Other versions
JPH0232553B2 (en
Inventor
健二 小泉
誠二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58093657A priority Critical patent/JPS59219660A/en
Publication of JPS59219660A publication Critical patent/JPS59219660A/en
Publication of JPH0232553B2 publication Critical patent/JPH0232553B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く技術分野〉 この発明は、冷房および/または暖房を行うことのでき
る空気調和機に関し、さらに詳細には、室内側熱交換器
の温度及び運転電流を検知することに」:って室外側熱
交換器の除霜運転を制御できる空気調和機に関する。
[Detailed Description of the Invention] Technical Field> The present invention relates to an air conditioner capable of cooling and/or heating, and more specifically, to detecting the temperature and operating current of an indoor heat exchanger. ": relates to an air conditioner that can control the defrosting operation of an outdoor heat exchanger.

〈従来技術〉 一般にヒートポンプ式空気調和機は第1図に示すように
構成されている。ユニットは室内側と室外側に分かれ、
1は冷媒を圧縮する圧縮機で圧縮機lから吐出された冷
媒は四方弁2により冷房運転時には実線、暖房運転時は
破線の如く切り替えられる。冷房運転時には室内側熱交
換器3に送られ、室外送風機6の送風により冷却されて
凝縮し、減圧器4で減圧されて室内側熱交換器5に入り
蒸発し、冷却作用を行い室内送風機7の送風により冷房
運転を行う。暖房運転時は四方弁2が破線の如く切り替
わり、圧縮機1→室内側熱交換器5→減圧器4→室外側
熱交換器3→圧縮機1と冷媒が流れて暖房運転を行う。
<Prior Art> Generally, a heat pump type air conditioner is configured as shown in FIG. The unit is divided into indoor and outdoor areas.
Reference numeral 1 denotes a compressor for compressing refrigerant, and the refrigerant discharged from the compressor 1 is switched by a four-way valve 2 as shown by the solid line during cooling operation and as shown by the broken line during heating operation. During cooling operation, the air is sent to the indoor heat exchanger 3, cooled and condensed by the air blown by the outdoor blower 6, reduced in pressure by the pressure reducer 4, and then evaporated into the indoor heat exchanger 5, where it performs a cooling action and is sent to the indoor blower 7. Cooling operation is performed by blowing air. During heating operation, the four-way valve 2 is switched as shown by the broken line, and the refrigerant flows in the order of compressor 1 -> indoor heat exchanger 5 -> pressure reducer 4 -> outdoor heat exchanger 3 -> compressor 1, thereby performing heating operation.

特に冬期における暖房運転の場合には、冷媒は室外側熱
交換器3で蒸発し、室内側熱交換器5で凝縮するだめに
、室外側熱交“換器3は冷却されてその表面に霜が付着
し、熱交換効率が低下して暖房能力が悪化するという現
象があった。
Particularly in the case of heating operation in winter, the refrigerant evaporates in the outdoor heat exchanger 3 and condenses in the indoor heat exchanger 5, so the outdoor heat exchanger 3 is cooled and frost forms on its surface. There was a phenomenon in which heat exchange efficiency decreased and heating performance deteriorated.

従来、暖房運転時における室外側熱交換器に付着した謂
を除去するために、第2図に示すような除霜制御回路が
採用されてきた。図中、8,8′は入力電飾端子、I、
 6.7は第1図と同様で、9はマイクロコンピュータ
を利用した電子制御回路ユニットである。このユニット
9は、リレー出力9a〜9dを有し、リレー10で室内
送風機7を、リレー11で圧縮機lを、リレー12で室
外送風機6を、リレー15は四方弁■6とタイマディア
イザ17を制御する。タイマディアイサ17は接点+7
aと17bと温度センサを内蔵した感温筒18とタイマ
モータ19とを有し、感温筒の温度がある温度以下にな
ればタイマモータ19で駆動されるカムにより一定周期
で接点が17bに切り替る。
Conventionally, a defrost control circuit as shown in FIG. 2 has been employed in order to remove so-called so-called so-called adhesion to an outdoor heat exchanger during heating operation. In the figure, 8, 8' are input illumination terminals, I,
6.7 is the same as in FIG. 1, and 9 is an electronic control circuit unit using a microcomputer. This unit 9 has relay outputs 9a to 9d, the relay 10 controls the indoor blower 7, the relay 11 controls the compressor l, the relay 12 controls the outdoor blower 6, and the relay 15 controls the four-way valve ■6 and the timer de-izer 17. Control. Timer diameter sensor 17 has contact +7
a and 17b, a temperature sensing cylinder 18 with a built-in temperature sensor, and a timer motor 19. When the temperature of the temperature sensing cylinder falls below a certain temperature, a cam driven by the timer motor 19 switches the contact point to 17b at regular intervals. Switch.

