JPS6141467A - Membrane for artificial lung - Google Patents

Membrane for artificial lung

Info

Publication number
JPS6141467A
JPS6141467A JP59163938A JP16393884A JPS6141467A JP S6141467 A JPS6141467 A JP S6141467A JP 59163938 A JP59163938 A JP 59163938A JP 16393884 A JP16393884 A JP 16393884A JP S6141467 A JPS6141467 A JP S6141467A
Authority
JP
Japan
Prior art keywords
membrane
blood
polymer
pores
dense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59163938A
Other languages
Japanese (ja)
Other versions
JPH0611319B2 (en
Inventor
東村 敏延
俊夫 増田
大森 昭夫
弘幸 赤須
山根 忠之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59163938A priority Critical patent/JPH0611319B2/en
Publication of JPS6141467A publication Critical patent/JPS6141467A/en
Publication of JPH0611319B2 publication Critical patent/JPH0611319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生体肺の代替あるいは補助をするために使用し
うる人工肺用膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a membrane for an artificial lung that can be used to replace or supplement a living lung.

〔従来の技術〕[Conventional technology]

血液の体外循環により、血液中の炭酸ガスを放散し酸素
を富化する人工肺には、血液中に酸素を気泡状に吹き込
む気泡型人工肺と、炭酸ガスや酸素などの気体は透過す
るが、血液は実質的には透過しない選択透過膜を介して
気体交換を行なわしめる換型人工肺の2柿がある。気泡
型人工肺は気体交換効率がよいとか、安価であるといっ
た特長はあるが、血液と気体とが直接的に接触するため
血液の損傷が大きいという欠点がある。特に長期にわた
って使用する場合にはこの欠点は致命的である。(例え
ば、日本胸部外科学会誌、22(1974)P、904
、人工臓器、ザ(1983)P982等) 最近、長期暑ζわたって使用可能な人工肺として模型人
工肺が注目されているが、模型人工肺は、緻密膜タイプ
と多孔膜タイプに大別される。
There are two types of oxygenators: bubble-type oxygenators, which blow oxygen into the blood in the form of bubbles, and oxygenators, which diffuse carbon dioxide and enrich oxygen through extracorporeal blood circulation. There are two types of artificial lungs, which perform gas exchange through a selectively permeable membrane that does not substantially allow blood to pass through. Bubble oxygenators have the advantage of high gas exchange efficiency and low cost, but they have the disadvantage of causing significant damage to the blood due to the direct contact between blood and gas. This drawback is fatal, especially when used for a long period of time. (For example, Journal of the Japanese Society of Thoracic Surgery, 22 (1974) P, 904
, Artificial Organs, The (1983) P982, etc.) Recently, model oxygenators have been attracting attention as oxygenators that can be used over long periods of heat, but model oxygenators are broadly divided into dense membrane types and porous membrane types. Ru.

緻密膜タイプの人工肺は、ガス透過性の高い高分子膜を
はさんで血液とカスを間接的に接触さす、血液側とガス
側の分圧差を利用して、ガスの膜への溶解、拡散、つい
で血液への溶解、拡散(又はその逆過程)lζよりガス
交換を行うものであるが、かかる高分子膜にはポリジメ
チルシロキサン等の素材を均質緻密な構造としt:緻密
膜が用いられている。(例えば、胸部外科、33(19
79)l’、339)又、多孔質タイプの人工肺は、連
通孔を通じて気体は自由に通過しつるのに対して、血液
は膜が疎水性であるfコめ、膜と作成との接触角が大き
く、膜孔が濡れないtこめ膜を1ifl過しえないこと
を利用したものであり、かかる膜としては、疎水性の5
0〜z、ooo′Aの連通孔を有する多孔構造の膜が用
いられている。(例えば、人工11Uii、12(19
85) P、991等) 〔発明が解決しようとする問題点〕 前述したように、多孔膜タイプの模型人工肺に用いられ
る膜は、膜と血液との接触角が大きく、膜孔が濡れf(
いことが必須の要件であるが、血液中には蛋白などの界
面活性能を有する成分が含有されているため、膜孔が徐
々に濡れてきて気体交換能が経時変化する。さらに長く
使用すると連通孔全体が濡れてしまう。一旦濡れると、
このような多孔膜では、血液が濾過され、血漿などが気
体側に洩れてくるため、使用に耐えなくなる。
A dense membrane type oxygenator uses a high gas permeability polymer membrane to bring blood and waste into indirect contact, and uses the partial pressure difference between the blood side and the gas side to dissolve the gas in the membrane. Gas exchange is performed by diffusion, then dissolution into blood, and diffusion (or the reverse process) lζ, but such a polymer membrane is made of a material such as polydimethylsiloxane with a homogeneous and dense structure, and t: a dense membrane is used. It is being (For example, Thoracic Surgery, 33 (19
79) l', 339) In addition, in a porous type of oxygenator, gas can freely pass through the communication holes, whereas in blood, the membrane is hydrophobic, so there is no contact between the membrane and the material. This method takes advantage of the fact that the corners are large and the membrane pores do not get wet through the t-hole membrane.
A membrane having a porous structure having communicating pores of 0 to z and ooo'A is used. (For example, artificial 11Uii, 12(19
85) P, 991, etc.) [Problems to be solved by the invention] As mentioned above, the membrane used in the porous membrane type model oxygenator has a large contact angle between the membrane and blood, and the membrane pores become wet and f (
However, since blood contains components with surfactant properties such as proteins, the membrane pores gradually become wet and the gas exchange capacity changes over time. If you use it for a longer period of time, the entire communication hole will get wet. Once it gets wet,
In such a porous membrane, blood is filtered and plasma and the like leak to the gas side, making it unusable.

