JPH0755327A - Defrosting device for cooling device - Google Patents

Defrosting device for cooling device

Info

Publication number
JPH0755327A
JPH0755327A JP5196297A JP19629793A JPH0755327A JP H0755327 A JPH0755327 A JP H0755327A JP 5196297 A JP5196297 A JP 5196297A JP 19629793 A JP19629793 A JP 19629793A JP H0755327 A JPH0755327 A JP H0755327A
Authority
JP
Japan
Prior art keywords
time
defrosting
evaporator
defrost
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5196297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kurihara
弘行 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5196297A priority Critical patent/JPH0755327A/en
Publication of JPH0755327A publication Critical patent/JPH0755327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To provide a defrosting device for a cooling device which is capable of setting an optimum drip time automatically in conformity with the amount of frost deposited on the surface of a vaporizer. CONSTITUTION:A microcomputer 27 stops the heating of a vaporizer based on the output of a defrost return sensor 29 when the temperature of the vaporizer reaches a specified defrost end temperature after having started to defrost the vaporizer and then restarts cooling operation after drip time. The microcomputer 27 further computes the drip time based on an estimated value by a defrost time T2 which estimates the defrost time of the vaporizer and restarts the cooling operation after the lapse of the drip time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸発器を備えた低温シ
ョーケースや冷凍・冷蔵庫等の冷却装置の除霜装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting device for a low-temperature showcase equipped with an evaporator and a cooling device such as a refrigerator / freezer.

【0002】[0002]

【従来の技術】従来この種冷却装置は、例えば特公平4
−70546号公報(F25D21/08)に低温ショ
ーケースとして示されるように、蒸発器と熱交換した冷
気を送風機にて庫内に循環して冷却すると共に、電気ヒ
ータにより蒸発器を加熱して蒸発器の除霜を行ってい
る。このとき、蒸発器からは水滴と共に、氷塊も露受皿
上に落下するため、これらが落下し切るための時間と、
露受皿上の氷塊が溶けて排出されるまでの時間を確保す
る必要がある。
2. Description of the Related Art Heretofore, a cooling device of this type has been disclosed in Japanese Patent Publication No.
As disclosed in JP-A-70546 (F25D21 / 08) as a low temperature showcase, cool air that has exchanged heat with the evaporator is circulated in the chamber by a blower for cooling, and the evaporator is heated by an electric heater for evaporation. We are defrosting the vessel. At this time, since ice blocks also drop from the evaporator along with the water droplets onto the dew tray, the time it takes for them to completely fall,
It is necessary to secure the time until the ice blocks on the dew pan are melted and discharged.

【0003】そのため、前記公報では電気ヒータの加熱
による除霜が終了した後、所定の水切り時間を置き、こ
の水切り時間の経過後に冷却運転を再開するようにし
て、蒸発器からの露や氷塊の落下と、露受皿上の氷塊が
融解して排出される時間を確保していた。
Therefore, in the above publication, after defrosting by heating the electric heater is completed, a predetermined draining time is set and the cooling operation is restarted after the draining time elapses so that dew and ice blocks from the evaporator are removed. It had time to fall and the ice block on the dew pan was melted and discharged.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
低温ショーケースでは前記水切り時間が例えば5分間等
の固定された時間であったため、季節の変化により蒸発
器への着霜量が変化し、落下する除霜水や氷塊の量が増
加した場合には時間が不足して霜残りや再凍結が発生し
たり、逆に除霜水や氷塊の量が減った場合には水切り時
間が過剰となって庫内の無用な温度上昇を引き起こす問
題があった。
However, in the conventional low temperature showcase, since the draining time is a fixed time such as 5 minutes, the amount of frost on the evaporator changes due to the change of the season, and the fall occurs. If the amount of defrost water or ice blocks increases, the time is insufficient and frost residue or refreezing occurs. Conversely, if the amount of defrost water or ice blocks decreases, the drainage time becomes excessive. There was a problem that caused unnecessary temperature rise in the refrigerator.

