JPS6142168A - Read only memory - Google Patents

Read only memory

Info

Publication number
JPS6142168A
JPS6142168A JP16409484A JP16409484A JPS6142168A JP S6142168 A JPS6142168 A JP S6142168A JP 16409484 A JP16409484 A JP 16409484A JP 16409484 A JP16409484 A JP 16409484A JP S6142168 A JPS6142168 A JP S6142168A
Authority
JP
Japan
Prior art keywords
gate electrode
poly
impurity
semiconductor substrate
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16409484A
Other languages
Japanese (ja)
Inventor
Setsushi Kamuro
節史 禿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16409484A priority Critical patent/JPS6142168A/en
Publication of JPS6142168A publication Critical patent/JPS6142168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices

Abstract

PURPOSE:To reduce the occupation area by reducing the memory cell area per bit by a method wherein part of the second gate electrode is formed by lamination on the first gate electrode via insulation layer, and an impurity is introduced under the second gate electrode. CONSTITUTION:On the region serving as the channel of a semiconductor substrate 11, the first gate electrode that inputs word line signals is formed of a poly Si 14 via gate insulation film 13. Overlapping on the poly Si 14, the second gate electrode is formed of a poly Si 15. The poly Si 14 and the poly Si 15 are insulated from each other with an interlayer insulation film 16. At the gate part formed of the poly Si 15, a heavy-dose region 17 is formed by diffusing an N type impurity the same as for a diffused region or by its ion implantation. If a high potential is given to the word line 14 by the heavy-dose region 17, the channel is formed.

Description

【発明の詳細な説明】 く技術分野〉 本発明は読み出し専用メモリ(ROM)に関するもので
、特には素子製造のいずれかの段階でブータラ予めプロ
グラムするマスクROMに関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to read-only memories (ROMs), and more particularly to mask ROMs that are preprogrammed at some stage of device manufacturing.

〈従来技術〉 マスクROMのデータ設定方式として一般に並列配列方
式、直列配列方式及び直並列配列方式とが開発されてお
り、これらの各方式中でも特に高速動作を期待する場合
、並列配列方式が適している0 第4図乃至第7図は従来から実用化されているマスクR
OMの要部を示す半導体基板平面図及びその等価回路図
で、半導体基板】に逆導電型の拡散領域2が形成され、
拡散領域2に直交する方向KMO8トランジスタのゲー
トとなるワード線7>Eポリシリコン8によって形成さ
れ、更に該ポリシリコン3上を跨いで上記拡散領域2に
平行させてビット線が金属膜4によって形成されている
<Prior art> Parallel array method, series array method, and series-parallel array method have generally been developed as mask ROM data setting methods. Among these methods, when particularly high-speed operation is expected, the parallel array method is suitable. 0 Figures 4 to 7 show masks R that have been put into practical use in the past.
In the semiconductor substrate plan view and its equivalent circuit diagram showing the main parts of the OM, a diffusion region 2 of opposite conductivity type is formed in the semiconductor substrate;
A word line 7>E which becomes the gate of the KMO8 transistor in a direction perpendicular to the diffusion region 2 is formed of polysilicon 8, and a bit line is formed of a metal film 4 extending over the polysilicon 3 and parallel to the diffusion region 2. has been done.

上記v;4図に示す構造のマスクROMにデータを設定
する場合、ビット線4が拡散領域2とコンタクトするか
否か(図中実線で示すコンタクト5はコンタクト有、破
線で示す仮想コンタクト5′はコンタクト無を示す。)
によってROMデータを決めている。
v; When data is set in the mask ROM having the structure shown in FIG. indicates no contact.)
The ROM data is determined by

