JP3534968B2 - Refrigerant heating air conditioner - Google Patents

Refrigerant heating air conditioner

Info

Publication number
JP3534968B2
JP3534968B2 JP02059097A JP2059097A JP3534968B2 JP 3534968 B2 JP3534968 B2 JP 3534968B2 JP 02059097 A JP02059097 A JP 02059097A JP 2059097 A JP2059097 A JP 2059097A JP 3534968 B2 JP3534968 B2 JP 3534968B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
temperature
time
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02059097A
Other languages
Japanese (ja)
Other versions
JPH10220899A (en
Inventor
邦泰 内山
新一 佐藤
義和 西原
孝彦 青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP02059097A priority Critical patent/JP3534968B2/en
Publication of JPH10220899A publication Critical patent/JPH10220899A/en
Application granted granted Critical
Publication of JP3534968B2 publication Critical patent/JP3534968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、暖房時に冷媒を
加熱する冷媒加熱装置が設けられ暖房運転開始時におい
て冷媒回収運転を行う冷媒加熱式空気調和装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant heating type air conditioner which is provided with a refrigerant heating device for heating a refrigerant during heating and performs a refrigerant recovery operation at the start of heating operation.

【0002】[0002]

【従来の技術】室内を暖房または冷房する空気調和装置
の冷凍サイクルの中には、暖房時に蒸発器となる室外熱
交換器における吸熱を大気を熱源として利用する代わり
に、燃焼による熱を熱源とする冷媒加熱式のものがあ
る。この冷媒加熱式の空気調和装置は、大気を熱源とし
て利用するヒートポンプ式のように暖房能力が外気温度
に左右されず、低外気温においても燃焼量に応じた暖房
能力を発揮できるという利点がある。
2. Description of the Related Art In a refrigerating cycle of an air conditioner for heating or cooling a room, heat of combustion is used as a heat source instead of using heat absorbed in an outdoor heat exchanger, which is an evaporator during heating, as a heat source. There is a refrigerant heating type. This refrigerant heating type air conditioner has an advantage that the heating capacity does not depend on the outside air temperature unlike the heat pump type that uses the atmosphere as a heat source, and the heating capacity according to the combustion amount can be exhibited even at a low outside air temperature. .

【0003】冷媒加熱式の空気調和装置の暖房運転開始
時は、室外熱交換器を使用しないため、この室外熱交換
器に存在する冷媒を回収する冷媒回収運転を行う。この
冷媒回収運転により、暖房運転時、冷凍サイクル中に一
定量の冷媒量を維持することができる。従来この冷媒回
収運転は、暖房運転開始時から一定時間行われている。
When the heating operation of the refrigerant heating type air conditioner is started, since the outdoor heat exchanger is not used, the refrigerant recovery operation for recovering the refrigerant existing in the outdoor heat exchanger is performed. With this refrigerant recovery operation, a constant amount of refrigerant can be maintained during the refrigeration cycle during heating operation. Conventionally, this refrigerant recovery operation has been performed for a certain period of time since the start of heating operation.

【0004】以下、図面を参照しなが上記従来の冷媒加
熱式の空気調和装置について説明する。図8および図9
は従来の冷媒加熱装置を具備した空気調和装置の冷凍サ
イクル部と制御動作図を示している。図8において、1
は容量(周波数)可変形圧縮機、2は冷媒の流すための
二方弁、3は利用側の室内熱交換器、4は暖房用冷媒加
熱装置へ冷媒を流すための二方弁、5は暖房用熱源であ
る冷媒加熱装置、6は冷房用の室外熱交換器、7は暖房
時冷媒の流れを止める第1の逆止弁、8は冷房用減圧
器、9は暖房時冷媒の流れを止める第2の逆止弁であ
る。
The conventional refrigerant heating type air conditioner will be described below with reference to the drawings. 8 and 9
Shows a refrigeration cycle unit and control operation diagram of an air conditioner equipped with a conventional refrigerant heating device. In FIG. 8, 1
Is a variable capacity (frequency) type compressor, 2 is a two-way valve for allowing the refrigerant to flow, 3 is an indoor heat exchanger on the use side, 4 is a two-way valve for allowing the refrigerant to flow to the heating apparatus for heating the heating, and 5 is Refrigerant heating device which is a heat source for heating, 6 is an outdoor heat exchanger for cooling, 7 is a first check valve for stopping the flow of refrigerant during heating, 8 is a decompressor for cooling, and 9 is a flow of refrigerant during heating. It is the second check valve to stop.

【0005】以上のように構成された冷媒加熱装置を具
備した空気調和装置について、図9に従って説明する運
転開始後、冷房を選択すると、四方弁2がONの後圧縮
機1がONとなり図8の破線矢印の方向に冷媒が流れ、
利用側である室内熱交換器3は低温低圧となり冷房が可
能となり、停止の指令が入るまで冷房運転をする。ま
た、暖房を選択すると、室外熱交換器6に溜まっている
冷媒を暖房サイクルに回収する冷媒回収を行う。これは
四方弁2と二方弁4をOFFとすることにより室外熱交
換器6を圧縮機1の吸入側に接続し圧縮機1をONして
室内熱交換器3に冷媒を移動させることにより暖房運転
時利用しない室外熱交換器6への冷媒の溜まり込みを防
止するものである。次に設定時間経過後に冷媒回収を終
了し、二方弁4を開け冷媒加熱装置5へ冷媒を流し、燃
焼をONすることにより、室内熱交換器3が高温高圧と
なり、暖房運転が可能となる。次に停止指令が入ると、
圧縮機1、燃焼、二方弁4がOFFとなり、暖房運転が
終了するものである。
In the air conditioner equipped with the refrigerant heating device configured as described above, when cooling is selected after the operation described with reference to FIG. 9, the four-way valve 2 is turned on and the compressor 1 is turned on. Refrigerant flows in the direction of the dashed arrow of
The indoor heat exchanger 3 on the use side has a low temperature and a low pressure and can be cooled, and the cooling operation is performed until a stop command is input. When heating is selected, the refrigerant collected in the outdoor heat exchanger 6 is recovered in the heating cycle. This is because the outdoor heat exchanger 6 is connected to the suction side of the compressor 1 by turning off the four-way valve 2 and the two-way valve 4, and the compressor 1 is turned on to move the refrigerant to the indoor heat exchanger 3. The refrigerant is prevented from accumulating in the outdoor heat exchanger 6 which is not used during the heating operation. Next, after the set time has elapsed, the recovery of the refrigerant is completed, the two-way valve 4 is opened, the refrigerant is allowed to flow to the refrigerant heating device 5, and the combustion is turned on, so that the indoor heat exchanger 3 becomes high temperature and high pressure, and heating operation becomes possible. . Next time a stop command is input,
The compressor 1, the combustion, and the two-way valve 4 are turned off, and the heating operation ends.

