JPS6141385B2 - - Google Patents

Info

Publication number
JPS6141385B2
JPS6141385B2 JP54003919A JP391979A JPS6141385B2 JP S6141385 B2 JPS6141385 B2 JP S6141385B2 JP 54003919 A JP54003919 A JP 54003919A JP 391979 A JP391979 A JP 391979A JP S6141385 B2 JPS6141385 B2 JP S6141385B2
Authority
JP
Japan
Prior art keywords
ice
water
making
compressor
refrigeration circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54003919A
Other languages
Japanese (ja)
Other versions
JPS5596871A (en
Inventor
Akio Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP391979A priority Critical patent/JPS5596871A/en
Publication of JPS5596871A publication Critical patent/JPS5596871A/en
Publication of JPS6141385B2 publication Critical patent/JPS6141385B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、製氷機構で作つた氷を融解して不
純物の少ない清水を得る解氷装置に関し、特にそ
の冷凍回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ice-melting device that melts ice made by an ice-making mechanism to obtain clean water with few impurities, and particularly relates to its refrigeration circuit.

従来の解氷装置は、氷を電熱線で加熱し清水を
得るものが一般的であつたが、これは比較的に大
電力を必要とし製氷コストが上がり好ましくなか
つた。そのため、製氷機構冷凍回路の高圧冷媒配
管を利用して氷を融解する方法も提案されていた
が、周囲温度が低い場合、高圧冷媒配管の熱量だ
けでは融解が十分でなく、1回の製氷サイクルで
造つた氷を次の製氷サイクルで氷ができる前に完
全に融解できない場合が生じ、周囲の高低温度差
による清水製造能力に大きな違いがあつた。
Conventional ice melting devices generally heat ice with electric heating wires to obtain fresh water, but this requires a relatively large amount of electric power and increases the cost of making ice, which is not desirable. For this reason, a method has been proposed in which the ice is melted using the high-pressure refrigerant piping of the ice-making mechanism's refrigeration circuit, but when the ambient temperature is low, the amount of heat from the high-pressure refrigerant piping alone is not enough to melt the ice, and one ice-making cycle is insufficient. In some cases, the ice made in the process was not completely melted before ice was formed in the next ice-making cycle, and there was a large difference in the fresh water production capacity due to the difference in ambient temperature.

従つて、この発明の目的は、製氷コストを増大
させることなく、周囲の高低温度差による清水製
造能力の違いを最小に抑え、熱を有効に使用でき
る冷凍回路を提供することである。
Therefore, an object of the present invention is to provide a refrigeration circuit that can minimize the difference in fresh water production capacity due to the difference in ambient temperature and can use heat effectively without increasing the cost of making ice.

上記の目的から、この発明による冷凍回路は、
圧縮機と、第1の凝縮器、例えば空冷凝縮器と、
第2の凝縮器、即ち解氷装置を兼ねる水冷凝縮器
と膨張手段と蒸発器とを直列に接続して構成した
主回路、ホツトガス弁を有して前記圧縮機の高圧
側と前記蒸発器の入口側との間に接続されたホツ
トガス側路、電磁弁を有して前記圧縮機と前記水
冷凝縮器とを接続する環流側路を備える。かかる
冷凍回路によれば、製氷中も主回路の高圧冷媒
(ホツトガス)が水冷凝縮器、即ち解氷部を通
り、既に製氷された氷の融解を続け、製氷完了の
時点で前の製氷サイクルで造つた氷の融解が完了
していなければ、水冷凝縮器を通つた高圧冷媒を
直ちに環流側路経由で圧縮機に戻して融解完了ま
で解氷を続け、融解完了後、高圧冷媒をホツトガ
ス側路経由で蒸発器に送り該蒸発器に取り付けた
製氷部から氷を離脱するような運転が可能とな
る。
For the above purpose, the refrigeration circuit according to the present invention has the following features:
a compressor; a first condenser, e.g. an air-cooled condenser;
A second condenser, that is, a main circuit consisting of a water-cooled condenser that also serves as an ice-breaking device, an expansion means, and an evaporator connected in series, has a hot gas valve, and connects the high-pressure side of the compressor and the evaporator. The hot gas side path is connected to the inlet side, and the reflux side path has a solenoid valve and connects the compressor and the water-cooled condenser. According to this refrigeration circuit, even during ice making, the high-pressure refrigerant (hot gas) in the main circuit passes through the water-cooled condenser, that is, the ice melting section, and continues to melt the ice that has already been made. If the created ice has not completely melted, the high-pressure refrigerant that has passed through the water-cooled condenser is immediately returned to the compressor via the reflux channel and continues to melt the ice until it is completely melted. It is possible to perform an operation in which the ice is sent to the evaporator via the evaporator and removed from the ice making section attached to the evaporator.