また第6図に示す構造からなるマスクROMにデータを
設定する場合は、ポリシリコン3下の半導体基板にMO
Sトランジスタを形成するか否かを拡散領域2を形成す
る際のマスクによって決定し、図中ポリシリコン31に
よってMOSトランジスタTr+  が形成されるもの
の、ポリシリコン3□は半導体基板中の拡散領域が破線
6で示す如く隔てられて、MOSトランジスタを構成し
得す拡散の有無忙よってROMデータが設定される◎処
で上記第4図のコンタクトROM設定方式では、ビット
当りの占有面積が大きくなるという欠点があり、また第
6図の拡散ROM設定方式ではビット当りの占有面積は
小さくなるが、ROMデータの設定を拡散工程で行うた
め、ROMデータの設定から最終製品ができ上るまでの
所要時間が長くなるという欠点があった。
Furthermore, when setting data in a mask ROM having the structure shown in FIG.
Whether or not to form an S transistor is determined by the mask used when forming the diffusion region 2. In the figure, the polysilicon 31 forms the MOS transistor Tr+, but the polysilicon 3□ indicates that the diffusion region in the semiconductor substrate is indicated by the broken line. 6, and ROM data is set depending on the presence or absence of diffusion that can constitute a MOS transistor.However, the contact ROM setting method shown in Fig. 4 has the disadvantage that the area occupied per bit becomes large. In addition, the diffusion ROM setting method shown in Figure 6 reduces the area occupied per bit, but since the ROM data is set in the diffusion process, it takes a long time from setting the ROM data to completing the final product. There was a drawback.

〈発明の目的〉 本発明は上記従来のマスクROMの欠点を除去し、占有
面積の点からはコンタクトROM設定方式よりも優れ、
更に所要時間の点からは拡散設定方式よりも優れたマス
クROMを提供する。
<Object of the Invention> The present invention eliminates the drawbacks of the conventional mask ROM described above, and is superior to the contact ROM setting method in terms of occupied area.
Furthermore, it provides a mask ROM that is superior to the diffuse setting method in terms of required time.

〈実施例〉 NチャネルMOSプロセスに適用した実施例を挙げて説
明する。
<Example> An example applied to an N-channel MOS process will be described.

第1図は半導体基板の平面を模型的に示し、第2図は同
半導体基板のA−A’断面図、第3図は等価回路図であ
る。
FIG. 1 schematically shows a plane of a semiconductor substrate, FIG. 2 is a sectional view taken along line AA' of the semiconductor substrate, and FIG. 3 is an equivalent circuit diagram.

図において半導体基板11には逆導電型の拡散領域12
が形成され、該拡散領域12はソース或いはドレイン等
として機能する領域で、例えばソースとなる拡散領域1
2は更に直交する方向に拡散領域12′が形成され、接
地電位に接続される。
In the figure, a semiconductor substrate 11 has a diffusion region 12 of opposite conductivity type.
is formed, and the diffusion region 12 is a region that functions as a source, a drain, etc. For example, the diffusion region 1 serving as a source
2 further has a diffusion region 12' formed in a perpendicular direction and is connected to the ground potential.

上記拡散領域12.12’が形成された半導体基板11
のMOSトランジスタのチャネルとなる領域上には、ゲ
ート絶縁膜13を介してプずワード線信号を入力する第
1のゲート電極が第1層目のポリシリコン14によって
形成されている。該第1層目のポリシリコン14に一部
を重ねて第2のゲート電極が2層目ポリシリコン15に
よって形成されている。第1層目ポリシリコン14と第
2層目ポリシリコン15間は層間絶縁膜16によって絶
縁されている。上記第1及び第2層目ポリシリコン14
.15がゲート電極となって拡散領域12.12間の半
導体基板表面に連続するチャネルが形成され得る。上記
第2層目ポリシリコン15には接地電位か与えられる。
Semiconductor substrate 11 on which the diffusion regions 12 and 12' are formed
A first gate electrode for inputting a positive word line signal through a gate insulating film 13 is formed of a first layer of polysilicon 14 on a region that becomes a channel of the MOS transistor. A second gate electrode is formed of a second layer of polysilicon 15, partially overlapping the first layer of polysilicon 14. The first polysilicon layer 14 and the second polysilicon layer 15 are insulated by an interlayer insulating film 16. The first and second layer polysilicon 14
.. 15 serves as a gate electrode, and a continuous channel can be formed on the surface of the semiconductor substrate between the diffusion regions 12 and 12. A ground potential is applied to the second layer polysilicon 15.

