JPS6141874B2 - - Google Patents

Info

Publication number
JPS6141874B2
JPS6141874B2 JP58029245A JP2924583A JPS6141874B2 JP S6141874 B2 JPS6141874 B2 JP S6141874B2 JP 58029245 A JP58029245 A JP 58029245A JP 2924583 A JP2924583 A JP 2924583A JP S6141874 B2 JPS6141874 B2 JP S6141874B2
Authority
JP
Japan
Prior art keywords
curing
parts
weight
raw material
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58029245A
Other languages
Japanese (ja)
Other versions
JPS59182278A (en
Inventor
Tadashi Maebotoke
Hajime Asami
Hiroki Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP58029245A priority Critical patent/JPS59182278A/en
Publication of JPS59182278A publication Critical patent/JPS59182278A/en
Publication of JPS6141874B2 publication Critical patent/JPS6141874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は転炉等の鉄皮とれんが間の間隙部、ス
テーブクーラー(冷却ボツクス)と鉄皮間の間隙
部、転炉コーナ部等のれんが間間隙部(以下これ
を総称して転炉等の間隙部と言う)充填用に使用
される自硬性耐火組成物に関し、特に鉄部材の表
面への接着力が高く、硬化前後の収縮、変化がな
く、かつ耐火原料の種類に拘らず、安定な自硬性
を有する耐火組成物を提供するものである。 従来上記用途にはフエノール樹脂をバインダー
とする自硬性耐火組成物等の使用が試みられて来
た。しかしながらこれらの組成物は鉄皮とれんが
間、ステーブクーラー鉄皮間等の間隙部に充填し
た場合、鉄皮への接着力は必ずしも充分でなく、
操業時に機械的衝撃を受けた場合、鉄部材表面よ
り剥離することが多かつた。また間隙部へ流し込
み、あるいはスタンプ法によりこれら組成物を充
填した場合、硬化終了後収縮により鉄皮−充填物
界面に微少空隙部が発生し、充填材としての機能
を充分発揮できない等の問題があつた。 またフエノール樹脂をバインダーとする自硬性
不定形耐火物は一般にレゾール型初期縮合物と硬
化促進剤として酸触媒、例えばパラトルエンスル
ホン酸、硫酸等が使用されるので、耐火原料とし
て塩基性原料、例えばマグネシア、ドロマイト等
を使用するときは硬化促進剤とこれらの原料の反
応が優先的に進行するため、フエノール樹脂の硬
化が著しく阻害され、充分な硬化体が得られぬ
か、あるいは極めて強度の低い硬化体しか得られ
ない等の問題があつた。また耐火原料中に含まれ
る金属成分、例えば鉄分等が硬化促進剤と反応す
るため硬化速度の変動が極めて大であるため、実
用上問題があつた。 本発明はこられの問題を解決したもので、本発
明の組成物はマグネシア、ドロマイト、カーボン
から選ばれた少なくとも一種の耐火原料100重量
部と液状エポキシ樹脂および硬化剤として常温で
硬化作用を有するポリアミド、ポリアミン類とよ
り構成されるバインダー15〜40重量部とよりなる
転炉等の間隙部充填用自硬性耐火組成物よりな
り、鉄部材表面に対する接着力高く、硬化前後の
収縮変化がなく、かつ耐火原料の種類に拘らず、
安定な自硬性を有する。 本発明に使用される液状エポキシ樹脂はビスフ
エノールAとエピクロルヒドリンとの反応によつ
て得られるビスフエノール系エポキシ樹脂、ビス
フエノールFとエピクロルヒドリンとの反応によ
つて得られるビスフエノール系エポキシ樹脂、そ
の他脂環化合物系エポキシ樹脂、エポキシ含有ピ
ニルポリマー等が使用される。 本発明に使用される硬化剤としてはポリアミ
ド、ポリアミン類より常温で硬化作用を有するも
のの中、所要の硬化時間に応じて適宜選択され
る。具体的にはジエチレントリアミン、トリエチ
レンテトラミン、テトラエチレンペンタミン等の
ポリアミン類、ダイマー酸とジエチレントリアミ
ン、トリエチレンテトラミン類の反応によつて得
られるポリアミド等が好適に使用される。 耐火組成物のバインダーは液状エポキシ樹脂と
硬化剤とにより構成されるが、その配合量は液状
エポキシ基含有量に対し等モル使用される。 本発明の自硬性耐火組成物は耐火原料としてマ
グネシア、ドロマイト、カーボンから選ばれる1
種または2種以上を混合して用いられる。耐火原
料とバインダーの配合割合は耐火原料100重量部
に対しバインダー15〜40重量部である。バインダ
ー量が15重量部未満のときは充填後の硬化体の強
度が低く、かつ鉄皮への接着力が低く実用上問題
がある。またバインダー量が40重量部を超えれば
充填部温度が300℃以上の部位に使用されるとき
は硬化体中の樹脂の熱分解、揮発が起こり気孔率
が大となり、強度が低下する等の問題がある。 バインダーに使用される液体エポキシ樹脂は単
独でも、他樹脂を混合してもよい。特に300℃以
上の部位に充填する場合はレゾール型フエノール
樹脂との混用が好ましい。その中でもビスフエノ
ール系液状エポキシ樹脂と液状レゾール型フエノ
ール樹脂とは相互に相溶性があり好適に混合使用
される。この場合液状エポキシ樹脂と液状レゾー
ル型フエノール樹脂の併用比率は8/2〜2/8
が好ましく、8/2を超えれば受熱時の気孔率が
大となり強度が小となる。また、2/8未満のと
きは鉄皮への接着力は小さくまた硬化前後の収縮
率大であり、充填材−鉄皮間に空隙部ができる等
の問題がある。 液状エポキシ樹脂と液状レゾール樹脂の混合物
にポリアミド、ポリアミン類よりなる硬化剤を添
加したバインダーの場合も液状エポキシ樹脂単独
使用のときと同じく耐火原料100重量部に対し15
〜40重量部使用される。 本発明耐火組成物は耐火原料に液状エポキシ樹
脂および硬化剤を添加し通常の混練機で混練さ
れ、混練後直ちに流し込み施工、あるいはスタン
プ施工される。鉄皮への接着、密着性の点から流
し込み施工が好ましい。 次に実施例を挙げて本発明を説明する。 実施例1、比較例1 転炉の鉄皮−れんがの間隙部に第1表に示すマ
グネシア、カーボン系耐火原料の耐火組成物を混
練後直ちに流し込み施工した。なお比較のため従
来のフエノール樹脂と酸系硬化促進剤をバインダ
ーとする耐火組成物についても試験した。その結
果を第1表に示す。