従つて、この発明による冷凍回路を使用すれ
ば、周囲温度が低い場合でも製氷コストを上げる
ことなく氷を完全に融解可能である。即ち、冬季
等の如く融氷に長時間を要して製氷は短時間で終
了する時期に製氷時間の短縮分を融氷に流用でき
るので、熱が有効に使用され−運転サイクルが夏
冬均等に近づき、周囲の高低温度差による清水製
造能力の違いは最小となる。
Therefore, by using the refrigeration circuit according to the present invention, ice can be completely melted even at low ambient temperatures without increasing ice making costs. In other words, during periods such as winter when it takes a long time to melt ice and ice making is completed in a short time, the shortened ice making time can be used for melting ice, so heat is used effectively - the operation cycle is equal in summer and winter. , and the difference in fresh water production capacity due to the difference in ambient temperature becomes minimal.

次にこの発明による冷凍回路の実施例を添付図
面に関して詳細に説明する。
Embodiments of the refrigeration circuit according to the invention will now be described in detail with reference to the accompanying drawings.

第1図はこの発明による冷凍回路を備えた清水
機の一例を示すもので、この清水機は、傾斜配置
した製氷板の下面を水が循環しながら流下する下
面流下式循環製氷機構を採用しているが、製氷機
構は循環式ならその他任意のものでよい。製氷機
構は、後述する冷凍回路の蒸発器1を配設した傾
斜製氷板2と、この製氷板2の下面に給水するた
め給水源から給水弁3を経由して所定量の製氷用
水が入る製氷用水タンク4と、このタンク4内の
製氷用水をポンプ6で穴付き散水器7に送りそこ
から製氷板2の下面へ循環供給する製氷用水循環
配管8とを備える。製氷板2の下方には、冷凍回
路の除氷操作により落下する氷板9を受けて融解
する解氷部10を配置する。タンク4の下方部に
は排水弁11を備えた管12を取り付け、循環に
より不純度の増した製氷用水を製氷完了後排出す
る。融解によつてできた清水は解氷部10の下方
部に取り付けた管13を経由し、貯水タンク14
に溜まる。解氷部10は図示実施例では箱形であ
るが、これは他の任意の形状にすることができ
る。
Figure 1 shows an example of a water purifier equipped with a refrigeration circuit according to the present invention. This water purifier employs a bottom flow type circulation ice making mechanism in which water circulates and flows down the bottom surface of an ice making plate arranged at an angle. However, any other type of ice making mechanism may be used as long as it is a circulation type. The ice-making mechanism includes an inclined ice-making plate 2 on which an evaporator 1 of a refrigeration circuit, which will be described later, is installed, and a predetermined amount of ice-making water into which a predetermined amount of ice-making water is supplied from a water source via a water supply valve 3 to supply water to the bottom surface of the ice-making plate 2. It is provided with a water tank 4 and an ice-making water circulation pipe 8 through which ice-making water in the tank 4 is sent to a water sprinkler 7 with holes by a pump 6 and is circulated and supplied from there to the lower surface of the ice-making plate 2. An ice melting section 10 is arranged below the ice making plate 2 to receive and melt the ice plate 9 that falls due to the deicing operation of the refrigeration circuit. A pipe 12 equipped with a drain valve 11 is attached to the lower part of the tank 4, and the ice-making water, which has become more impure due to circulation, is discharged after ice-making is completed. The fresh water created by melting passes through a pipe 13 attached to the lower part of the ice melting section 10, and is passed through a water storage tank 14.
It accumulates in Although the ice-breaking section 10 is box-shaped in the illustrated embodiment, it can have any other shape.