処で上記半導体構造のみでは、第1層目のポリシリコン
14によるゲート電極のみではチャネルを連続させ得す
、また第2層目のポリシリコン15は接地電位に接続さ
れているため、ワード線である第】のゲート電極J4の
電位に拘らず、MOSトランジスタは常にオフ状態にあ
るためROMとして利用することができない。即ちMO
Sトランジスタがオフ状態のみで、+1″、 10″の
データを書き込むことができない。
However, in the above semiconductor structure alone, the channel can be made continuous using only the gate electrode made of the first layer of polysilicon 14, and since the second layer of polysilicon 15 is connected to the ground potential, the word line cannot be connected. Regardless of the potential of the certain gate electrode J4, the MOS transistor is always in an off state and cannot be used as a ROM. That is, M.O.
Since the S transistor is only in the off state, +1" and 10" data cannot be written.

そこで次に書き込むROMデータの内容が“領′か1#
に応じて、上記第2層目のポリシリコン】5で形成され
るゲート部分に選択的に拡散領域12と同じN型不純物
を拡散又はイオン打込み等によってヘビードーズ領域1
7を形成する。該ヘビードーズ領域17により、ワード
線14が選択状態C本実施例では高電位を与える)にあ
ればMOSトランジスタM1はチャネルが形成されてオ
ン状態になる。
Therefore, if the content of the ROM data to be written next is “region” or 1#
According to the above, heavy dose region 1 is formed by selectively diffusing the same N-type impurity as diffusion region 12 into the gate portion formed by the second layer polysilicon] 5 or by ion implantation.
form 7. Due to the heavy dose region 17, when the word line 14 is in a selected state (in this embodiment, a high potential is applied), a channel is formed in the MOS transistor M1, and the MOS transistor M1 is turned on.

尚ワード線14が非選択状態(本実施例では低電位を与
える)にあれば、対応するMOSトランジスタはオフ状
態である。
Note that if the word line 14 is in a non-selected state (a low potential is applied in this embodiment), the corresponding MOS transistor is in an off state.

また、第2層目ポリシリコン】5下の半導体基板に上述
のようなヘビードーズ領域が形成されていないMOSト
ランジスタM2は、たとえワード線14に高電位か与え
られても連続するチャネルは形成することはできず、ト
ランジスタとしては機能しない。
In addition, the MOS transistor M2, in which the heavy dose region as described above is not formed in the semiconductor substrate under the second layer polysilicon 5, cannot form a continuous channel even if a high potential is applied to the word line 14. It cannot function as a transistor.

図中、第1及び第2層目ポリシリコン14.15が形成
された半導体基板上には、金属膜によってビット線18
が形成され、必要に応じて拡散領域12に接続されてい
る。
In the figure, a bit line 18 is formed by a metal film on the semiconductor substrate on which the first and second polysilicon layers 14 and 15 are formed.
are formed and connected to the diffusion region 12 as necessary.

上記実施例は、第2層目ポリシリコン15によってチャ
ネルを形成する半導体基板部分に限定して選択的にヘビ
ードーズ領域を形成したが、チャネルを形成する部分以
外の第2層目ポリシリコン15は、第1層目ポリシリコ
ン14上に積層されて半導体基板表面から隔てられてい
ることから、第2層目ポリシリコン15の全面に渡って
不純物を導入して実施することができる。即ち、第1層
目ポリシリコン14が介在しているためマスクとなって
基板表面への不純物の導入が抑えられ、従って第2層目
ポリシリコンによるゲート部分にのみ不純物が注入され
る。この場合には第1層目ポリシリコン14をマスクに
セルフアライメントによってヘビードーズ領域17を形
成することができ、マスク合せは非常に容易になる。
In the above embodiment, a heavy dose region was selectively formed using the second layer polysilicon 15 in a portion of the semiconductor substrate where a channel is formed, but the second layer polysilicon 15 other than the portion where a channel is formed is Since it is stacked on the first polysilicon layer 14 and separated from the surface of the semiconductor substrate, impurities can be introduced over the entire surface of the second polysilicon layer 15. That is, since the first layer polysilicon 14 is present, it acts as a mask and suppresses the introduction of impurities into the substrate surface, so that impurities are implanted only into the gate portion formed by the second layer polysilicon. In this case, the heavy dose region 17 can be formed by self-alignment using the first layer polysilicon 14 as a mask, and mask alignment becomes very easy.