一方、従来の緻密膜タイプの模型人工肺に用いられる膜
は、膜が緻密で液体が透過しうろ程の孔が存在しないた
め、血漿は非透過であり、目詰りもないため、気体交換
能の経時的低下もほとんどなく、この点では多孔膜に比
べて潰れているが、気体がポリマー膜に一旦溶解17、
ポリマー中を他面側に拡散し、脱宥する所謂溶解拡散機
構で膜透過するため気体透過速度が遅く、充分満足でき
るものではない。現在市販されている緻密膜タイプの人
工肺の膜素材は、従来のポリマーの中で最も酸素透過性
に優れているといわれているポリジメチルシロキサン系
ポリマーが多いが、これとて人工肺用膜として充分な酸
素透過性を有しているとはいい難い。さらに酸素透過速
度は膜厚に反比例するので、膜厚を小さくすることが好
ましいが、ポリジメチルシロキサンは本質的に柔軟なポ
リマーであり、機械強度が小さくピンホールなしに薄膜
化することは困難である。また、強度を改良するためカ
ーボネートなどの神々の成分を共重合させたり、ポリマ
ーブレンドしたり、あるいは添加剤を加えることも試み
られているが、弛匣が大きくなると酸素透過性が低下す
る傾向にある。従って、緻密膜タイプのpII型人工肺
に用いられる膜は、より多くの気体交換面積が必要であ
るという欠点を有している。
On the other hand, the membranes used in conventional dense membrane model artificial lungs have dense membranes that allow liquid to pass through and do not have large pores, so plasma does not pass through them and there is no clogging, resulting in gas exchange. There is almost no decrease in the temperature over time, and in this respect it is more collapsed than a porous membrane, but once the gas dissolves in the polymer membrane17,
Since the gas permeates through the membrane by a so-called dissolution-diffusion mechanism in which the gas diffuses to the other side of the polymer and is removed, the gas permeation rate is slow and is not completely satisfactory. Most of the membrane materials for dense membrane type oxygenators currently on the market are polydimethylsiloxane-based polymers, which are said to have the best oxygen permeability among conventional polymers. It is difficult to say that it has sufficient oxygen permeability. Furthermore, since the oxygen permeation rate is inversely proportional to the film thickness, it is preferable to reduce the film thickness, but polydimethylsiloxane is essentially a flexible polymer and has low mechanical strength, making it difficult to form a thin film without pinholes. be. In addition, attempts have been made to copolymerize divine ingredients such as carbonate, blend polymers, or add additives to improve strength, but as the looseness increases, oxygen permeability tends to decrease. be. Therefore, the membranes used in pII oxygenators of the dense membrane type have the disadvantage of requiring more gas exchange area.

また人工肺は直接血液と接触するので血液適合性がよい
こともきわめて重要な要件である。接触面積が圧倒的に
大きい膜自体の血液適合性はとくに重要である。膜の血
液ス―合性がわるいと血栓を生成する。血栓が生成する
とその部分の膜が閉塞して気体交換能を失うばかりでな
く、血栓近くの血液の流れが阻害され、血液溜りができ
、凝血し易くなる。そのため血栓が一旦生成すると加速
度的に大きくなり、遂には気体交換能の大幅な低下を招
来することとなる。従って、とくに長期Cζわたって人
工肺を用いる場合、膜の血液適合性は重要なことである
。才だ血液適合性がわるいと体外循環時、血液中の面小
板や白血球などの有形成分が減少し、出血し易いなどの
トラブルが発生し易くなる。
Furthermore, since the oxygenator comes into direct contact with blood, good blood compatibility is also an extremely important requirement. Blood compatibility of the membrane itself, which has an overwhelmingly large contact area, is particularly important. If the blood compatibility of the membrane is poor, a thrombus will form. When a thrombus forms, the membrane in that area not only becomes occluded and loses its ability to exchange gas, but also the flow of blood near the thrombus is obstructed, creating a pool of blood and making it more likely to clot. Therefore, once a thrombus is formed, it increases in size at an accelerating rate, eventually leading to a significant decrease in gas exchange capacity. Therefore, the blood compatibility of the membrane is important, especially when using an oxygenator for a long period of time. If the blood compatibility is poor, the number of formed components such as platelets and white blood cells in the blood decreases during extracorporeal circulation, making it more likely that problems such as bleeding will occur.