感温筒は室外側熱交換器3の温度を検知するもので、暖
房運転時に所定温度以下になればこの交換器3K 媚が
付着するものと仮定し、カムにより接点+7bを切り替
えて四方弁16をオフして冷媒サイクルを除箱ザイクル
に切り替えるとともに、接点171)でリレー13を動
作さぜ、接点14をオフして室外送風機6を停止して除
霜運転を行う。
The thermosensor cylinder detects the temperature of the outdoor heat exchanger 3. Assuming that the temperature of the exchanger 3K is lower than a predetermined temperature during heating operation, the cam switches contact +7b to open the four-way valve 16. is turned off to switch the refrigerant cycle to the box removal cycle, and the relay 13 is operated using the contact 171), and the contact 14 is turned off to stop the outdoor blower 6 and perform defrosting operation.

」−記のように、従来の暖房運転時における除霜方式は
、室外側熱交換器3の温度を測定してその温度が所定温
度以下になれば着霜したものと仮定して、タイマ機能を
利用して室外側熱交換器を除霜していた。しかしながら
、実際の暖房能力を検知せずに除霜していたため、低温
低湿の場合のように所定温度以下でも着霜せず、まだ十
分に暖房能力があるにもかかわらず除霜運転に移行した
り、これとは逆に高湿の場合には着霜のためすでに暖房
能力が殆どなくなっているのにそのまま暖房運転を継続
するなど諸種の問題点があった。またタイマディアイサ
等の室外側の部品点数が多いなどの問題点もあった。
'', the conventional defrosting method during heating operation measures the temperature of the outdoor heat exchanger 3, assumes that frost has formed when the temperature falls below a predetermined temperature, and uses a timer function. was used to defrost the outdoor heat exchanger. However, since defrosting was performed without detecting the actual heating capacity, frost did not form even at a predetermined temperature or lower as in the case of low temperature and low humidity, and the defrosting operation was started even though there was still sufficient heating capacity. On the other hand, in the case of high humidity, there were various problems such as continued heating operation even though the heating capacity had already been almost exhausted due to frost formation. There were also other problems, such as the large number of outdoor parts such as timer diothers.

〈発明の目的〉 この発明の第1の目的は、暖房能力と室内側熱交換器温
度及び運転電流との相関性を利用することによって、暖
房能力が低下したときに除霜運転に移行し、暖房能力が
回復したときに暖房運転に復帰することのできる空気調
和機を提供することにある。
<Objective of the Invention> The first object of the present invention is to shift to defrosting operation when the heating capacity decreases by utilizing the correlation between the heating capacity and the indoor heat exchanger temperature and operating current; To provide an air conditioner capable of returning to heating operation when heating capacity is restored.

この発明の第2の目的は、室外(ti11構成部品を簡
略化してコストの低減を図った空気調和機を提供するこ
とにある。
A second object of the present invention is to provide an air conditioner in which the outdoor (ti11) components are simplified to reduce costs.

〈発明の構成〉 前記目的を達成するだめに、この発明に係る空気調和機
は、要約すると、圧縮機、室外側熱交換器、減圧器およ
び室内側熱交換器を接続した従来の空気調和機において
、その室内側熱交換器またはその近傍にその温度を検知
する温度センサと室内側熱交換器の運転電流を検知する
電流検知器を取付け、この温度センサと電流検知器によ
って検知される温度と電流の時間的変化量を予め定めた
設定値と比較する判定手段を設けることによって構成さ
れ、前記判定手段により室外側熱交換器の除霜運転を制
御することを特徴とする。
<Structure of the Invention> In order to achieve the above object, the air conditioner according to the present invention is a conventional air conditioner in which a compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are connected. , a temperature sensor that detects the temperature of the indoor heat exchanger or a current detector that detects the operating current of the indoor heat exchanger is installed on or near the indoor heat exchanger, and the temperature detected by the temperature sensor and the current detector is The present invention is characterized in that it is configured by providing a determining means for comparing the amount of change in current over time with a predetermined set value, and the defrosting operation of the outdoor heat exchanger is controlled by the determining means.

〈実施例〉 以下、本発明に係る空気調和機について図面を参照して
詳細に説明する。
<Example> Hereinafter, an air conditioner according to the present invention will be described in detail with reference to the drawings.