The present invention applies to the gap between the steel shell and bricks of a converter, etc., the gap between a stave cooler (cooling box) and the steel shell, and the gap between bricks such as a corner of a converter (hereinafter collectively referred to as a converter, etc.). Self-hardening refractory compositions used for filling gaps (referred to as gaps) have particularly high adhesion to the surface of iron parts, do not shrink or change before and after curing, and are stable regardless of the type of refractory raw material. The purpose of the present invention is to provide a fire-resistant composition that has excellent self-hardening properties. Conventionally, attempts have been made to use self-hardening fireproof compositions containing phenolic resin as a binder for the above-mentioned applications. However, when these compositions are filled into gaps such as between steel shells and bricks, or between stave cooler steel shells, their adhesion to the steel shells is not necessarily sufficient;
When subjected to mechanical shock during operation, it often peeled off from the surface of the steel member. In addition, when these compositions are filled into gaps by pouring or stamping, micro-voids are generated at the interface between the steel shell and the filler due to shrinkage after curing, resulting in problems such as the inability to fully demonstrate its function as a filler. It was hot. Furthermore, self-hardening monolithic refractories using phenolic resin as a binder generally use a resol-type initial condensate and an acid catalyst such as para-toluenesulfonic acid or sulfuric acid as a curing accelerator; When magnesia, dolomite, etc. are used, the reaction between the curing accelerator and these raw materials proceeds preferentially, so the curing of the phenolic resin is significantly inhibited, and a sufficient cured product may not be obtained, or the cured product may have extremely low strength. There were problems such as only being able to obtain the body. Furthermore, since the metal components contained in the refractory raw material, such as iron, react with the curing accelerator, the curing rate fluctuates extremely, which poses a practical problem. The present invention has solved these problems, and the composition of the present invention contains 100 parts by weight of at least one refractory raw material selected from magnesia, dolomite, and carbon, a liquid epoxy resin, and a curing agent that has a curing effect at room temperature. It is made of a self-hardening fireproof composition for filling gaps in converters, etc., which is made of 15 to 40 parts by weight of a binder composed of polyamide and polyamines, has high adhesion to the surface of iron parts, and has no shrinkage change before and after curing. And regardless of the type of refractory raw material,
It has stable self-hardening properties. The liquid epoxy resins used in the present invention include bisphenol epoxy resins obtained by the reaction of bisphenol A and epichlorohydrin, bisphenol epoxy resins obtained by the reaction of bisphenol F and epichlorohydrin, and other resins. Ring compound-based epoxy resins, epoxy-containing pinyl polymers, etc. are used. The curing agent used in the present invention is appropriately selected from polyamides and polyamines that have a curing effect at room