以上の説明はNチャネルMO8)ランジスクを例にとっ
て行ったが、PチャネルMOSトランジスタにおいても
同様に実現可能であり、又周辺回路を0MO8で構成し
てROMメモリセル部のみをNチャネルMO8)ランジ
スクがPチャネルMOSトランジスタで構成しても全く
同様の効果が得られる。
The above explanation has been made using an N-channel MO8) Randisk as an example, but it is also possible to implement the same with a P-channel MOS transistor, and the peripheral circuit is configured with 0MO8 and only the ROM memory cell part is an N-channel MO8) Ranjisk. Exactly the same effect can be obtained by using a P-channel MOS transistor.

又、説明ではゲート電極材料としてポリシリコンを用い
たが、ポリサイド、シリサイド、リフラクトリ−メタル
等2層構造のゲートを構成できるものであればゲート電
極材料はポリシリコンに限定する必要はない。
Further, in the description, polysilicon is used as the gate electrode material, but the gate electrode material need not be limited to polysilicon as long as it can constitute a two-layered gate such as polycide, silicide, refractory metal, etc.

〈効果〉 以上本発明によれば、コンタク)ROM設定方式に比べ
、1つのコンタクトを隣接したMOSトランジスタで共
用できるため1ビット当りのメモリセル面積が小さくな
り占有面積の減少を図り得る。
<Effects> According to the present invention, as compared to the contact ROM setting method, since one contact can be shared by adjacent MOS transistors, the memory cell area per bit is reduced, and the occupied area can be reduced.

また、拡散ROM設定方式に比べてROMデータを設定
するヘビードーズ形成のステップはポリシリコン形成後
となり、所要時間の短縮を図ることができる。
Furthermore, compared to the diffusion ROM setting method, the heavy-dose formation step for setting ROM data is performed after polysilicon formation, and the required time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明にょる一実施例を示す平面模
型図、同A−A’断面図及び等価回路図、第4図は従来
装置の平面模型図、第5図は同装置の等価回路図、第6
図は他の従来装置の平面模型図、第7図は同装置の等価
回路図である。 1に半導体基板、 12:拡散領域、  14:第」層
目ポリシリコン、  15:第2層目ポリシリコン、 
 17:へビードーズ領域、  18:金属膜。
1 to 3 are a plan view, an AA' sectional view and an equivalent circuit diagram showing an embodiment of the present invention, FIG. 4 is a plan view of a conventional device, and FIG. 5 is a plan view of the same device. Equivalent circuit diagram of 6th
The figure is a plan view of another conventional device, and FIG. 7 is an equivalent circuit diagram of the same device. 1: Semiconductor substrate, 12: Diffusion region, 14: 2nd layer polysilicon, 15: 2nd layer polysilicon,
17: Heavy dose region, 18: Metal film.

Claims (3)