第3図は第2図に対応する本発明に係る除霜制御回路を
示しており、第2図と同一番号は同一部分を示ず。20
は温度センサ、21け電流検知器で、温度セン→ノー2
0は室内側熱交換器5の近傍またはその上に数句けられ
、この室内側熱交換器5の温度を検知し、電流検知器2
1は室内側熱交換器5の運転電流を検知しており、その
温度及び電流の検知出力は電子制御回路ユニット9に入
力されるようになっている。
FIG. 3 shows a defrosting control circuit according to the present invention corresponding to FIG. 2, and the same numbers as in FIG. 2 do not indicate the same parts. 20
is a temperature sensor, 21 current detector, temperature sensor → No. 2
0 is placed near or above the indoor heat exchanger 5, and the temperature of this indoor heat exchanger 5 is detected, and the current detector 2
1 detects the operating current of the indoor heat exchanger 5, and its temperature and current detection outputs are input to the electronic control circuit unit 9.

除霜運転を行う場合には出力端子9c、9dによりリレ
ー12.15を開き、室外送風機6および四方弁16を
停止させる。したがってこの間に図示しないヒータによ
り強制的に室外側熱交換器3を加熱するかまたは放置す
ることによって除霜する0  ゛第4図は本発明による
除霜制御のフローチャ=1・を示している。tlは暖房
開始時点またに、除霜運転終了後から次の除霜判定開始
までの時間、t2はt1経過後定常暖房運転に移行でき
るまでに要するものとして定めた圧縮機1の連続運転時
間、TΔt1は上記t2よりΔt1分間前の温度センサ
2゜での検知温度、Tt2は」ニ記t2経過時点の温度
センサ20での検知温度、ΔT1けTΔtl−Tt2の
値である。
When performing defrosting operation, the relay 12.15 is opened by the output terminals 9c and 9d, and the outdoor blower 6 and the four-way valve 16 are stopped. Therefore, during this time, the outdoor heat exchanger 3 is forcibly heated by a heater (not shown) or defrosted by being left alone. FIG. 4 shows a flowchart of the defrosting control according to the present invention. tl is the time from the start of heating and the time from the end of the defrosting operation to the start of the next defrosting judgment, and t2 is the continuous operation time of the compressor 1, which is determined as the time required to shift to steady heating operation after t1 has elapsed. TΔt1 is the temperature detected by the temperature sensor 2° at Δt1 minutes before the above-mentioned t2, and Tt2 is the temperature detected by the temperature sensor 20 at the time point t2 has elapsed, which is the value of ΔT1 times TΔtl−Tt2.

t1経過後、定常暖房運転に移行できる時間t2だけ圧
縮機1の連続運転が継続したときに、室外側熱交換器3
の着正による暖房能力の低下により、ΔT1が予め定め
だ設定値(1)以上になれば除霜運転を開始する。すな
わち、ΔT1という時間的な温度降下によって着霜の有
無を判断し、除霜運転の開始有無を決定する。またこの
判定時、負荷変動などにより着霜が進行しているにもか
かわらすΔT1が設定値f11以下の場合はTt2が予
め定めた設定値(2)以下になれば除霜運転を開始する
After t1 has elapsed, when the compressor 1 continues to operate continuously for a time t2 during which it can shift to steady heating operation, the outdoor heat exchanger 3
When ΔT1 becomes equal to or higher than a predetermined set value (1) due to a decrease in the heating capacity due to the arrival of the defrosting operation, the defrosting operation is started. That is, the presence or absence of frost formation is determined based on the temporal temperature drop of ΔT1, and it is determined whether or not to start the defrosting operation. Further, at the time of this determination, if ΔT1 is less than the set value f11 even though frosting is progressing due to load fluctuations, the defrosting operation is started when Tt2 becomes less than the predetermined value (2).