【0006】また、他の従来例として室外熱交換器と四
方弁の間に圧力計と二方弁を設置し、圧力が設定圧(0
kg/cm2 )以上なら設定圧以下になるまで冷媒回収
運転を行い、大気圧以下なら冷媒回収運転をせずに暖房
運転に入るものが提案されている(特開平1−1455
3号公報)。
As another conventional example, a pressure gauge and a two-way valve are installed between the outdoor heat exchanger and the four-way valve, and the pressure is set to a set pressure (0
It has been proposed that the refrigerant recovery operation is performed until the pressure becomes lower than the set pressure if the pressure is higher than kg / cm 2 ) and the heating operation is started without the refrigerant recovery operation if the pressure is lower than the atmospheric pressure (Japanese Patent Laid-Open No. 1-1455).
3 gazette).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の冷媒加熱式の空気調和装置の冷媒回収運転では以下
のような課題があった。すなわち、暖房運転時、冷凍サ
イクル中に一定量の冷媒量を維持するためには、低温時
に冷媒が溜まり込む室外熱交換器6の要請に応じて冷媒
の最大滞留量を回収するのに要する時間を冷媒回収運転
時間として設定することになる。不必要に長時間冷媒回
収運転すると回収すべき冷媒がなく、圧縮機1の吸入圧
力が大気圧以下となり、圧縮機1のシリンダ内部におけ
る低温の吸入部との温度差による熱ストレスから、摺動
部分の信頼性において問題となる。特に冷媒回収運転時
間が冷時の寝込み運転を想定して一定値に設定される
と、短時間の停止後の運転再開時においては冷媒寝込み
量も少なく、圧縮機1の大気圧以下状態が長くなるとい
う欠点があった。
However, the following problems have been encountered in the refrigerant recovery operation of the above-described conventional refrigerant heating type air conditioner. That is, in order to maintain a constant amount of refrigerant during the refrigeration cycle during heating operation, the time required to recover the maximum retention amount of the refrigerant in response to a request from the outdoor heat exchanger 6 in which the refrigerant accumulates at low temperatures. Will be set as the refrigerant recovery operation time. When the refrigerant recovery operation is performed for an unnecessarily long time, there is no refrigerant to be recovered, the suction pressure of the compressor 1 becomes equal to or lower than the atmospheric pressure, and sliding occurs due to the thermal stress due to the temperature difference between the low temperature suction section inside the cylinder of the compressor 1. It becomes a problem in the reliability of the part. In particular, when the refrigerant recovery operation time is set to a constant value assuming a cold stagnation operation, the refrigerant stagnation amount is small when the operation is resumed after a short stop, and the state below the atmospheric pressure of the compressor 1 is long. There was a drawback that

【0008】また、冷媒回収運転が長くなることによ
り、暖房運転の開始が遅くなり、温風の吹き出しが遅れ
て室内設定温度に到達する時間が長くなり、快適性の面
でも問題を生じていた。一方、逆に冷媒回収時間が短い
と暖房運転に必要な冷媒量が不足して、冷媒加熱装置5
の温度が異常に上昇するなどの現象を生じて、正常な暖
房ができないといった課題を有していた。
Further, the lengthening of the refrigerant recovery operation delays the start of the heating operation, delays the blowing of warm air, and lengthens the time required to reach the indoor set temperature, which causes a problem in terms of comfort. . On the other hand, on the contrary, when the refrigerant recovery time is short, the amount of refrigerant required for heating operation is insufficient, and the refrigerant heating device 5
There is a problem that normal heating cannot be performed due to a phenomenon such as an abnormal rise in the temperature of.

【0009】他の従来例では、圧力計を使用するためコ
ストが比較的高くかかり、他の制御にも利用するめた圧
力センサを使用すればさらにコストがかかるという課題
を有していた。したがって、この発明の目的は、上記課
題に鑑み、冷凍サイクルの構成はそのままで複雑にする
ことなく安価な構成で、圧縮機の信頼性の向上と快適性
の向上を図ることができる冷媒加熱式空気調和装置を提
供することである。
In the other conventional example, since the pressure gauge is used, the cost is relatively high, and the cost is further increased if the pressure sensor used for other control is used. Therefore, in view of the above problems, an object of the present invention is a refrigerant heating type that can improve the reliability and comfort of the compressor with an inexpensive structure without complicating the structure of the refrigeration cycle. An object is to provide an air conditioner.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
にこの発明の請求項1記載の冷媒加熱式空気調和装置
は、容量可変形圧縮機、四方弁、室内熱交換器、減圧
器、第1の逆止弁、室外熱交換器を環状に連結し、室内
熱交換器と減圧器の間から圧縮機の吸入側へ二方弁を介
して冷媒加熱装置を接続して冷凍サイクルを構成し、圧
縮機吸入温度を検出する圧縮機吸入温度検出手段と、設
定温度を記憶する温度設定部と、圧縮機吸入温度検出手
段により検出した圧縮機吸入温度と温度設定部の設定温
度を比較する比較手段と、設定された時間を記憶してい
る計時手段とを設け、二方弁が閉じた冷媒回収運転中に
圧縮機吸入温度検出手段により検出した圧縮機吸入温度
が設定温度以下になった時点から計時手段の時間経過
後、冷媒回収運転を終了するように二方弁を開制御する
制御手段を設けたもである。
In order to solve the above problems, a refrigerant heating type air conditioner according to claim 1 of the present invention comprises a variable capacity compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, and The check valve of No. 1 and the outdoor heat exchanger are connected in an annular shape, and the refrigerant heating device is connected to the suction side of the compressor from between the indoor heat exchanger and the decompressor via a two-way valve to form a refrigeration cycle. Comparing the compressor intake temperature detecting means for detecting the compressor intake temperature, the temperature setting part for storing the set temperature, and the compressor intake temperature detected by the compressor intake temperature detecting means and the set temperature of the temperature setting part When the compressor suction temperature detected by the compressor suction temperature detecting means becomes equal to or lower than the set temperature during the refrigerant recovery operation in which the two-way valve is closed, the means and the time measuring means for storing the set time are provided. After the time of the time measuring means has elapsed, the refrigerant recovery operation ends It is also provided with a control means for opening control of the two-way valve so that.