本発明音らは、以上のような状況を艦みて、気体交換能
に優れしかも気体交換能の経時変化が小さくかつ血液適
合性に優れた人工肺用膜を得るため鋭意検討し、本発明
を完成した。
The present invention In view of the above-mentioned situation, Oton et al. conducted intensive studies to obtain a membrane for an oxygenator that has excellent gas exchange ability, small change in gas exchange ability over time, and excellent blood compatibility, and developed the present invention. completed.

〔問題点を解決するための手段および作用〕本発明は、
式+A)で示される置換アセチレン単位を50モル%以
上含有するポリマーまたはポリマー混合物から構成され
る膜であって、該膜は血液接触面が50〜1.o o 
o iの孔が存在する網目構造、血液接触面以外は膜断
面において、少なくとも1層以上の畝@層から構成され
ていることを特徴とB1は水素、塩素や奥索等のハロゲ
ン、又はメチル、エチル等の炭素数1〜5のアルキル基
であり、B2はメチル、エチル、ノルマルプロピル、イ
ソプロピル、イソブチル、ターシャリ−ブチル、イソペ
ンチル、ターシャリ−ペンチル等の炭素数1〜20(好
ましくは1〜10)の直鎖状あるいは分岐状アルキル基
、フェニル基、さらに直換ノんとしてアルキル、アルコ
キシ、ハロゲン、フェニル等を有する置換フェニル基や
置換シリル基である。
[Means and effects for solving the problems] The present invention has the following features:
A membrane composed of a polymer or polymer mixture containing 50 mol % or more of substituted acetylene units represented by the formula +A), the membrane having a blood contact surface of 50 to 1. o o
It is characterized by a network structure in which the pores of o i are present, and is composed of at least one layer of ridges in the cross section of the membrane other than the blood contact surface. , ethyl, etc., and B2 is an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10 ), linear or branched alkyl groups, phenyl groups, and substituted phenyl groups and substituted silyl groups having alkyl, alkoxy, halogen, phenyl, etc. as direct substituted groups.

本発明の膜素材には、式(Alで示される置換アセチレ
ン単位が50モル%以上含有されているポリマー・まt
こはポリマー混合物が使用されるが、このようなポリマ
ーとしては式(A)を構成単位とする単独ポリマーのみ
ならず、式+A+を+A構成単位するポリマーと、これ
以外の単位fことえばシロ牛サン単位を50モル%を越
えない範囲で含有する共m合ポリマーや、式fA)を構
成単位とするポリマーと、これ以外のポリマーたとえば
ポリジメチルシロキサンなどを50モル%を越えない範
囲で含有するポリマーブレンド物が含まれる。式(A)
の)a換アセチレン単位を有するポリマーは一般のポリ
マーより気体透過性に匿れており、かつ従来気体透過性
に鯰も優れているとされるポリジメチルシロキサンより
強靭であり、薄膜化しつるので、気体交換面積を少なく
することが可能であり、よりコンパクト化しつる。なか
でもB1がメチル基でB2がトリメチルシリル基である
ポリトリメチルシリルプロピンは、ポリジメチルシロキ
サンの10倍で現存ポリマー中で最嶋の酸素透過性を示
しており、さら6ζポリマー鎖が剛直であるtこめの強
パdであり、薄膜化しうるので待に好lしい。本発明に
用いられるポリマーは、触媒としてW、 Mo、Nb、
’l”a  などの金属のハロゲン化Q’fl (fこ
とえはWCeb、Nb(M5など)を単独便用したり、
あるいはこれらハロゲン化物とイイ機金属化合物(tこ
とえばテトラアルキル錫)を併用しtコリ、あるいは第
■族遷移金−カルボニルに光照射を行なったりして重合
することによって得ることができる。
The membrane material of the present invention includes a polymer containing 50 mol% or more of substituted acetylene units represented by the formula (Al).
In this case, a polymer mixture is used, but such polymers include not only single polymers having the formula (A) as a constituent unit, but also polymers having the formula +A+ as a +A constituent unit, and other units f, such as white cow. A copolymer containing a Sun unit in an amount not exceeding 50 mol%, a polymer having the formula fA) as a constituent unit, and a polymer other than this, such as polydimethylsiloxane, in an amount not exceeding 50 mol%. Includes polymer blends. Formula (A)
Polymers having a-substituted acetylene units have higher gas permeability than general polymers, and are tougher than polydimethylsiloxane, which is said to have excellent gas permeability, and can be made into thin films. It is possible to reduce the gas exchange area, making it more compact. Among them, polytrimethylsilylpropyne, in which B1 is a methyl group and B2 is a trimethylsilyl group, has the highest oxygen permeability among existing polymers, which is 10 times that of polydimethylsiloxane, and has a rigid 6ζ polymer chain. It is highly preferable because it has a strong padding and can be made into a thin film. The polymer used in the present invention contains W, Mo, Nb,
Halogenation of metals such as 'l''a Q'fl (f Kotoe uses WCeb, Nb (M5 etc.) alone,
Alternatively, it can be obtained by polymerizing these halides and a suitable metal compound (for example, tetraalkyltin) in combination, or by irradiating light on group (I) transition gold-carbonyl.