この発明による冷凍回路は主回路とホツトガス
側路と環流側路とからなる。主回路は、圧縮機1
5と、上述した解氷部10(以下水冷凝縮器と呼
ぶ)と、フアン16を有する空冷凝縮器17と、
冷媒を膨張させる膨張手段18と、前述した蒸発
器1とを主管路19で直列に接続して成る。膨張
手段18は図示実施例では膨張弁であるが、例え
ばキヤピラリーチユーブのようなその他の手段で
もよい。ホツトガス側路は圧縮機15の高圧側と
蒸発器1の入口側との間に除氷用のホツトガス弁
20を有して接続されており、また環流側路は圧
縮機15の低圧側と、水冷凝縮器10の出口側と
の間に電磁弁21を経て接続されている。
The refrigeration circuit according to the present invention consists of a main circuit, a hot gas side path, and a reflux side path. The main circuit is compressor 1
5, the above-described ice melting section 10 (hereinafter referred to as a water-cooled condenser), and an air-cooled condenser 17 having a fan 16.
An expansion means 18 for expanding refrigerant and the above-mentioned evaporator 1 are connected in series through a main pipe 19. The expansion means 18 is an expansion valve in the illustrated embodiment, but may also be other means, such as a capillary reach tube. The hot gas side path is connected to the high pressure side of the compressor 15 and the inlet side of the evaporator 1 through a hot gas valve 20 for deicing, and the reflux side path is connected to the low pressure side of the compressor 15, It is connected to the outlet side of the water-cooled condenser 10 via a solenoid valve 21.

以上のような冷凍回路を有する清水機におい
て、通常、圧縮機15で圧縮された冷媒は主管路
19を通り、水冷凝縮器10及び空冷凝縮器17
で冷却され液化する。冷媒は膨張手段18を通る
と急に管路抵抗が下がり低圧となるので、蒸発器
1を通る間に蒸発して蒸発器周囲から蒸発熱を奪
い、製氷板2を急冷する。更に、蒸発して気体と
なつた冷媒は主管路19を通つて圧縮機15に戻
り、再び圧縮されて高温高圧のホツトガスとな
る。
In a fresh water machine having the above-mentioned refrigeration circuit, the refrigerant compressed by the compressor 15 normally passes through the main pipe 19 and passes through the water-cooled condenser 10 and the air-cooled condenser 17.
It is cooled and liquefied. When the refrigerant passes through the expansion means 18, the pipe resistance suddenly decreases and the pressure becomes low, so it evaporates while passing through the evaporator 1, absorbs the heat of evaporation from around the evaporator, and rapidly cools the ice-making plate 2. Further, the refrigerant that has evaporated into a gas returns to the compressor 15 through the main pipe 19, where it is compressed again and becomes a high-temperature, high-pressure hot gas.

一方、製氷板2にはポンプ6によりタンク4の
水が散水器7の散水穴から供給されている。水は
製氷板の下面に沿つて流れる間に冷却されて少し
ずつ氷結して行き、所定の厚さの氷板9となるま
で繰返し循環する。
On the other hand, the ice-making plate 2 is supplied with water from a tank 4 by a pump 6 through a water sprinkling hole of a water sprinkler 7. As the water flows along the lower surface of the ice plate, it is cooled and gradually freezes, and the water is circulated repeatedly until the ice plate 9 has a predetermined thickness.

第1図及び第2図において、水温及び外気温が
一定であれば製氷時間は圧縮機15の能力で定ま
るので、冷凍回路の電気回路にタイマーTMを設
けてこれを予じめ定めた時間に設定し、タイマー
TMの作動時に、電磁コイルHV2を励磁してホツ
トガス弁20を開き、高温の冷媒をホツトガス側
路経由で蒸発器1に送り製氷板2を加熱すると同
時に、空冷凝縮器用フアン16及びポンプ6を停
止させるように電気回路を構成する。この状態で
は解氷部10即ち水冷凝縮器に氷はないものとす
る。
In Figures 1 and 2, if the water temperature and outside temperature are constant, the ice making time is determined by the capacity of the compressor 15, so a timer TM is provided in the electrical circuit of the refrigeration circuit to set the time at a predetermined time. set and timer
When the TM is activated, the electromagnetic coil HV 2 is energized, the hot gas valve 20 is opened, and the high-temperature refrigerant is sent to the evaporator 1 via the hot gas side path to heat the ice-making plate 2, and at the same time, the air-cooled condenser fan 16 and pump 6 are turned on. Configure an electrical circuit to shut it down. In this state, it is assumed that there is no ice in the ice-melting section 10, that is, in the water-cooled condenser.