次に除霜終了の判定について説明する。It3は除霜終
了時点上3の電流検知器21での検知電流、IΔt2i
d:前記t3よりΔt2分間前の電流検知器21での検
知電流、ΔI2はIIΔt2−I t8 lの値である
。除霜開始直後は電流検知器21での電流は安鼻夷でい
るが、室外側熱交換器3の着霜の消滅に伴い電流検知器
21での検知電流は急激に上昇することが実験で確認さ
れている。そこでΔI2が予め定めだ設定値(3)以下
であれLIS t3の時点で除霜運転を停止し、暖房運
転に復帰する。また室外風速の影響等により室外側熱交
換器3の着霜の消滅にもかかわらず電流検知器21での
検知電流が上昇しない場合、除霜運転が10分間経過し
た段階で強制的に除霜運転を終了し暖房運転に復帰させ
る。
Next, the determination of the end of defrosting will be explained. It3 is the detected current at the current detector 21 in the above 3 at the end of defrosting, IΔt2i
d: Current detected by the current detector 21 Δt2 minutes before t3, ΔI2 is the value of IIΔt2−I t8 l. Experiments have shown that the current detected by the current detector 21 is stable immediately after the start of defrosting, but as the frost on the outdoor heat exchanger 3 disappears, the current detected by the current detector 21 increases rapidly. Confirmed. Therefore, even if ΔI2 is less than a predetermined set value (3), the defrosting operation is stopped at LIS t3 and the heating operation is resumed. In addition, if the current detected by the current detector 21 does not increase even though the frost on the outdoor heat exchanger 3 disappears due to the influence of the outdoor wind speed, etc., the defrost will be forced to defrost after 10 minutes of defrosting operation. End the operation and return to heating operation.

室内側熱交換器50時間的温度変化及び運転電流変化は
暖房能力を直接反映していることが発明者等の行った実
験によって確認しており、上記した設定値f+)、 +
2+、 f31は実験的に得られた最適な値を選ぶよう
にする。
It has been confirmed through experiments conducted by the inventors that the temperature change and operating current change over time of the indoor heat exchanger 50 directly reflect the heating capacity, and the above set values f+), +
2+ and f31, the optimum values obtained experimentally are selected.

第5図は温度センサ2oによって検知された室内側熱交
換器5の制御された温度一時間曲線の一例を示し、又第
6図は電流検知器21によって検知された室内側熱交換
器50制御された運転電流一時間曲線の一例を示してい
る。前記したフローチャー1・による除霜制御の実際が
これら特性図によって明確に理解することができる。
FIG. 5 shows an example of the controlled temperature one-hour curve of the indoor heat exchanger 5 detected by the temperature sensor 2o, and FIG. 6 shows an example of the controlled temperature curve of the indoor heat exchanger 50 detected by the current detector 21. An example of an hourly operating current curve is shown. The actual defrosting control according to the above-described flowchart 1 can be clearly understood from these characteristic diagrams.

〈発明の効果〉 以」二詳述したように、この発明によれば、空気調和機
の暖房能力と室内側熱交換器温度及び運転電流との相関
性を利用して、室内側熱交換器の時間温度変化を温度セ
ンサで、運転電流変化を電流検知器で直接検知すること
により、暖房能力が低下したときに除霜運転に移行し、
暖房能力が回復したさきに暖房運転に復帰するという最
も合理的な除霜制御を達成することができる。また、室
外側にタイマディアイサ等の部品をなくして構造の簡素
化を図ることができるなど、作業上有益な空気調和機を
得ることができる。
<Effects of the Invention> As described in detail below, according to the present invention, the indoor heat exchanger By directly detecting temperature changes over time with a temperature sensor and changes in operating current with a current detector, the system can shift to defrosting operation when heating capacity decreases.
The most rational defrosting control can be achieved by returning to heating operation once the heating capacity is restored. In addition, it is possible to obtain an air conditioner that is useful for work, such as by eliminating components such as a timer air conditioner on the outdoor side and simplifying the structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の前提となる空気調和機のブロック構成
図、第2図は室外側熱交換器温度を検知する従来の制御
回路図、第3図は室内側熱交換器温度を検知する本発明
に係る制御回路図、第4図は除霜制御用のフローチャー
ト、第5図は除霜制御された室内側熱交換器温度の温度
一時間特性曲線図、第6図は同運転電流の電流一時間特
性曲線図である。 1・・・圧縮機、3・・・室外側熱交換器、4・・減圧
器、5・・・室内側熱交換器、20・・・温度センサ、
2I・電流検知器をそれぞれ示す。
Fig. 1 is a block diagram of an air conditioner that is the premise of the present invention, Fig. 2 is a conventional control circuit diagram for detecting the outdoor heat exchanger temperature, and Fig. 3 is a conventional control circuit diagram for detecting the indoor heat exchanger temperature. The control circuit diagram according to the present invention, FIG. 4 is a flowchart for defrosting control, FIG. 5 is a temperature one-hour characteristic curve of the indoor heat exchanger temperature under defrost control, and FIG. 6 is a diagram of the operating current. It is a current one hour characteristic curve diagram. 1... Compressor, 3... Outdoor heat exchanger, 4... Pressure reducer, 5... Indoor heat exchanger, 20... Temperature sensor,
2I and current detector are shown respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機1、室外側熱交換器3、減圧器4および室外
側熱交換器5を順次接続して構成された空気調和機にお
いて、室内側熱交換器5またはその近傍にその温度を検
知する温度センサ20空気調和機の運転電流を検知する
電流検知器21を取付け、この温度センサ20によって
検知される温度と電流検知器21によって検知される電
流の時間的変化量を予め定めだ設定値と比較する判定手
段を設け、この判定手段による検知温度の判定結果によ
り除霜運転の開始時間を制御し、検知電流の判定結果に
より除霜運転の停止時間を制御することを特徴とする空
気調和機。
1. In an air conditioner configured by sequentially connecting a compressor 1, an outdoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5, the temperature of the indoor heat exchanger 5 or its vicinity is detected. A current detector 21 is attached to the temperature sensor 20 to detect the operating current of the air conditioner, and the amount of change over time in the temperature detected by the temperature sensor 20 and the current detected by the current detector 21 is set to a predetermined set value. An air conditioner characterized in that a determination means for comparison is provided, the start time of the defrosting operation is controlled based on the determination result of the detected temperature by the determination means, and the stop time of the defrosting operation is controlled according to the determination result of the detected current. .
JP58093657A 1983-05-25 1983-05-25 Air conditioner Granted JPS59219660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093657A JPS59219660A (en) 1983-05-25 1983-05-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093657A JPS59219660A (en) 1983-05-25 1983-05-25 Air conditioner