本発明の模型人工肺において、血液接朗面は50〜1.
00OA、好ましくは100〜500Aの孔が存在する
網目構造を有していることが必要である。本発明でいう
網目構造Iζは、$1ζ上記の孔径を有する網目状の構
造のみではtr <、上記の層厚さを有するラメラ状あ
るいは上記の大きさの島をもつ海島状構造などのミクロ
不均一構造も含望れる。該網目構造の断面方向の厚さは
特に限定されないが、実用的には通常10〜1.ooo
;のものが用いられる。
In the model artificial lung of the present invention, the blood contact surface is 50 to 1.
It is necessary to have a network structure in which pores of 000A, preferably 100 to 500A are present. The network structure Iζ in the present invention is defined as $1ζ.If only the network structure with the above pore diameter is tr Uniform structures may also be included. The thickness of the network structure in the cross-sectional direction is not particularly limited, but practically it is usually 10 to 1. ooooo
; is used.

本発明でいう緻密層と1.!、20,000倍の走査型
電顧でも孔が見えず、実質的に無孔の組織を有する層を
いうが、血液接触面をこのような緻密+1にすると、既
に述べたように、血液適合性が悪く、長期使用に耐えな
い。
The dense layer referred to in the present invention is 1. ! , a layer with a substantially non-porous structure in which no pores are visible even with a 20,000x scanning electron microscope, but if the blood contact surface is made as dense as this +1, as already mentioned, blood compatibility is increased. It has poor properties and cannot withstand long-term use.

又、緻密1−がなく、膜断面の全層に連通ずる連通孔が
あると、連通孔が血漿によって徐々に濡れて血漿が洩れ
て血漿ロスが起るとともに経時的Cζ気体交換能が低下
し、好Jしくない。特Iζ艮期に使用する場合は問題と
なる。
In addition, if there is no dense 1- and there are communicating pores that communicate with all layers of the membrane cross section, the communicating pores will gradually become wet with plasma and plasma will leak, causing plasma loss and decreasing the Cζ gas exchange ability over time. , I don't like J. It becomes a problem when used during the special Iζ艮 period.

本発明Cζおいて、血液接触面を上述のようt【特定の
構造とすることにより、血栓形成や有形成分の減少等を
防ぐことかでき、血液適合性のよい人工肺用膜とするこ
とができる。
In the present invention Cζ, by making the blood contact surface have a specific structure as described above, it is possible to prevent thrombus formation and reduction of formed components, and to obtain an oxygenator membrane with good blood compatibility. I can do it.

又、本発明の人工肺用膜の血液接触面以外は、膜断面に
おいて、少くとも1層以上の緻密1−から構成されてい
る必要がある。すなわち、血液接触面以外の部分におい
ては、全部が緻密l―であってもよいし、少くとも1ノ
一以上のに!!密層があれば、その他の部分は上述の細
目構造であってもよい。
In addition, the membrane for an oxygenator of the present invention, other than the blood contacting surface, must be composed of at least one layer of dense 1-layer in the cross section of the membrane. In other words, all parts other than the blood contact surface may be densely packed, or at least as dense as 1-1 or more! ! As long as there is a dense layer, the other parts may have the above-mentioned fine structure.

要するに、血液接触面を除く他の部分においては、少く
とも1j−以上が緻冨層であればよく、それ以上の腺m
造は問わない。又、この場合の6殻密層の厚みは特に限
定されないが、実用上は0.1μ以上あればよい。
In short, in other parts except the blood contact surface, it is sufficient that at least 1j- or more of the glandular layer is a dense layer, and that the glands of more than 1
The structure doesn't matter. Further, the thickness of the six-shell dense layer in this case is not particularly limited, but it may be 0.1 μ or more in practice.

このように、式(A)で示される構成単位を50モル%
以上含有するポリマーまたはポリマー混合物を用いて、
血液接触面、膜内部及び気体交換面が特定の構造となる
ように製膜した膜を使用することにより、酸累透過性能
、血液適合性に優れた模型人工肺とすることができる。
In this way, 50 mol% of the structural unit represented by formula (A)
Using a polymer or polymer mixture containing the above,
By using a membrane formed so that the blood contact surface, the inside of the membrane, and the gas exchange surface have a specific structure, a model oxygenator with excellent cumulative acid permeation performance and blood compatibility can be obtained.

次に、本発明の人工肺用膜の製造法番ζついて述べる。Next, the production method number ζ of the oxygenator membrane of the present invention will be described.