【0011】上記のように冷媒回収運転中に圧縮機吸入
温度検出手段により検出した圧縮機吸入温度が設定温度
以下になった時点から計時手段の時間経過後、冷媒回収
運転を終了するようにしたので、圧縮機の吸入圧が大気
圧以下になる運転がなくなり、圧縮機の信頼性を向上さ
せることができる。また、冷媒回収運転を終了すると制
御手段により二方弁が開状態となって冷媒加熱装置によ
り冷媒を加熱し暖房運転が可能となる。このように暖房
運転に必要な冷媒量を保持しつつ冷媒回収運転を短くで
きるため、暖房運転開始から温風吹き出しまでの時間を
短縮でき、設定温度に到達するまでが早くなり快適性の
向上を図ることができる。
As described above, the refrigerant recovery operation is terminated after the time of the time measuring means has elapsed from the time when the compressor intake temperature detected by the compressor intake temperature detecting means becomes lower than the set temperature during the refrigerant recovery operation. Therefore, the operation in which the suction pressure of the compressor falls below the atmospheric pressure is eliminated, and the reliability of the compressor can be improved. Further, when the refrigerant recovery operation is completed, the two-way valve is opened by the control means and the refrigerant is heated by the refrigerant heating device to enable the heating operation. In this way, the refrigerant recovery operation can be shortened while maintaining the amount of refrigerant required for heating operation, so the time from the start of heating operation to the blowing of warm air can be shortened, and the set temperature can be reached faster, improving comfort. Can be planned.

【0012】請求項2記載の冷媒加熱式空気調和装置
は、容量可変形圧縮機、四方弁、室内熱交換器、減圧
器、第1の逆止弁、室外熱交換器を環状に連結し、室内
熱交換器と減圧器の間から圧縮機の吸入側へ二方弁を介
して冷媒加熱装置を接続して冷凍サイクルを構成し、圧
縮機吸入温度を検出する圧縮機吸入温度検出手段と、検
出した圧縮機吸入温度を記憶する記憶手段と、記憶手段
による前回検出の圧縮機吸入温度と検出した圧縮機吸入
温度を比較する比較手段と、設定された時間を記憶して
いる計時手段とを設け、二方弁が閉じた冷媒回収運転中
に圧縮機吸入温度検出手段により検出した圧縮機吸入温
度の時間変化が減少から増加に転じた時点から計時手段
の時間経過後、冷媒回収運転を終了するように二方弁を
開制御する制御手段を設けたものである。
According to a second aspect of the present invention, there is provided a refrigerant heating type air conditioner in which a variable capacity compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, a first check valve, and an outdoor heat exchanger are connected in an annular shape. A refrigerant suction device is connected between the indoor heat exchanger and the pressure reducer to the suction side of the compressor via a two-way valve to form a refrigeration cycle, and compressor suction temperature detection means for detecting the compressor suction temperature, A storage means for storing the detected compressor suction temperature, a comparison means for comparing the previously detected compressor suction temperature by the storage means with the detected compressor suction temperature, and a clock means for storing the set time. Provided, the refrigerant recovery operation ends after the time of the time measuring means has elapsed from the time when the time change of the compressor intake temperature detected by the compressor intake temperature detection means changed from decreasing to increasing during the refrigerant recovery operation with the two-way valve closed. To open the two-way valve to control Those digits.

【0013】上記のように冷媒回収運転中に圧縮機吸入
温度検出手段により検出した圧縮機吸入温度の時間変化
が減少から増加に転じた時点から計時手段の時間経過
後、冷媒回収運転を終了するようにしたので、圧縮機の
吸入圧が大気圧以下になる運転がなくなり、圧縮機の信
頼性を向上させることができる。また、圧縮機吸入温度
の変化により冷媒回収時間を決定するため、特定の圧縮
機吸入温度を設定する必要がなく仕様の決定が容易であ
る。また、冷媒回収運転を終了すると制御手段により二
方弁が開状態となって冷媒加熱装置により冷媒を加熱し
暖房運転が可能となる。このように暖房運転に必要な冷
媒量を保持しつつ冷媒回収運転を短くできるため、暖房
運転開始から温風吹き出しまでの時間を短縮でき、設定
温度に到達するまでが早くなり快適性の向上を図ること
ができる。
As described above, the refrigerant recovery operation is terminated after the time of the time measuring means has elapsed from the time when the time change of the compressor intake temperature detected by the compressor intake temperature detection means changes from decrease to increase during the refrigerant recovery operation. As a result, the operation in which the suction pressure of the compressor falls below the atmospheric pressure is eliminated, and the reliability of the compressor can be improved. Moreover, since the refrigerant recovery time is determined by the change in the compressor suction temperature, it is not necessary to set a specific compressor suction temperature, and the specification can be easily determined. Further, when the refrigerant recovery operation is completed, the two-way valve is opened by the control means and the refrigerant is heated by the refrigerant heating device to enable the heating operation. In this way, the refrigerant recovery operation can be shortened while maintaining the amount of refrigerant required for heating operation, so the time from the start of heating operation to the blowing of warm air can be shortened, and the set temperature can be reached faster, improving comfort. Can be planned.

【0014】請求項3記載の冷媒加熱式空気調和装置
は、請求項1または2において、冷媒回収運転時間の経
過に伴い圧縮機の容量を減少させるように制御する圧縮
機容量制御手段を設けたものである。これにより、圧縮
機ベーン等の低い吸入温度と圧縮機温度との温度差で熱
ストレスを受けやすい摺動部の負荷を低減して、圧縮機
の信頼性を向上させることができる。
A refrigerant heating type air conditioner according to a third aspect of the present invention is, in the first or second aspect, provided with compressor capacity control means for controlling so as to reduce the capacity of the compressor as the refrigerant recovery operation time elapses. It is a thing. As a result, it is possible to improve the reliability of the compressor by reducing the load on the sliding portion that is susceptible to thermal stress due to the temperature difference between the low suction temperature of the compressor vane and the compressor temperature.