temperature depending on the required curing time. Specifically, polyamines such as diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, and polyamides obtained by reacting dimer acid with diethylenetriamine and triethylenetetramine are preferably used. The binder of the fireproof composition is composed of a liquid epoxy resin and a curing agent, and the amount thereof is equimolar to the content of the liquid epoxy group. In the self-hardening refractory composition of the present invention, the refractory raw material is 1 selected from magnesia, dolomite, and carbon.
It can be used as a species or as a mixture of two or more species. The blending ratio of the refractory raw material and the binder is 15 to 40 parts by weight per 100 parts by weight of the refractory raw material. When the amount of binder is less than 15 parts by weight, the strength of the cured product after filling is low and the adhesion to the steel shell is low, which poses a practical problem. In addition, if the amount of binder exceeds 40 parts by weight, when used in areas where the temperature of the filled part is 300°C or higher, the resin in the cured product will thermally decompose and volatilize, resulting in increased porosity and reduced strength. There is. The liquid epoxy resin used for the binder may be used alone or in combination with other resins. In particular, when filling a site with a temperature of 300°C or higher, it is preferable to use it in combination with a resol type phenolic resin. Among them, bisphenol liquid epoxy resin and liquid resol type phenol resin are mutually compatible and are preferably used in combination. In this case, the combined ratio of liquid epoxy resin and liquid resol type phenolic resin is 8/2 to 2/8.
is preferable, and if it exceeds 8/2, the porosity during heat reception will increase and the strength will decrease. Moreover, when it is less than 2/8, the adhesion to the steel shell is small and the shrinkage rate before and after curing is large, causing problems such as the formation of voids between the filler and the steel shell. In the case of a binder made by adding a curing agent made of polyamide or polyamine to a mixture of liquid epoxy resin and liquid resol resin, 15 parts by weight per 100 parts by weight of the refractory raw material is the same as when liquid epoxy resin is used alone.
~40 parts by weight are used. The refractory composition of the present invention is prepared by adding a liquid epoxy resin and a curing agent to a refractory raw material, kneading it in a conventional kneader, and immediately after kneading, it is poured or stamped. In terms of adhesion and adhesion to the steel shell, pouring is preferred. Next, the present invention will be explained with reference to Examples. Example 1, Comparative Example 1 Immediately after kneading, a refractory composition of magnesia and carbon-based refractory raw materials shown in Table 1 was poured into the gap between the steel shell and the bricks of a converter. For comparison, a fireproof composition containing a conventional phenolic resin and an acid curing accelerator as a binder was also tested. The results are shown in Table 1.