本発明ζζおいては、面数接触面は50〜1.0OOA
の孔が存在する網目構造である必要がJ)るが、このよ
うな網目構造は、湿式製膜法又は乾湿式製膜法1ζJり
形成することができる。すなわち、ポリマー溶液4液を
凝固液あるいは凝固剤と溶媒の混合液により凝固させて
膜表面のポリマーが相分離するのを制御t、 r:す、
腺の片面から凝固させ、他面は非相削性液体や不活性気
体薯ζ接触させて片面側の成膜条件を調整すること番こ
より、他面側表面のポリマーの相分離を制御することl
ζまり、形成することができる。従来、置換アセチレン
単位を有するポリマーはキャスト法により成膜されてき
た。しかしながら、キャスト法は、ポリマー溶液から溶
媒を蒸発させるいわゆる乾式製膜法でJ)す、均質緻密
膜を得るのに好適な膜性であるが、この方法で作られた
膜は血H>I6!合性が充分でない。
In the present invention ζζ, the number of contact surfaces is 50 to 1.0 OOA
However, such a network structure can be formed by a wet film forming method or a wet/dry film forming method. That is, the four polymer solutions are coagulated by a coagulating liquid or a mixture of a coagulant and a solvent to control phase separation of the polymer on the membrane surface.
By coagulating from one side of the gland and contacting the other side with a non-abrasive liquid or inert gas to adjust the film formation conditions on one side, the phase separation of the polymer on the other side can be controlled. l
ζ can be formed. Conventionally, polymers having substituted acetylene units have been formed into films by a casting method. However, the casting method is a so-called dry film forming method in which the solvent is evaporated from the polymer solution. Although it has film properties suitable for obtaining a homogeneous dense film, the film made by this method is ! Insufficient compatibility.

網目構造の孔の大きさが50人未綿であると、孔が小さ
過きて血H+a合性に対する改良が小さい。
If the size of the pores in the network structure is too small, the pores will be too small and the improvement in blood H+a compatibility will be small.

−万、網目構造の孔の大きさが1,000犬を屹えると
かえって血f& iH合性がわる< 1(る細面がhら
れる。網目構造の孔のさらに好ましい範囲は1 Fl 
i1〜50口Aである。この範囲の孔から7(る網目構
造が存在すると何故に血液適合性が改良されるかは不明
である。なお、このような網目構造は該表面を走査型v
It顧で観察することによって確認しうる。すなわち1
,000倍程度の倍率では、(」ぼ平滑な表面ζζしか
見えず、該網目構造を明確1と4a認できないか、2.
0000倍程度の倍率に拡大すると該構造が明確に確認
できる。該表面は、凝固剤1jより凝固させた場合、成
膜方向と平行なスリット状構造となり、不活性気体で成
膜させた場合には、通常の0!■状微細構造となる。
- If the size of the pores in the network structure exceeds 1,000 mm, the blood f&iH compatibility will deteriorate on the contrary.
i1~50 mouths A. It is unclear why the presence of a network structure that extends from the pores in this range improves blood compatibility.
This can be confirmed by observing it on your computer. i.e. 1
At a magnification of about ,000 times, only a nearly smooth surface ζζ can be seen, and the network structure cannot be clearly recognized, or 2.
When magnified to a magnification of about 0,000 times, the structure can be clearly confirmed. When the surface is coagulated with coagulant 1j, it becomes a slit-like structure parallel to the film formation direction, and when it is formed with an inert gas, it has a normal 0! It becomes a ■-shaped fine structure.

膜形状としては平膜、チューブ状、中空繊維状などがあ
る。本発明においては待に該形状は限定しないが、コン
パクト性の点より中空縁り膜が好!しい。人工肺用中空
M!維膜のプロフィルとじては血液の圧力損失、強IW
、コンパクト性のバランスより内径100〜50口μ、
膜#5〜200μが好ま【]い。血液は中空−維の内側
にも外側1ζも流しうるが、皿液損偽の少ないl−流と
するためには中空−維の内側に流す方がJり好ましい。
The membrane shape includes flat membrane, tube shape, hollow fiber shape, etc. In the present invention, the shape is not limited, but a hollow border membrane is preferable from the point of view of compactness! Yes. Hollow M for artificial lungs! The fibrosal profile is characterized by blood pressure loss, strong IW.
, the inner diameter is 100-50μ due to the balance of compactness,
Membrane #5 to 200μ is preferred. Although blood can flow both inside and outside the hollow fibers, it is more preferable to flow inside the hollow fibers in order to achieve a flow with less damage to the dish fluid.

従って、50〜1,000人の孔が存在する網目構造を
同表向側に、緻密1−を外面側6ζ有する中空繊維状の
膜が本発明の腺を人工肺として使用する場合の好ましい
態様である。
Therefore, a hollow fibrous membrane having a network structure with 50 to 1,000 pores on the outer surface and a dense 1-6ζ on the outer surface is a preferred embodiment when the gland of the present invention is used as an oxygenator. It is.