【0015】[0015]

【発明の実施の形態】この発明の第1の実施の形態の冷
媒加熱式空気調和装置を図1〜図3に基づいて説明す
る。図1はこの発明の第1の実施の形態の冷媒加熱式空
気調和装置における冷凍サイクル図である。この冷凍サ
イクルは、容量(周波数)可変形圧縮機1、四方弁2、
室内熱交換器3、減圧器8、第1の逆止弁7、室外熱交
換器6、第2の逆止弁9を環状に連結するとともに、室
外熱交換器6と第2の逆止弁9の間に上記四方弁2を配
置して、この四方弁2により冷媒の流れを室内熱交換器
3と室外熱交換器6へ切り換え可能とし、室内熱交換器
3と減圧器8の間から圧縮機1と第2の逆止弁9の間に
二方弁4を介して冷媒加熱装置5を接続した構成であ
る。なお、以上の構成は従来例と同様であり、同一部分
には同一符号を付している。ここで暖房運転時の冷媒の
流れを実線で示し、冷房運転時の冷媒の流れを破線で示
している。
BEST MODE FOR CARRYING OUT THE INVENTION A refrigerant heating type air conditioner according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a refrigeration cycle diagram in a refrigerant heating type air conditioner of a first embodiment of the present invention. This refrigeration cycle consists of a variable capacity (frequency) type compressor 1, a four-way valve 2,
The indoor heat exchanger 3, the decompressor 8, the first check valve 7, the outdoor heat exchanger 6, and the second check valve 9 are annularly connected, and the outdoor heat exchanger 6 and the second check valve are connected. The above-mentioned four-way valve 2 is disposed between 9 and the flow of the refrigerant can be switched between the indoor heat exchanger 3 and the outdoor heat exchanger 6 by means of this four-way valve 2, and between the indoor heat exchanger 3 and the decompressor 8. A refrigerant heating device 5 is connected between the compressor 1 and the second check valve 9 via a two-way valve 4. The above configuration is similar to that of the conventional example, and the same parts are denoted by the same reference numerals. Here, the flow of the refrigerant during the heating operation is indicated by a solid line, and the flow of the refrigerant during the cooling operation is indicated by a broken line.

【0016】また、図1において、10は圧縮機の吸入
温度サーミスタ(圧縮機吸入温度検出手段)である。こ
の圧縮機吸入温度サーミスタ10は、二方弁4を閉制御
して冷媒回収運転を行うときに圧縮機吸入温度を検出す
る。そして、この圧縮機吸入温度が設定温度以下になっ
た時点から計時手段の時間経過後、冷媒回収運転を終了
するように二方弁を開制御する制御手段を設けている。
Further, in FIG. 1, 10 is a suction temperature thermistor (compressor suction temperature detecting means) of the compressor. The compressor suction temperature thermistor 10 detects the compressor suction temperature when the refrigerant recovery operation is performed by controlling the two-way valve 4 to be closed. Then, the control means is provided for controlling the opening of the two-way valve so that the refrigerant recovery operation is terminated after the time of the time measuring means has elapsed from the time when the compressor suction temperature becomes equal to or lower than the set temperature.

【0017】図2は制御手段(制御回路)の概略構成図
である。同図はマイコン(マイクロコンピュータ)11
を具備した制御回路で、暖房起動信号、圧縮機吸入温度
サーミスタ10の信号を入力している。ここでの暖房起
動信号は、室内機、室外機からの信号、またはスイッチ
18によるものでもよい。また、マイコン11は設定温
度を記憶する温度設定部を有し、圧縮機吸入温度サーミ
スタ10により検出した圧縮機吸入温度と温度設定部の
設定温度を比較する比較手段12と、設定された時間を
記憶している計時手段とが設けてある。
FIG. 2 is a schematic block diagram of the control means (control circuit). This figure shows a microcomputer (microcomputer) 11
A heating start signal and a signal from the compressor intake temperature thermistor 10 are input to the control circuit equipped with. The heating activation signal here may be a signal from the indoor unit, the outdoor unit, or the switch 18. Further, the microcomputer 11 has a temperature setting unit for storing the set temperature, and a comparing unit 12 for comparing the compressor intake temperature detected by the compressor intake temperature thermistor 10 with the set temperature of the temperature setting unit, and the set time. Memorizing timing means are provided.

【0018】この制御回路の出力にはマイコン11より
信号を出して容量可変形圧縮機1の駆動を行う駆動部1
3がある。また、マイコン11より信号を出して二方弁
4のリレーコイル17に通電し接点17aを投入して二
方弁4をON(開)させることができる。さらに、15
は電源、14は増幅器、16は電源スイッチを示す。つ
ぎに、以上のように構成された冷媒加熱式空気調和装置
についてその動作を図3の制御動作図に基づいて説明す
る。
The output of this control circuit outputs a signal from the microcomputer 11 to drive the variable displacement compressor 1.
There are three. Further, a signal can be output from the microcomputer 11 to energize the relay coil 17 of the two-way valve 4 to turn on the contact 17a to turn on (open) the two-way valve 4. Furthermore, 15
Is a power supply, 14 is an amplifier, and 16 is a power switch. Next, the operation of the refrigerant heating type air conditioner configured as described above will be described based on the control operation diagram of FIG.

【0019】室外マイコン11がスイッチ18より暖房
運転開始信号を受けて、暖房運転を開始する。次に冷媒
回収運転を開始し、二方弁4はOFF(閉)のままで容
量可変形圧縮機1を設定された運転周波数で運転する。
これにより、第1の逆止弁7より圧縮機1の吸入に至る
配管経路および室外熱交換器6の冷媒が圧縮機1の吐出
配管経路(主として室内熱交換器3)に回収されてい
く。このとき、圧縮機吸入温度サーミスタ10で吸入温
度tを検出し、温度設定部で設定されている温度t1
比較する。吸入温度tが設定温度t1 以下になった時点
から、計時時間T0経過後、冷媒回収運転を停止し二方
弁4を開方向に制御する。この後、冷媒加熱装置5へ冷
媒を流し、冷媒加熱装置5の燃焼をONすることによ
り、室内熱交換器3が高温高圧となり、暖房運転が可能
となる。次に停止指令が入ると、圧縮機1、冷媒加熱装
置5、二方弁4がOFFとなり、暖房運転が終了する。
The outdoor microcomputer 11 receives the heating operation start signal from the switch 18 and starts the heating operation. Next, the refrigerant recovery operation is started, and the variable capacity compressor 1 is operated at the set operation frequency while the two-way valve 4 remains OFF (closed).
As a result, the piping path from the first check valve 7 to the suction of the compressor 1 and the refrigerant of the outdoor heat exchanger 6 are collected in the discharge piping path of the compressor 1 (mainly the indoor heat exchanger 3). At this time, the suction temperature t is detected by the compressor suction temperature thermistor 10 and compared with the temperature t 1 set by the temperature setting unit. The refrigerant recovery operation is stopped and the two-way valve 4 is controlled in the opening direction after the time T0 has elapsed from the time when the suction temperature t becomes equal to or lower than the set temperature t 1 . After that, by flowing the refrigerant to the refrigerant heating device 5 and turning on the combustion of the refrigerant heating device 5, the indoor heat exchanger 3 becomes high temperature and high pressure, and the heating operation becomes possible. Next, when a stop command is input, the compressor 1, the refrigerant heating device 5, and the two-way valve 4 are turned off, and the heating operation ends.