こうして製氷板2の温度が上昇し、氷板9が製
氷板2から離脱して解氷部10に落下すると、製
氷板に設けた除氷検知サーモスタツト22の接点
T2′が開き、タイマーTMは初期状態に戻る。従
つて、ホツトガス弁20が閉じフアン16が作動
して、再び製氷運転に入る。この時、解氷部10
に氷が存在するが高温の冷媒が解氷部を加熱して
いるので、氷は融解し始める。製氷期間中に解氷
部10の氷が完全に融解してしまえば、貯水タン
ク14に水が所定量溜まり、水位スイツチ(図示
しない)が働くまで上述した製氷及び除氷動作を
繰り返す。
When the temperature of the ice-making plate 2 rises in this way and the ice plate 9 detaches from the ice-making plate 2 and falls into the ice-melting section 10, the contact point of the de-icing detection thermostat 22 provided on the ice-making plate is activated.
T 2 ′ opens and the timer TM returns to its initial state. Therefore, the hot gas valve 20 is closed, the fan 16 is activated, and ice-making operation begins again. At this time, the ice melting section 10
Ice is present in the ice, but the high temperature refrigerant is heating the ice-melting section, so the ice begins to melt. If the ice in the ice-melting section 10 is completely melted during the ice-making period, a predetermined amount of water accumulates in the water storage tank 14, and the ice-making and ice-removal operations described above are repeated until a water level switch (not shown) is activated.

製氷期間中に解氷部の氷が融解しない場合に
は、製氷完了の際タイマーTMが作動した時、解
氷部10に設けた温度検知サーモスタツト23が
氷の未融解を検知し、その接点T1が開いている
ので電磁コイルHV2は励磁されず、ホツトガス側
路のホツトガス弁20は閉じており、T1′が閉じ
ているので、電磁コイルHV1は励磁され、環流側
路の電磁弁21が開いて、高温の冷媒を環流側路
に環流させ、先ず解氷部の氷を融解する。氷が全
部融解すれば、サーモスタツト23の接点T1
閉じT1′が開くので、高温の冷媒はホツトガス側
路を通つて蒸発器1に流れ、製氷板2を加熱して
氷板9を離脱させる。
If the ice in the ice-melting section does not melt during the ice-making period, when the timer TM is activated upon completion of ice-making, the temperature detection thermostat 23 installed in the ice-melting section 10 detects that the ice has not melted, and the contact point Since T 1 is open, the electromagnetic coil HV 2 is not energized, the hot gas valve 20 in the hot gas side is closed, and T 1 ' is closed, so the electromagnetic coil HV 1 is energized, and the electromagnetic coil HV 2 in the reflux side is energized. The valve 21 opens to allow the high temperature refrigerant to flow back into the reflux passage, first melting the ice in the ice melting section. When all the ice melts, contact T 1 of thermostat 23 closes and contact T 1 ' opens, so the high-temperature refrigerant flows through the hot gas path to evaporator 1, heats ice-making plate 2, and turns ice plate 9. make them leave.

また、タイマーTMが作動して製氷から除氷運
転に入つた時、排水弁11の電磁コイルWV2
働き、製氷用水タンク4中の水は排水され、次に
タイマーTMが初期状態に戻つた時、水位スイツ
チSが閉じて給水弁3の電磁コイルWV1が働
き、給水弁3を開いてタンク4に製氷用水が供給
される。水位スイツチは第1図には示していない
が、例えば浮子に取り付けたレバーによりマイク
ロスイツチをON,OFFし上記の動作を行なわせ
るものでよい。
Further, when the timer TM is activated and the ice making operation is started, the electromagnetic coil WV 2 of the drain valve 11 is activated, the water in the ice making water tank 4 is drained, and then the timer TM is returned to the initial state. At this time, the water level switch S closes, the electromagnetic coil WV 1 of the water supply valve 3 operates, the water supply valve 3 opens, and ice-making water is supplied to the tank 4. Although the water level switch is not shown in FIG. 1, it may be a micro switch that turns on and off using a lever attached to the float, for example, to perform the above operations.