〔実施例」 トリメチルシリルプロピンを(p5%il)ルエン中に
1モル/lになるように溶解した。これに触媒として五
塩化ニオブ(NbGea )を20ミリモルとt(るよ
う添加し、80℃で24時間更合した。得られた組合溶
液をメタノール中に投入して白色のポリトリメチルシリ
ルプロピンを慢た。このポリマーは60℃トルエン中の
極限粘度が0.99 dB/gであり、平均分子量は4
0万でcPlつた。
[Example] Trimethylsilylpropyne (p5%il) was dissolved in toluene at a concentration of 1 mol/l. To this was added 20 mmol of niobium pentachloride (NbGea) as a catalyst, and the mixture was stirred at 80°C for 24 hours.The resulting combined solution was poured into methanol to slowly dissolve white polytrimethylsilylpropyne. This polymer has an intrinsic viscosity of 0.99 dB/g in toluene at 60°C and an average molecular weight of 4.
I got cPl at 00,000.

このポリマーをトルエンに溶解したaMを紡糸原液とし
て塊状ノズルを用いて乾湿式紡糸した。
This polymer was dissolved in toluene and aM was used as a spinning stock solution for dry-wet spinning using a block nozzle.

外部凝固液にはメタノールを用い、中空糸の内部には窒
素を注入した。トルエンを充分置換後、乾燥して内径2
00μ、外径250μの中空糸膜を得た。この中空糸膜
の内表面を20,000倍の走査型電顕で観察したとこ
ろ、網目状構造が観察され、その孔径の大きさは2oo
Xと推定された。また外表面はl O,000倍で拡大
しても明確な構造は観察されず、緻密層を有しているこ
とがわかった。
Methanol was used as the external coagulation liquid, and nitrogen was injected into the inside of the hollow fiber. After replacing toluene sufficiently, dry and reduce the inner diameter to 2.
A hollow fiber membrane with a diameter of 0.00μ and an outer diameter of 250μ was obtained. When the inner surface of this hollow fiber membrane was observed with a scanning electron microscope at a magnification of 20,000 times, a network structure was observed, with a pore size of 200
It was estimated that X. Furthermore, no clear structure was observed on the outer surface even when magnified by 1 O,000 times, indicating that it had a dense layer.

この中空糸はエタノールで完全−ζWet化処理全処理
った後でも純水の透水性は0.1ml〆d・hr・■H
g以下であり、緻密層が存在するために液体の透過性は
きわめて低かった。
This hollow fiber has a pure water permeability of 0.1ml〆d・hr・■H even after being completely treated with ethanol to make it ζWet.
g or less, and the liquid permeability was extremely low due to the presence of the dense layer.

この中空糸膜20,000をハウジングに装着して遠心
接着し、両端面を切断する事により開放端として、1.
5耐の膜面積を有する模型人工肺を得た。
This hollow fiber membrane 20,000 is attached to a housing and centrifugally bonded, and both end faces are cut to make an open end.1.
A model artificial lung having a membrane area of 5 resistant was obtained.

この肺をレスビレ−ターで低換気状態とした体31k 
15 haの犬に用い、48時間の潅流実験を行f、1
つた。潅流前の動脈血はpH7,34・ 酸素分圧(P
O+)651MIHg、□炭酸ガス分圧(Pang )
 47關ugであったが、血流ill 1 、2 #/
rron s、酸素流jli 1.2 #/1ninで
静動脈バイパスしたところ、血液ガス性状は直ちニ改善
され、pfi7.41、Po2240 sklg、l’
co235mskiglζt(つた。血流時間の経過に
伴!(いヘマトクリットは若干減少したが、血小板数、
白血球数の変動は殆んどなく、出血などのトラブルもな
く実験は順調に進行した。ffi流終了后、侠気状態を
同役させると元気に戻った。また、人工肺を解体して検
査したところ、血栓は全く生成してなかった。
Body 31k with this lung in a hypoventilated state with a resurvirator
A 48-hour perfusion experiment was conducted on dogs with an area of 15 ha.
Ivy. Arterial blood before perfusion has a pH of 7.34 and oxygen partial pressure (P
O+)651MIHg, □Partial pressure of carbon dioxide (Pang)
It was 47 ug, but the blood flow ill 1, 2 #/
When the patient underwent venoarterial bypass with an oxygen flow of 1.2 #/1 nin, the blood gas properties immediately improved, with a pfi of 7.41 and a Po of 2240 sklg, l'
co235mskiglζt (Ivy. With the passage of blood flow time! (Hematocrit decreased slightly, but platelet count,
There was almost no change in the white blood cell count, and the experiment proceeded smoothly without any problems such as bleeding. After the FFI style ended, I added the chivalry state to it and it returned to normal. Furthermore, when the oxygenator was dismantled and examined, no blood clots had formed at all.