【0020】冷媒回収運転では回収時間の経過とともに
冷媒循環量が少なくなるため吸熱能力が減少し、圧縮機
1の吸入部で加熱状態にならず、吸入温度サーミスタ1
0で吸入圧力に相当する飽和温度に近い温度が測定でき
る。この圧縮機吸入温度を冷媒加熱式空気調和装置の運
転特性によりその温度を設定し、秒単位レベルでの時間
経過後、冷媒回収運転を終了することで、圧縮機1の吸
入圧力が大気圧以下になる運転がなくなり、圧縮機1の
信頼性を向上させることができる。また、冷媒回収運転
を短くできるため、暖房運転開始から温風吹き出しまで
の時間を短縮でき、設定温度に到達するまでが早くなり
快適性の向上を図ることができる。
In the refrigerant recovery operation, the refrigerant circulation amount decreases as the recovery time elapses, so the heat absorption capacity decreases, and the suction portion of the compressor 1 does not become a heating state, and the suction temperature thermistor 1
At 0, a temperature close to the saturation temperature corresponding to the suction pressure can be measured. This suction temperature of the compressor is set according to the operation characteristics of the refrigerant heating type air conditioner, and the refrigerant recovery operation is terminated after a lapse of time at the second unit level, so that the suction pressure of the compressor 1 is equal to or lower than the atmospheric pressure. Therefore, the reliability of the compressor 1 can be improved. Further, since the refrigerant recovery operation can be shortened, the time from the start of the heating operation to the blowing of warm air can be shortened, and the set temperature can be reached sooner to improve comfort.

【0021】なお、この実施の形態では、計時時間T0
経過後、冷媒回収運転を停止したが、圧縮機吸入温度の
設定を最適に設定することで、計時時間をゼロにしても
よい。この発明の第2の実施の形態の冷媒加熱式空気調
和装置を図4および図5に基づいて説明する。この実施
の形態における冷凍サイクルおよび制御回路の概略構成
図は、第1の実施の形態と比較すると、温度設定部の代
わりに圧縮機吸入温度を記憶する記憶手段が設けてあ
り、比較手段は記憶手段による前回検出の圧縮機吸入温
度tn-1 と検出した圧縮機吸入温度tn を比較するもの
である。その他の構成は第1の実施の形態と同様であ
る。
In this embodiment, the time count T0
After the lapse of time, the refrigerant recovery operation is stopped, but the time counting time may be set to zero by setting the compressor suction temperature optimally. A refrigerant heating type air conditioner according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. Compared to the first embodiment, the schematic configuration diagram of the refrigeration cycle and the control circuit in this embodiment is provided with a storage means for storing the compressor suction temperature instead of the temperature setting section, and the comparison means stores The compressor suction temperature t n-1 previously detected by the means and the detected compressor suction temperature t n are compared. Other configurations are similar to those of the first embodiment.

【0022】つぎに、冷媒加熱式空気調和装置について
その動作を図4の制御動作図に基づいて説明する。第1
の実施の形態と同様に冷媒回収運転を開始して二方弁4
はOFFのまで容量可変形圧縮機1を設定された運転周
波数で運転することにより、第1の逆止弁7より圧縮機
1の吸入に至る配管経路および室外熱交換器6の冷媒が
圧縮機1の吐出配管経路(主として室内熱交換器3)に
回収されていく。このとき、圧縮機吸入温度サーミスタ
10で吸入温度tn を検出し、前回検出した圧縮機吸入
温度と今回検出した吸入温度を比較する。そして前回検
出した吸入温度tn-1 が吸入温度tn 以下になった時点
から、計時時間T0経過後、冷媒回収運転を停止し二方
弁4を開方向に制御する。
Next, the operation of the refrigerant heating type air conditioner will be described with reference to the control operation diagram of FIG. First
In the same manner as in the embodiment of FIG.
By operating the variable displacement compressor 1 at a set operating frequency until OFF, the piping path from the first check valve 7 to the suction of the compressor 1 and the refrigerant in the outdoor heat exchanger 6 are compressed by the compressor. It is collected in the first discharge pipe path (mainly the indoor heat exchanger 3). At this time, the suction temperature t n is detected by the compressor suction temperature thermistor 10, and the previously detected compressor suction temperature and the suction temperature detected this time are compared. Then, the refrigerant recovery operation is stopped and the two-way valve 4 is controlled in the opening direction after the lapse of the time T0 from the time when the previously detected suction temperature t n-1 becomes equal to or lower than the suction temperature t n .

【0023】圧縮機吸入温度の時間変化は図5に示すよ
うに、圧縮機停止後の時間経過により異なるが、最小値
を示した後上昇傾向を示す。圧縮機停止後十分時間が経
過していれば(冷時)、冷媒加熱器の温度も外気温近く
まで下がっているため、冷媒加熱式運転開始後、最小値
まで下がった後、冷凍サイクル内の圧縮機オイル中に溶
け込んでいる冷媒が蒸発を起こして若干の温度上昇を生
じる。また、圧縮機1停止後わずかしか時間経過がない
場合(熱時)は、同様に冷媒回収運転開始後最小値まで
急激に下がるが、冷媒加熱装置5の余熱から伝熱や冷凍
サイクル内の圧縮機オイル中に溶け込んでいる冷媒が蒸
発することで顕著に温度上昇を生じる。
As shown in FIG. 5, the time-dependent change in the compressor suction temperature varies with the passage of time after the compressor is stopped, but shows a minimum value and then a rising tendency. If enough time has passed after the compressor has stopped (when it is cold), the temperature of the refrigerant heater will also drop to near ambient temperature. The refrigerant dissolved in the compressor oil evaporates, causing a slight temperature rise. Similarly, when the compressor 1 has stopped and only a short time has passed (when it is hot), it similarly drops sharply to the minimum value after the start of the refrigerant recovery operation, but the residual heat of the refrigerant heating device 5 causes heat transfer and compression in the refrigeration cycle. Evaporation of the refrigerant dissolved in the machine oil causes a remarkable temperature rise.