タイマーTMは除氷検知用サーモスタツト22
の接点T2′が開いた時初期状態に戻り、その接点
TM′がON、TMがOFFとなる。そして製氷運転
を続けて再び製氷板2の温度が下がり、T2′が閉
じると、タイマーは時間の積算を始め、設定時間
が経過すれば、TM′がOFF、TMがONとなつて
冷凍回路は解氷部での融解又は製氷板での除氷の
動作に入る。
Timer TM is a thermostat 22 for deicing detection.
When the contact T 2 ′ of is opened, it returns to the initial state and that contact
TM′ turns ON and TM turns OFF. Then, as the ice-making operation continues, the temperature of the ice-making plate 2 drops again and T 2 ' closes, the timer starts accumulating time, and when the set time elapses, TM' turns OFF and TM turns ON, turning the refrigeration circuit off. The ice melting section starts to melt the ice or the ice making plate starts to remove the ice.

第3図は解氷部10を格子状の枠24で形成
し、氷を一部融解し残りを長方形に細分する構造
を示したもので、長方形の氷及び水は下方の受皿
25に落下する。冷凍回路は第1図の実施例と同
様に構成されており、同様に作動する。
Figure 3 shows a structure in which the ice-melting section 10 is formed by a grid-like frame 24, which melts some of the ice and subdivides the rest into rectangular pieces.The rectangular ice and water fall into a saucer 25 below. . The refrigeration circuit is constructed similarly to the embodiment of FIG. 1 and operates similarly.

第4図は解氷部のサーモスタツト23の代り
に、高周波共振回路、検波回路、直流出力回路、
直流動作リレーからなる近接スイツチ作動部2
6、電極27、絶縁板28及び解氷部電極29か
らなる近接スイツチを設けたもので、電極間の静
電容量の変化を、高周波共振回路の同調周波数変
化に置換して検知する。また、サーモスタツト2
2をこのような近接スイツチに置き換えることも
できる。
Figure 4 shows a high frequency resonant circuit, a detection circuit, a DC output circuit, and a
Proximity switch operating section 2 consisting of a DC operating relay
6. A proximity switch consisting of an electrode 27, an insulating plate 28, and an ice-melting section electrode 29 is provided, and a change in capacitance between the electrodes is detected by replacing it with a change in the tuning frequency of a high-frequency resonant circuit. Also, thermostat 2
2 can also be replaced with such a proximity switch.

第5図は第1図の冷凍回路だけを抽出して示す
回路図であり、第6図は第5図の冷凍回路の変形
例を示すもので、この変形例では、主回路を通る
冷媒は圧縮機15を出た後、先ず空冷凝縮器17
を通り、次に水冷凝縮器10を通る。また、環流
側路は、水冷凝縮器10の出口側と圧縮機15の
低圧側との間及び圧縮機15の高圧側と水冷凝縮
器10の入口側との間に設けられており、それぞ
れが電磁弁21,21を有する。第5図及び第6
図の冷凍回路は実質的に同様に動作する。
Figure 5 is a circuit diagram showing only the refrigeration circuit in Figure 1, and Figure 6 shows a modification of the refrigeration circuit in Figure 5. In this modification, the refrigerant passing through the main circuit is After leaving the compressor 15, first the air-cooled condenser 17
and then through a water-cooled condenser 10. Further, the reflux side passage is provided between the outlet side of the water-cooled condenser 10 and the low-pressure side of the compressor 15, and between the high-pressure side of the compressor 15 and the inlet side of the water-cooled condenser 10. It has electromagnetic valves 21, 21. Figures 5 and 6
The illustrated refrigeration circuit operates in substantially the same manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による冷凍回路を備えた清水
機の一例を示す概略図、第2図は製氷運転状態に
おけるこの発明の冷凍回路の電気回路図、第3図
は解氷部の変形例を示す図、第4図は温度検知装
置の変形例を示す部分断面図、第5図は第1図に
示した冷凍回路の回路図、第6図は冷凍回路の変
形例を示す回路図である。 図中、1は蒸発器、10は水冷凝縮器、15は
圧縮機、17は空冷凝縮器、18は膨張手段、2
0はホツトガス弁、21は電磁弁である。
Fig. 1 is a schematic diagram showing an example of a fresh water machine equipped with a refrigeration circuit according to the present invention, Fig. 2 is an electric circuit diagram of the refrigeration circuit of the invention in an ice-making operation state, and Fig. 3 shows a modified example of the ice melting section. 4 is a partial sectional view showing a modification of the temperature sensing device, FIG. 5 is a circuit diagram of the refrigeration circuit shown in FIG. 1, and FIG. 6 is a circuit diagram showing a modification of the refrigeration circuit. . In the figure, 1 is an evaporator, 10 is a water-cooled condenser, 15 is a compressor, 17 is an air-cooled condenser, 18 is an expansion means, 2
0 is a hot gas valve, and 21 is a solenoid valve.