Publications (2)

Publication Number Publication Date
JPS59219660A true JPS59219660A (en) 1984-12-11
JPH0232553B2 JPH0232553B2 (en) 1990-07-20

Family

ID=14088452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093657A Granted JPS59219660A (en) 1983-05-25 1983-05-25 Air conditioner

Country Status (1)

Country Link
JP (1) JPS59219660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010017594A (en) * 1999-08-12 2001-03-05 윤종용 Control method for defrosting operation of an air - conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454351A (en) * 1977-10-06 1979-04-28 Daikin Ind Ltd Defrosting apparatus
JPS5714155A (en) * 1980-06-27 1982-01-25 Mitsubishi Electric Corp Heat pump type airconditioner
JPS57198940A (en) * 1981-05-29 1982-12-06 Sanyo Electric Co Ltd Defrosting controller for heat pump type air conditioner
JPS5839440U (en) * 1981-09-09 1983-03-15 株式会社日立製作所 Defrosting control of air-cooled heat pump air conditioners

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839440B2 (en) * 1978-11-13 1983-08-30 松下電器産業株式会社 Diaphragm for speaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454351A (en) * 1977-10-06 1979-04-28 Daikin Ind Ltd Defrosting apparatus
JPS5714155A (en) * 1980-06-27 1982-01-25 Mitsubishi Electric Corp Heat pump type airconditioner
JPS57198940A (en) * 1981-05-29 1982-12-06 Sanyo Electric Co Ltd Defrosting controller for heat pump type air conditioner
JPS5839440U (en) * 1981-09-09 1983-03-15 株式会社日立製作所 Defrosting control of air-cooled heat pump air conditioners

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010017594A (en) * 1999-08-12 2001-03-05 윤종용 Control method for defrosting operation of an air - conditioner

Also Published As

Publication number Publication date
JPH0232553B2 (en) 1990-07-20

Similar Documents

Publication Publication Date Title
US4563877A (en) Control system and method for defrosting the outdoor coil of a heat pump
JPH0529830B2 (en)
US4869074A (en) Regenerative refrigeration cycle apparatus and control method therefor
JPH0522769Y2 (en)
JP2526716B2 (en) Air conditioner
JPS59200145A (en) Air conditioner
JPS59219660A (en) Air conditioner
JPS61101736A (en) Defrosting control device of air conditioner
JPS6166037A (en) Defrosting control unit of air conditioner
JPS59219639A (en) Air conditioner
JPS62125244A (en) Air conditioner
JPS59219661A (en) Air conditioner
KR100318676B1 (en) Defrosting method of a heat pump air-conditioner
JPS59219662A (en) Air conditioner
JPH0330777Y2 (en)
JP3534968B2 (en) Refrigerant heating air conditioner
JP3033260B2 (en) Defrosting control device for refrigeration equipment
JPS61184350A (en) Defrost method for air conditioner
JPH0248774Y2 (en)
JPH0739897B2 (en) Refrigeration cycle equipment
JPH04363536A (en) Operation control method for air-conditioner
JPS5916747Y2 (en) air conditioner
JPS60114670A (en) Air conditioner
JPS58148335A (en) Defrosting control circuit of air conditioner
CA1206557A (en) Air conditioning heat pump system having an initial frost monitoring control means