【0024】このような温度変化を圧縮機吸入温度サー
ミスタ10で検出して冷媒回収運転時間を決定するた
め、特定の圧縮機吸入温度を設定する必要がなく仕様の
決定が容易である。さらに、圧縮機1の吸入圧が大気圧
以下になる運転がなくなり、圧縮機1の信頼性を向上さ
せることができる。また、冷媒回収運転を短くできるた
め、暖房運転開始から温風吹き出しまでの時間を短縮で
き、設定温度に到達するまでが早くなり快適性の向上を
図ることができる。
Since such a temperature change is detected by the compressor intake temperature thermistor 10 to determine the refrigerant recovery operation time, it is not necessary to set a specific compressor intake temperature, and the specification can be easily determined. Further, the operation in which the suction pressure of the compressor 1 becomes equal to or lower than the atmospheric pressure is eliminated, and the reliability of the compressor 1 can be improved. Further, since the refrigerant recovery operation can be shortened, the time from the start of the heating operation to the blowing of warm air can be shortened, and the set temperature can be reached sooner to improve comfort.

【0025】なお、この実施の形態では、計時時間T0
経過後、冷媒回収運転を停止したが、圧縮機吸入温度の
比較手段においてtn ≧tn-1 の条件を複数回設定する
ことで、計時時間をゼロにしてもよい。この発明の第3
の実施の形態の冷媒加熱式空気調和装置を図6および図
7に基づいて説明する。この実施の形態における冷凍サ
イクルおよび制御回路の概略構成図は、第1または第2
の実施の形態において、冷媒回収運転時間の経過により
圧縮機の容量を徐々に減少させるように制御する圧縮機
容量制御手段を設けている。具体的には、第2の実施の
形態に設けた圧縮機容量制御手段は、圧縮機吸入温度サ
ーミスタ10で前回検出した圧縮機吸入温度tn-1 と今
回検出した吸入温度tn を比較し、前回検出した吸入温
度tn-1 が低くなければ、容量可変形圧縮機1の運転周
波数をHz1 ,Hz2 ……Hzn というように微小なス
テップで下げていくものである。
In this embodiment, the time count T0
After the lapse of time, the refrigerant recovery operation is stopped, but the time counting time may be set to zero by setting the condition of t n ≧ t n−1 multiple times in the compressor suction temperature comparison means. Third of this invention
The refrigerant heating type air conditioner of the embodiment will be described with reference to FIGS. 6 and 7. The schematic configuration diagram of the refrigeration cycle and the control circuit in this embodiment is the first or second
In the embodiment of the present invention, a compressor capacity control means for controlling the capacity of the compressor to gradually decrease with the passage of the refrigerant recovery operation time is provided. Specifically, the compressor capacity control means provided in the second embodiment compares the compressor suction temperature t n-1 previously detected by the compressor suction temperature thermistor 10 with the suction temperature t n detected this time. If the previously detected suction temperature t n-1 is not low, the operating frequency of the variable displacement compressor 1 is lowered in minute steps such as Hz 1 , Hz 2, ... Hz n .

【0026】図7に吸入温度と圧縮機の運転周波数の変
化特性を示す。圧縮機1の運転周波数を微小ステップで
下げていき、前回検出した吸入温度tn-1 が今回検出し
た吸入温度tn よりも低ければ、計時時間T0経過後、
冷媒回収運転を停止し二方弁4を開方向に制御する。こ
れにより、第1の逆止弁7より圧縮機1の吸入に至る配
管経路および室外熱交換器6の冷媒が圧縮機1の吐出配
管経路(主として熱交換器3)に回収される。
FIG. 7 shows the change characteristics of the suction temperature and the operating frequency of the compressor. When the operating frequency of the compressor 1 is lowered in small steps, and if the previously detected intake temperature t n-1 is lower than the presently detected intake temperature t n , after the elapsed time T0,
The refrigerant recovery operation is stopped and the two-way valve 4 is controlled in the opening direction. As a result, the piping path from the first check valve 7 to the suction of the compressor 1 and the refrigerant in the outdoor heat exchanger 6 are recovered in the discharge piping path of the compressor 1 (mainly the heat exchanger 3).

【0027】このように、冷媒回収運転の時間経過とと
もに圧縮機1の運転周波数を微小ステップで下げていく
ため、圧縮機ベーン等の低い吸入温度と圧縮機温度との
温度差で熱ストレスを受けやすい摺動部の負荷を低減し
て、圧縮機1の信頼性を向上させることができる。な
お、第1の実施の形態に圧縮機容量制御手段を設けても
同様の効果があるが、この場合の圧縮機容量制御手段
は、圧縮機吸入温度サーミスタ10で吸入温度tを検出
し、温度設定部で設定されている温度t1 と比較し、吸
入温度tが設定温度t1 よりも低くなければ、同様に容
量可変形圧縮機1の運転周波数を微小なステップで下げ
ていくものとする。
As described above, since the operating frequency of the compressor 1 is decreased in minute steps as the refrigerant recovery operation elapses, thermal stress is applied due to the temperature difference between the low intake temperature of the compressor vane and the compressor temperature. It is possible to reduce the load on the easily sliding portion and improve the reliability of the compressor 1. Although the same effect can be obtained by providing the compressor capacity control means in the first embodiment, the compressor capacity control means in this case detects the suction temperature t by the compressor suction temperature thermistor 10 and If the suction temperature t is not lower than the set temperature t 1 as compared with the temperature t 1 set in the setting unit, the operating frequency of the variable displacement compressor 1 is similarly lowered in minute steps. .

【0028】また、この実施の形態では、圧縮機運転周
波数を微小ステップで一律に下げるステップを設けた
が、下げる時間間隔を設定してもよい。また、圧縮機吸
入温度の低下に応じた圧縮機運転周波数の低下ステップ
を設けても同じ効果が得られる。
Further, in the present embodiment, the step of uniformly reducing the compressor operating frequency is provided in minute steps, but a time interval of lowering may be set. Further, the same effect can be obtained by providing the step of decreasing the compressor operating frequency according to the decrease of the compressor suction temperature.