Claims (1)

【特許請求の範囲】 1 製氷を行いこの製氷された氷を融解して不純
物の少ない清水を得るための冷凍回路において、 圧縮機と、第1凝縮器と、前記氷を融解するた
めの解氷装置を兼ねる水冷凝縮器と、膨張手段
と、蒸発器とを直列に接続して構成した主回路、 ホツトガス弁を有して前記圧縮機の高圧側と前
記蒸発器の入口側との間に接続されたホツトガス
側路、および 電磁弁を有して前記水冷凝縮器の出口側と前記
圧縮機の低圧側とを接続する環流側路、 を備える冷凍回路。
[Scope of Claims] 1. A refrigeration circuit for making ice and melting the ice to obtain clean water with few impurities, including a compressor, a first condenser, and an ice breaker for melting the ice. A main circuit consisting of a water-cooled condenser that also serves as a device, an expansion means, and an evaporator connected in series, and a hot gas valve connected between the high pressure side of the compressor and the inlet side of the evaporator. 1. A refrigeration circuit comprising: a hot gas side passage having a solenoid valve, and a reflux side passage having a solenoid valve and connecting an outlet side of the water-cooled condenser and a low pressure side of the compressor.
JP391979A 1979-01-19 1979-01-19 Refrigeration circuit Granted JPS5596871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP391979A JPS5596871A (en) 1979-01-19 1979-01-19 Refrigeration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP391979A JPS5596871A (en) 1979-01-19 1979-01-19 Refrigeration circuit

Publications (2)

Publication Number Publication Date
JPS5596871A JPS5596871A (en) 1980-07-23
JPS6141385B2 true JPS6141385B2 (en) 1986-09-13

Family

ID=11570555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP391979A Granted JPS5596871A (en) 1979-01-19 1979-01-19 Refrigeration circuit

Country Status (1)

Country Link
JP (1) JPS5596871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191644A (en) * 1987-09-30 1989-04-11 Matsushita Electric Ind Co Ltd Brushless motor
JPH0427179A (en) * 1990-05-22 1992-01-30 Matsushita Electric Ind Co Ltd Laser device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922590U (en) * 1972-05-30 1974-02-26
JPS50114033A (en) * 1974-02-19 1975-09-06
JPS5362350A (en) * 1976-11-16 1978-06-03 Hoshizaki Electric Co Ltd Method of and apparatus for producing pure water negatively ionized

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922590U (en) * 1972-05-30 1974-02-26
JPS50114033A (en) * 1974-02-19 1975-09-06
JPS5362350A (en) * 1976-11-16 1978-06-03 Hoshizaki Electric Co Ltd Method of and apparatus for producing pure water negatively ionized

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191644A (en) * 1987-09-30 1989-04-11 Matsushita Electric Ind Co Ltd Brushless motor
JPH0427179A (en) * 1990-05-22 1992-01-30 Matsushita Electric Ind Co Ltd Laser device

Also Published As

Publication number Publication date
JPS5596871A (en) 1980-07-23

Similar Documents

Publication Publication Date Title
JPH0532668B2 (en)
JPH0378552B2 (en)
JP2009121768A (en) Automatic ice making machine and control method for it
US4922723A (en) Apparatus and method for making ice cubes without a defrost cycle
JP2006010181A (en) Deicing operation method of automatic ice making machine
JPS6141385B2 (en)
JP2006052879A (en) Method of operating automatic ice making machine
JP2008057862A (en) Ice making machine
JPH0638292Y2 (en) Automatic ice machine
JPH0755327A (en) Defrosting device for cooling device
JP3573911B2 (en) Ice machine control device
JPH0643658Y2 (en) Ice machine
JP3301810B2 (en) Ice machine
JPS5826511B2 (en) Defrosting device for refrigerators
JPS5843737Y2 (en) Refrigerator defrost device
JPH0674626A (en) Flowing down type ice making machine
JP3412677B2 (en) How to operate an automatic ice maker
JPS6027878Y2 (en) automatic ice maker
JP2004092930A (en) Ice machine
JPH11237163A (en) Cooling storage chamber
JP2753652B2 (en) refrigerator
JPS6244285Y2 (en)
JPS5939571Y2 (en) automatic ice maker
JPH0124539Y2 (en)
JPS6237091Y2 (en)