比較例1 実施例で使用したポリマーをトルエンに溶解した溶液を
紡糸原液として、乾式紡糸法により内径200μ、外径
260μの中空糸膜を得た。この中空糸膜の内外画表面
を20,000倍の走食型電顧で観察したが、網目構造
は観察され得す、緻密な表向層を有していることがわか
った。エタノールWet化後の純水の透水性は0.1 
me/rd −hr −vtsk1g以下であり、緻密
層の存在のために液体透過性はきわめて低かった。
Comparative Example 1 A hollow fiber membrane having an inner diameter of 200 μm and an outer diameter of 260 μm was obtained by dry spinning using a solution prepared by dissolving the polymer used in the example in toluene as a spinning stock solution. When the internal and external surfaces of this hollow fiber membrane were observed using a 20,000x magnification, it was found that the membrane had a dense surface layer with an observable network structure. The permeability of pure water after wetting with ethanol is 0.1
me/rd-hr-vtsk1g or less, and the liquid permeability was extremely low due to the presence of the compact layer.

この中空糸膜を用い、1.5nlの膜面積を有する膜型
人工肺を作製し、実施例中と同様にして犬の蒲流芙験を
行なった。血液ガス性状の改善は良好であったが、18
時t#Jff経過後より肺内抵抗が増大し、浴面が通み
出し、血漿遊離ヘモグロビン量が200 mVd1lを
越えたため24時間後に潅流を中止した。人工肺を解体
して検査したところ、多数の閉塞した中を糸が認められ
tコ。
A membrane oxygenator having a membrane area of 1.5 nl was prepared using this hollow fiber membrane, and a dog feeding experiment was conducted in the same manner as in the examples. Blood gas properties improved well, but 18
After time t#Jff, intrapulmonary resistance increased, the bath surface began to leak, and the amount of plasma free hemoglobin exceeded 200 mVd1l, so perfusion was discontinued after 24 hours. When the oxygenator lung was dismantled and examined, threads were found in many of the occluded areas.

比較例2 内径200μ、外径4QOμの緻密な膜構造を有するシ
リコン中空糸g 20,000本をハウジングに装宥し
、片端ずつ順薯ζ静瀘接宥して1.5扉の膜型人工肺を
作製した。この肺を用いて実施例と同様にして静動脈バ
イパス実験を行なった。漂流後、血液ガス性状は直ちに
改善されたが、動脈簡の酸素分圧(Pot )は190
 rmnkig、CO□分圧(Pco2)は40閣Hg
であり、実施例に比較して血中への酸素加量が少なかっ
た。
Comparative Example 2 20,000 silicone hollow fibers having a dense membrane structure with an inner diameter of 200μ and an outer diameter of 4QOμ were placed in a housing, and each end was placed in a static filter to form a 1.5-door membrane type prosthesis. Lungs were created. Using this lung, a venoarterial bypass experiment was conducted in the same manner as in the example. After drifting, the blood gas properties immediately improved, but the oxygen partial pressure (Pot) in the arterial strip was 190.
rmnkig, CO□ partial pressure (Pco2) is 40 KHg
, and the amount of oxygen added to the blood was lower than in Examples.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明により、気体透過性が抜群に
優れ、しかも強靭であるために線膜化しうる置換アセチ
レン単位を50モル%以上含自するポリマーまtこはポ
リマー混合物を用いて、血液接触面が50〜1.ooo
、にの孔が存在する網目構造、血液接触面以外は、膜断
面において、少t((ともI 1111以上の緻密層か
ら構成された人工肺用膜を提供することができる。
As detailed above, according to the present invention, a polymer or a polymer mixture containing 50 mol% or more of substituted acetylene units that have excellent gas permeability and are strong and can be formed into a linear film is used. Blood contact surface is 50-1. ooooo
It is possible to provide an oxygenator membrane having a network structure in which pores are present, and a dense layer having a thickness of 1111 or more in the cross section of the membrane except for the blood contact surface.

とくに本発明の膜は気体交換能の経時変イヒが小さく、
しかも血液適合性に優れているので、長期にわたって使
用する場合には極めて有用であり、生体肺の代替や肺疾
思患苔の肺の補助袋mlζコンパクトに、安全に使用し
うる。
In particular, the membrane of the present invention has a small change in gas exchange capacity over time.
In addition, it has excellent blood compatibility, so it is extremely useful when used for a long period of time, and can be safely used as a substitute for living lungs or as a compact auxiliary bag for moss lungs suffering from lung disease.

Claims (3)