【0029】[0029]

【発明の効果】この発明の請求項1記載の冷媒加熱式空
気調和装置によれば、冷媒回収運転中に圧縮機吸入温度
検出手段により検出した圧縮機吸入温度が設定温度以下
になった時点から計時手段の時間経過後、冷媒回収運転
を終了するようにしたので、圧縮機の吸入圧が大気圧以
下になる運転がなくなり、圧縮機の信頼性を向上させる
ことができる。また、冷媒回収運転を終了すると制御手
段により二方弁が開状態となって冷媒加熱装置により冷
媒を加熱し暖房運転が可能となる。このように暖房運転
に必要な冷媒量を保持しつつ冷媒回収運転を短くできる
ため、暖房運転開始から温風吹き出しまでの時間を短縮
でき、設定温度に到達するまでが早くなり快適性の向上
を図ることができる。
According to the refrigerant heating type air conditioner of the present invention, from the time when the compressor suction temperature detected by the compressor suction temperature detection means becomes equal to or lower than the set temperature during the refrigerant recovery operation. Since the refrigerant recovery operation is terminated after the time of the time measuring means has elapsed, the operation in which the suction pressure of the compressor becomes equal to or lower than the atmospheric pressure is eliminated, and the reliability of the compressor can be improved. Further, when the refrigerant recovery operation is completed, the two-way valve is opened by the control means and the refrigerant is heated by the refrigerant heating device to enable the heating operation. In this way, the refrigerant recovery operation can be shortened while maintaining the amount of refrigerant required for heating operation, so the time from the start of heating operation to the blowing of warm air can be shortened, and the set temperature can be reached faster, improving comfort. Can be planned.

【0030】この発明の請求項2記載の冷媒加熱式空気
調和装置によれば、冷媒回収運転中に圧縮機吸入温度検
出手段により検出した圧縮機吸入温度の時間変化が減少
から増加に転じた時点から計時手段の時間経過後、冷媒
回収運転を終了するようにしたので、圧縮機の吸入圧が
大気圧以下になる運転がなくなり、圧縮機の信頼性を向
上させることができる。また、圧縮機吸入温度の変化に
より冷媒回収時間を決定するため、特定の圧縮機吸入温
度を設定する必要がなく仕様の決定が容易である。ま
た、冷媒回収運転を終了すると制御手段により二方弁が
開状態となって冷媒加熱装置により冷媒を加熱し暖房運
転が可能となる。このように暖房運転に必要な冷媒量を
保持しつつ冷媒回収運転を短くできるため、暖房運転開
始から温風吹き出しまでの時間を短縮でき、設定温度に
到達するまでが早くなり快適性の向上を図ることができ
る。
According to the refrigerant heating type air conditioner of the second aspect of the present invention, at the time when the time change of the compressor suction temperature detected by the compressor suction temperature detecting means during the refrigerant recovery operation changes from decrease to increase. Since the refrigerant recovery operation is ended after the time of the time measuring means has elapsed, the operation in which the suction pressure of the compressor becomes equal to or lower than the atmospheric pressure is eliminated, and the reliability of the compressor can be improved. Moreover, since the refrigerant recovery time is determined by the change in the compressor suction temperature, it is not necessary to set a specific compressor suction temperature, and the specification can be easily determined. Further, when the refrigerant recovery operation is completed, the two-way valve is opened by the control means and the refrigerant is heated by the refrigerant heating device to enable the heating operation. In this way, the refrigerant recovery operation can be shortened while maintaining the amount of refrigerant required for heating operation, so the time from the start of heating operation to the blowing of warm air can be shortened, and the set temperature can be reached faster, improving comfort. Can be planned.

【0031】請求項3では、冷媒回収運転時間の経過に
伴い圧縮機の容量を減少させるように制御する圧縮機容
量制御手段を設けたので、圧縮機ベーン等の低い吸入温
度と圧縮機温度との温度差で熱ストレスを受けやすい摺
動部の負荷を低減して、圧縮機の信頼性を向上させるこ
とができる。
According to the third aspect of the present invention, since the compressor capacity control means for controlling the capacity of the compressor to decrease with the passage of the refrigerant recovery operation time is provided, the low intake temperature of the compressor vane and the like and the compressor temperature are controlled. It is possible to improve the reliability of the compressor by reducing the load on the sliding portion that is susceptible to thermal stress due to the temperature difference.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施の形態の冷媒加熱式空気
調和装置の冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram of a refrigerant heating type air conditioner according to a first embodiment of the present invention.

【図2】第1の実施の形態における制御回路の概略構成
図である。
FIG. 2 is a schematic configuration diagram of a control circuit according to the first embodiment.

【図3】第1の実施の形態における制御動作図である。FIG. 3 is a control operation diagram according to the first embodiment.

【図4】この発明の第2の実施の形態の冷媒加熱式空気
調和装置の制御動作図である。
FIG. 4 is a control operation diagram of a refrigerant heating type air conditioner according to a second embodiment of the present invention.

【図5】第2の実施の形態における圧縮機吸入温度の時
間変化を示すグラフである。
FIG. 5 is a graph showing a change over time of a compressor suction temperature in the second embodiment.

【図6】この発明の第3の実施の形態の冷媒加熱式空気
調和装置の制御動作図である。
FIG. 6 is a control operation diagram of a refrigerant heating type air conditioner according to a third embodiment of the present invention.

【図7】第3の実施の形態における吸入温度と圧縮機の
運転周波数の変化特性を示すグラフである。
FIG. 7 is a graph showing the change characteristics of the suction temperature and the operating frequency of the compressor in the third embodiment.

【図8】従来の冷媒加熱式空気調和装置の冷凍サイクル
図である。
FIG. 8 is a refrigeration cycle diagram of a conventional refrigerant heating type air conditioner.

【図9】従来の冷媒加熱式空気調和装置の制御動作図で
ある。
FIG. 9 is a control operation diagram of a conventional refrigerant heating type air conditioner.

【符号の説明】[Explanation of symbols]