【特許請求の範囲】[Claims] (1)MOSトランジスタを選択するための入力信号が
与えられる第1のゲート電極と、上記MOSトランジス
タをオフにする電位が与えられる第2のゲート電極とが
、絶縁層を介して第2のゲート電極の一部を第1のゲー
ト電極上に積層させて形成し、設定するROMデータの
内容に対応して第2のゲート電極下にチャネルを連続さ
せるための不純物を導入してなることを特徴とする読み
出し専用メモリ。
(1) A first gate electrode to which an input signal for selecting a MOS transistor is applied and a second gate electrode to which a potential to turn off the MOS transistor is applied are connected to the second gate electrode through an insulating layer. A part of the electrode is formed by stacking it on the first gate electrode, and an impurity is introduced under the second gate electrode to make the channel continuous according to the contents of the ROM data to be set. Read-only memory.
(2)前記チャネルを導通させるための不純物は、第1
のゲート電極と重なっていない第2のゲート電極下に位
置する半導体基板の範囲に選択的に導入されてなること
を特徴とする請求の範囲第1項記載の読み出し専用メモ
リ。
(2) The impurity for making the channel conductive is the first impurity.
2. The read-only memory according to claim 1, wherein the read-only memory is selectively introduced into an area of the semiconductor substrate located under the second gate electrode that does not overlap with the second gate electrode.
(3)前記チャネルを導通させるための不純物は、第1
のゲート電極をマスクにして第2のゲート電極上から導
入されてなり、第2のゲート電極の各部分と半導体基板
表面との離間距離によって半導体基板に局部的に不純物
が導入されてなることを特徴とする請求の範囲第1項記
載の読み出し専用メモリ。
(3) The impurity for making the channel conductive is the first impurity.
The impurity is introduced from above the second gate electrode using the gate electrode as a mask, and the impurity is locally introduced into the semiconductor substrate depending on the distance between each part of the second gate electrode and the surface of the semiconductor substrate. A read-only memory according to claim 1, characterized in that:
JP16409484A 1984-08-02 1984-08-02 Read only memory Pending JPS6142168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16409484A JPS6142168A (en) 1984-08-02 1984-08-02 Read only memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16409484A JPS6142168A (en) 1984-08-02 1984-08-02 Read only memory

Publications (1)

Publication Number Publication Date
JPS6142168A true JPS6142168A (en) 1986-02-28

Family

ID=15786651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16409484A Pending JPS6142168A (en) 1984-08-02 1984-08-02 Read only memory

Country Status (1)

Country Link
JP (1) JPS6142168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898840A (en) * 1987-11-13 1990-02-06 Hitachi, Ltd. Semiconductor integrated circuit device and a method of producing the same
US5159417A (en) * 1990-04-16 1992-10-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having short channel field effect transistor with extended gate electrode structure and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898840A (en) * 1987-11-13 1990-02-06 Hitachi, Ltd. Semiconductor integrated circuit device and a method of producing the same
US5063170A (en) * 1987-11-13 1991-11-05 Hitachi, Ltd. Semiconductor integrated circuit device and a method of producing the same
US5159417A (en) * 1990-04-16 1992-10-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having short channel field effect transistor with extended gate electrode structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6307217B1 (en) Semiconductor memory device having driver and load MISFETs and capacitor elements
KR930011232A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JPH06112503A (en) Semiconductor storage device and manufacture thereof
US6268622B1 (en) Non-volatile memory device and fabrication method thereof
JPS61288464A (en) Semiconductor memory device
JPH10223781A (en) Semiconductor device and manufacture thereof
JP2658844B2 (en) Semiconductor storage device
JPH02130872A (en) Manufacture of polysilicon transistor
JPS6142168A (en) Read only memory
JP3227754B2 (en) Semiconductor storage device and its manufacturing method.
JP2679673B2 (en) Semiconductor storage device
JPH0414255A (en) Mos type semiconductor device
JP3408743B2 (en) Semiconductor device and manufacturing method thereof
JP2838702B2 (en) Method for manufacturing field effect transistor
JP2621824B2 (en) Method for manufacturing semiconductor device
JP3158531B2 (en) TFT load type static RAM
JPH0851145A (en) Semiconductor device and manufacture thereof
JPH08321561A (en) Semiconductor memory and fabrication thereof
JPH04109670A (en) Mos type read only semiconductor memory
JPH04343269A (en) Semiconductor device
JPS6246556A (en) Semiconductor memory device
JPH0697395A (en) Fabrication of double layer gate program rom
JPH05218353A (en) Semiconductor integrated circuit device
JPH05110035A (en) Static ram
JPH06151781A (en) Manufacture of semiconductor memory device