【特許請求の範囲】[Claims] (1)式(A)で示される置換アセチレン単位を50モ
ル%以上含有するポリマーまたはポリマー混合物から構
成される膜であつて、該膜は血液接触面が50〜1,0
00Åの孔が存在する網目構造、血液接触面以外は膜断
面において、少なくとも1層以上の緻密層から構成され
ていることを特徴とする人工肺用膜。 ▲数式、化学式、表等があります▼(A) (但し、式中R_1は水素、ハロゲン又は炭素数が1〜
5のアルキル基、R_2は炭素数が1〜20の直鎖状あ
るいは分岐状アルキル基、フェニル基、置換フェニル基
、置換シリル基である。)
(1) A membrane composed of a polymer or polymer mixture containing 50 mol% or more of substituted acetylene units represented by formula (A), the membrane having a blood contact surface of 50 to 1,0
1. A membrane for an artificial lung, characterized in that it has a network structure in which pores of 00 Å exist, and is composed of at least one or more dense layers in a cross section of the membrane except for the blood contact surface. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(A) (However, in the formula, R_1 is hydrogen, halogen, or has 1 to 1 carbon atoms.
The alkyl group in No. 5, R_2, is a linear or branched alkyl group having 1 to 20 carbon atoms, a phenyl group, a substituted phenyl group, or a substituted silyl group. )
(2)該血液接触面は100〜500Åの孔が存在する
網目構造である特許請求の範囲第(1)項記載の人工肺
用膜。
(2) The membrane for an artificial lung according to claim (1), wherein the blood contacting surface has a network structure in which pores of 100 to 500 Å are present.
(3)該ポリマーはポリトリメチルシリルプロピンであ
る特許請求の範囲第(1)項または第(2)項記載の人
工肺用膜。
(3) The membrane for an oxygenator according to claim (1) or (2), wherein the polymer is polytrimethylsilylpropyne.
JP59163938A 1984-08-03 1984-08-03 Membrane for artificial lung Expired - Lifetime JPH0611319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59163938A JPH0611319B2 (en) 1984-08-03 1984-08-03 Membrane for artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59163938A JPH0611319B2 (en) 1984-08-03 1984-08-03 Membrane for artificial lung

Publications (2)

Publication Number Publication Date
JPS6141467A true JPS6141467A (en) 1986-02-27
JPH0611319B2 JPH0611319B2 (en) 1994-02-16

Family

ID=15783673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59163938A Expired - Lifetime JPH0611319B2 (en) 1984-08-03 1984-08-03 Membrane for artificial lung

Country Status (1)

Country Link
JP (1) JPH0611319B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108563A (en) * 1983-11-07 1984-06-23 テルモ株式会社 Hollow yarn type artifical long
JPS59108562A (en) * 1983-11-07 1984-06-23 テルモ株式会社 Hollow yarn type artifical long
JPS59108564A (en) * 1983-11-07 1984-06-23 テルモ株式会社 Hollow yarn type artifical long
JPS60150757A (en) * 1984-01-18 1985-08-08 三菱レイヨン株式会社 Hollow yarn membrane type artificial lung
JPS6137249A (en) * 1984-07-31 1986-02-22 三菱レイヨン株式会社 Membrane type artificial lung sterilized by rays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108563A (en) * 1983-11-07 1984-06-23 テルモ株式会社 Hollow yarn type artifical long
JPS59108562A (en) * 1983-11-07 1984-06-23 テルモ株式会社 Hollow yarn type artifical long
JPS59108564A (en) * 1983-11-07 1984-06-23 テルモ株式会社 Hollow yarn type artifical long
JPS60150757A (en) * 1984-01-18 1985-08-08 三菱レイヨン株式会社 Hollow yarn membrane type artificial lung
JPS6137249A (en) * 1984-07-31 1986-02-22 三菱レイヨン株式会社 Membrane type artificial lung sterilized by rays

Also Published As

Publication number Publication date
JPH0611319B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US4439322A (en) Polymethyl methacrylate membrane
KR100525604B1 (en) Application of sulfone, ketone and ester containing polyalkyl ether units to medical materials
JP3047403B2 (en) Permeation-selective asymmetric membrane suitable for hemodialysis and method for producing the membrane
CA1311884C (en) Polysulfone hollow fiber membrane and process for making the same
CA1294745C (en) Asymmetrical microporous hollow fiber for hemodialysis and a process for manufacturing such fibers
JP3248632B2 (en) Asymmetric semipermeable membranes of aromatic polycondensates, methods for their preparation and their use
JPH01104271A (en) Membrane type oxygenator
JPS63109871A (en) Blood dialytic membrane
CA1107467A (en) Polycarbonate membranes for use in hemodialysis
EP0041692A1 (en) Blood oxygenator
US4308145A (en) Relatively thick polycarbonate membranes for use in hemodialysis
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPS6141467A (en) Membrane for artificial lung
US6967003B2 (en) Artificial lung of membrane type
EP1297855B1 (en) Artificial lung of membrane type
JP3872173B2 (en) POLYHYDROXY ETHER RESIN AND METHOD FOR SYNTHESIZING THE SAME, POLYHYDROXY ETHER MEMBRANE AND METHOD FOR PRODUCING THE SAME
CN113262341B (en) Hollow fiber membrane for external membrane pulmonary oxygenator and preparation method thereof
JP2002035557A (en) Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein
JP2011502808A (en) Method for synthesizing asymmetric polyurethane-based membrane having blood compatibility, and membrane obtained by the method
JPH0756084B2 (en) Polysulfone resin hollow system and method for producing the same
JPS6247367A (en) Blood concentrator
JPH0420651B2 (en)
JPH0450850B2 (en)
JPS6045358A (en) Serum separating membrane and its preparation
JPS60150757A (en) Hollow yarn membrane type artificial lung