1 容量(周波数)可変形圧縮機 2 四方弁 3 室内熱交換器 4 二方弁 5 冷媒加熱装置 6 室外熱交換器 7 第1の逆止弁 8 冷房用減圧器 9 第2の逆止弁 10 圧縮機吸入温度サーミスタ 11 室外マイコン 1 Capacity (frequency) variable type compressor 2 four-way valve 3 Indoor heat exchanger 4 two-way valve 5 Refrigerant heating device 6 outdoor heat exchanger 7 First check valve 8 Cooling decompressor 9 Second check valve 10 Compressor suction temperature thermistor 11 Outdoor microcomputer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青 孝彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−95360(JP,A) 特開 平7−190531(JP,A) 特開 平1−314866(JP,A) 実開 昭56−47451(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 13/00 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takahiko Ao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-3-95360 (JP, A) JP-A-7- 190531 (JP, A) JP-A-1-314866 (JP, A) Actual development 56-47451 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 13/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容量可変形圧縮機、四方弁、室内熱交換
器、減圧器、第1の逆止弁、室外熱交換器を環状に連結
し、前記室内熱交換器と前記減圧器の間から前記圧縮機
の吸入側へ二方弁を介して冷媒加熱装置を接続して冷凍
サイクルを構成し、圧縮機吸入温度を検出する圧縮機吸
入温度検出手段と、設定温度を記憶する温度設定部と、
前記圧縮機吸入温度検出手段により検出した圧縮機吸入
温度と温度設定部の設定温度を比較する比較手段と、設
定された時間を記憶している計時手段とを設け、前記二
方弁が閉じた冷媒回収運転中に前記圧縮機吸入温度検出
手段により検出した圧縮機吸入温度が設定温度以下にな
った時点から前記計時手段の時間経過後、冷媒回収運転
を終了するように前記二方弁を開制御する制御手段を設
けたことを特徴とする冷媒加熱式空気調和装置。
1. A variable capacity compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, a first check valve, and an outdoor heat exchanger are annularly connected, and between the indoor heat exchanger and the pressure reducer. To a suction side of the compressor through a two-way valve to connect a refrigerant heating device to form a refrigeration cycle, a compressor suction temperature detecting means for detecting the compressor suction temperature, and a temperature setting section for storing the set temperature. When,
Comparing means for comparing the compressor suction temperature detected by the compressor suction temperature detecting means with the set temperature of the temperature setting section, and a time measuring means for storing the set time are provided, and the two-way valve is closed. During the refrigerant recovery operation, the two-way valve is opened to terminate the refrigerant recovery operation after the time of the time measuring means elapses from the time when the compressor intake temperature detected by the compressor intake temperature detection means becomes equal to or lower than the set temperature. A refrigerant heating type air conditioner comprising a control means for controlling.
【請求項2】 容量可変形圧縮機、四方弁、室内熱交換
器、減圧器、第1の逆止弁、室外熱交換器を環状に連結
し、前記室内熱交換器と前記減圧器の間から前記圧縮機
の吸入側へ二方弁を介して冷媒加熱装置を接続して冷凍
サイクルを構成し、圧縮機吸入温度を検出する圧縮機吸
入温度検出手段と、検出した圧縮機吸入温度を記憶する
記憶手段と、記憶手段による前回検出の圧縮機吸入温度
と検出した圧縮機吸入温度を比較する比較手段と、設定
された時間を記憶している計時手段とを設け、前記二方
弁が閉じた冷媒回収運転中に前記圧縮機吸入温度検出手
段により検出した圧縮機吸入温度の時間変化が減少から
増加に転じた時点から前記計時手段の時間経過後、冷媒
回収運転を終了するように前記二方弁を開制御する制御
手段を設けたことを特徴とする冷媒加熱式空気調和装
置。
2. A variable capacity compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, a first check valve, and an outdoor heat exchanger are annularly connected, and between the indoor heat exchanger and the pressure reducer. To a suction side of the compressor via a two-way valve to connect a refrigerant heating device to form a refrigeration cycle, and a compressor suction temperature detecting means for detecting the compressor suction temperature and the detected compressor suction temperature are stored. Storage means, a comparison means for comparing the compressor suction temperature detected previously by the storage means with the detected compressor suction temperature, and a clock means for storing the set time, and the two-way valve is closed. During the refrigerant recovery operation, the refrigerant recovery operation is terminated so that the refrigerant recovery operation is terminated after a lapse of time of the time measuring means from the time when the time change of the compressor intake temperature detected by the compressor intake temperature detection means changes from decrease to increase. The provision of control means for controlling the opening of the one-way valve Characteristic refrigerant heating type air conditioner.
【請求項3】 冷媒回収運転時間の経過に伴い圧縮機の
容量を減少させるように制御する圧縮機容量制御手段を
設けた請求項1または2記載の冷媒加熱式空気調和装
置。
3. The refrigerant heating type air conditioner according to claim 1, further comprising compressor capacity control means for controlling the capacity of the compressor to decrease with the passage of the refrigerant recovery operation time.
JP02059097A 1997-02-03 1997-02-03 Refrigerant heating air conditioner Expired - Fee Related JP3534968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02059097A JP3534968B2 (en) 1997-02-03 1997-02-03 Refrigerant heating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02059097A JP3534968B2 (en) 1997-02-03 1997-02-03 Refrigerant heating air conditioner

Publications (2)

Publication Number Publication Date
JPH10220899A JPH10220899A (en) 1998-08-21
JP3534968B2 true JP3534968B2 (en) 2004-06-07

Family

ID=12031466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02059097A Expired - Fee Related JP3534968B2 (en) 1997-02-03 1997-02-03 Refrigerant heating air conditioner

Country Status (1)

Country Link
JP (1) JP3534968B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274277B2 (en) * 2015-09-30 2018-02-07 ダイキン工業株式会社 Refrigeration equipment
KR102341828B1 (en) * 2020-08-19 2021-12-20 엘지전자 주식회사 Rrefrigerator and control method thereof

Also Published As

Publication number Publication date
JPH10220899A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JPH02217766A (en) Frost detection method of heat pump and its detector
JPH086990B2 (en) Reversing valve malfunction detection and correction method in heat pump
JPH10103818A (en) Air-conditioner
JP3534968B2 (en) Refrigerant heating air conditioner
JP2964705B2 (en) Air conditioner
JP3884388B2 (en) Temperature control method for refrigeration apparatus and operation control apparatus for refrigeration apparatus
JPH0231300B2 (en)
JPH0245777B2 (en)
JPH0518615A (en) Refrigerator
JPS61101736A (en) Defrosting control device of air conditioner
JPH08285393A (en) Air conditioner for multi-room
KR880000935B1 (en) Control device for refrigeration cycle
JPS62125244A (en) Air conditioner
JP2669069B2 (en) Heating and cooling machine
JP2664690B2 (en) Air conditioner
JPH01306756A (en) Method of controlling heat storage
JPH06341741A (en) Defrosting controller for refrigerating device
KR100598562B1 (en) Defrosting control device of an air conditioner and method thereof
JPH09264590A (en) Air conditioner
JPH065572Y2 (en) Refrigeration equipment
JPH01121645A (en) Defrosting control device for air conditioner
JP2765729B2 (en) Heating and cooling machine
JPS6325270B2 (en)
JP2983858B2 (en) Air conditioner heating operation method
JP2848686B2 (en) Heating and cooling machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

LAPS Cancellation because of no payment of annual fees