【表】【table】

【表】 実施例2、比較例2 約350℃の転炉の鉄皮−れんが間の間隙部に、
マグネシア単独系の耐火原料と液状エポキシ樹脂
と液状レゾール型フエノール樹脂および硬化剤か
らなるバインダーとより自硬性耐火組成物を混練
して製造し、直ちに流し込み施工した。
[Table] Example 2, Comparative Example 2 In the gap between the steel shell and bricks of a converter at about 350℃,
A self-hardening refractory composition was prepared by kneading a refractory raw material consisting of only magnesia, a binder consisting of a liquid epoxy resin, a liquid resol type phenol resin, and a hardening agent, and immediately poured into the composition.

【表】 以上実施例に示した如く本発明は鉄、れんがと
の接着性大であり、又使用時に於ける線変化も極
めて小さいものであり、充填材としての機能を十
分満足させ得るものである。なおMgO−Cれん
がとの接着力大なることから、転炉操業時特に傾
斜時の絞り部ウエアれんがの“抜け”、“脱落”が
防止でき好結果であつた。
[Table] As shown in the examples above, the present invention has excellent adhesion to iron and bricks, and the change in line during use is extremely small, so it can fully function as a filler. be. In addition, since the adhesive strength with the MgO-C bricks is strong, it was possible to prevent the wear bricks from coming off and falling off at the constriction part during operation of the converter, especially when tilting, resulting in good results.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシア、ドロマイトおよびカーボンから
選ばれた少なくとも一種の耐火原料100重量部と
液状エポキシ樹脂および硬化剤として常温で硬化
作用を有するポリアミド、ポリアミン類とより構
成されるバインダー15〜40重量部とよりなる転炉
等の間隙部充填用自硬性耐火組成物。
1 Consists of 100 parts by weight of at least one refractory raw material selected from magnesia, dolomite, and carbon, and 15 to 40 parts by weight of a binder composed of liquid epoxy resin and polyamide or polyamines that have a curing action at room temperature as a curing agent. Self-hardening refractory composition for filling gaps in converters, etc.
JP58029245A 1983-02-25 1983-02-25 Self-hardening refractory composition Granted JPS59182278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029245A JPS59182278A (en) 1983-02-25 1983-02-25 Self-hardening refractory composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029245A JPS59182278A (en) 1983-02-25 1983-02-25 Self-hardening refractory composition

Publications (2)

Publication Number Publication Date
JPS59182278A JPS59182278A (en) 1984-10-17
JPS6141874B2 true JPS6141874B2 (en) 1986-09-18

Family

ID=12270861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029245A Granted JPS59182278A (en) 1983-02-25 1983-02-25 Self-hardening refractory composition

Country Status (1)

Country Link
JP (1) JPS59182278A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915890A (en) * 1987-09-17 1990-04-10 The Dow Chemical Company Casting process
KR930010994B1 (en) * 1988-06-06 1993-11-19 더 다우 케미칼 캄파니 Manufacture of non-whiteware ceramic articles
KR102306102B1 (en) * 2021-04-14 2021-09-28 경북대학교 산학협력단 Adhesive composition for rammed earth method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293409A (en) * 1976-01-31 1977-08-05 Kyushu Refractories Manufacture of refractory brick blocks
JPS5418820A (en) * 1977-07-13 1979-02-13 Harima Refractories Co Ltd Selffhardening castable refractory
JPS5542218A (en) * 1978-09-13 1980-03-25 Kurosaki Refractories Co Refractory for spray
JPS55136178A (en) * 1979-04-11 1980-10-23 Kurosaki Refractories Co Indefinite form refractories for thermal injection
JPS5722177A (en) * 1980-07-17 1982-02-05 Kurosaki Refractories Co Refractory composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293409A (en) * 1976-01-31 1977-08-05 Kyushu Refractories Manufacture of refractory brick blocks
JPS5418820A (en) * 1977-07-13 1979-02-13 Harima Refractories Co Ltd Selffhardening castable refractory
JPS5542218A (en) * 1978-09-13 1980-03-25 Kurosaki Refractories Co Refractory for spray
JPS55136178A (en) * 1979-04-11 1980-10-23 Kurosaki Refractories Co Indefinite form refractories for thermal injection
JPS5722177A (en) * 1980-07-17 1982-02-05 Kurosaki Refractories Co Refractory composition

Also Published As

Publication number Publication date
JPS59182278A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
US4248638A (en) Method for preparing a magnesia carbon brick
US4072531A (en) Plugging compositions for blast furnace tap holes
JP4119515B2 (en) Resin coated sand for mold
JPS6141874B2 (en)
EP0577733B1 (en) Vibratable resin-bonded refractory composition
EP0284298B1 (en) Cement for cathode blocks
US5328879A (en) Binding and plasticizing agent for preparing carbon-containing, refractory, ceramic materials and material prepared therewith
JPS58190876A (en) Carbon-containing castable refractories
JP2000233977A (en) Press-patching material for filling space within furnace wall of blast furnace
US3849356A (en) Mixture for making a mold
JPH0460942B2 (en)
JPH05163059A (en) Unburned magnesia-carbonaceous refractory
JPS5826080A (en) Refractory mixture for dry thermal repairment
JP2000094121A (en) Manufacture of plate for slide gate
RU1835406C (en) Friction composition
JPS6317790B2 (en)
KR100908704B1 (en) Carbon-containing acid neutral refractory composition
KR20020052828A (en) Refractory composition
JPS60122771A (en) Magnesia carbon refractories for metallurgical furnace
JPS60186458A (en) Metal melting furnace and vessel
JPS6156190B2 (en)
JPS5819631B2 (en) Self-hardening fireproof composition
JPS6222815A (en) Liquid phenolic resin for refractory
JPS6332097B2 (en)
JPH11239841A (en) Resin coated sand for mold