【0005】また、これを解消するために例えば季節に
よって水切り時間を変更できるようにしても、一々使用
者が設定を変更しなければならないため、管理が煩雑と
なると共に、現実的には設定変更が成されないと云う問
題もあった。本発明は、係る従来の技術的課題を解決す
るために成されたものであり、蒸発器への着霜量に応じ
て自動的に最適な水切り時間を設定できる冷却装置の除
霜装置を提供することを目的とする。
Further, even if the draining time can be changed depending on the season in order to solve this, the user has to change the setting one by one, so that the management becomes complicated and the setting is actually changed. There was also a problem that was not done. The present invention has been made to solve the conventional technical problem, and provides a defrosting device for a cooling device that can automatically set an optimum draining time according to the amount of frost formed on an evaporator. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明の除霜装置は、冷
却装置の蒸発器を加熱する除霜手段と、蒸発器の温度を
検出する温度検出手段と、除霜手段を制御する制御手段
とを具備し、冷却運転を停止して除霜手段による蒸発器
の除霜を開始した後、温度検出手段の出力に基づいて蒸
発器の温度が所定の除霜終了温度に達した場合に除霜手
段の加熱作用を停止させると共に、その後水切り時間を
置いて冷却運転を再開する冷却装置に適用されるもので
あり、除霜手段による除霜時間を積算する時限手段を設
け、制御手段は、時限手段の積算値に基づいて水切り時
間を算出し、当該水切り時間の経過後、冷却運転を再開
するものである。
A defrosting device of the present invention comprises a defrosting means for heating an evaporator of a cooling device, a temperature detecting means for detecting the temperature of the evaporator, and a control means for controlling the defrosting means. After the cooling operation is stopped and the defrosting of the evaporator is started by the defrosting means, it is removed when the temperature of the evaporator reaches a predetermined defrosting end temperature based on the output of the temperature detecting means. While stopping the heating action of the frost means, is applied to a cooling device that restarts the cooling operation after placing a draining time, provided with a time limit means for integrating the defrost time by the defrost means, the control means, The water draining time is calculated based on the integrated value of the time limiting means, and the cooling operation is restarted after the water draining time has elapsed.

【0007】[0007]

【作用】本発明の冷却装置の除霜装置によれば、時限手
段により蒸発器の除霜時間を積算し、この積算値に基づ
いてその後の水切り時間を算出するようにしたので、例
えば夏季等に蒸発器への着霜量が増大して除霜時間が長
くなった場合には、水切り時間も長くし、逆に冬季等に
蒸発器への着霜量が減少して除霜時間が短くなった場合
には、水切り時間も短くすることにより、着霜量に応じ
た最適な水切り時間を設定することができるようにな
る。それによって、霜残りや過剰な水切り時間による無
用な温度上昇の発生を解消することが可能となる。
According to the defrosting device of the cooling device of the present invention, the defrosting time of the evaporator is integrated by the time limiting means, and the subsequent draining time is calculated based on this integrated value. When the amount of frost on the evaporator increases and the defrosting time becomes longer, the draining time also becomes longer, and conversely, the amount of frost on the evaporator decreases and the defrosting time becomes shorter in winter, etc. When it becomes difficult, by shortening the drainage time as well, it becomes possible to set the optimum drainage time according to the amount of frost formation. As a result, it is possible to eliminate the occurrence of unnecessary temperature rise due to residual frost and excessive drainage time.

【0008】[0008]

【実施例】以下、図面に基づき本発明の実施例を詳述す
る。図1は本発明の除霜装置を適用する冷却装置の実施
例としての低温ショーケースAの電気回路のブロック
図、図2は同じく低温ショーケースAの斜視図、図3は
低温ショーケースAの冷媒回路図である。図2において
実施例の低温ショーケースAは、前方に開口して内部に
図示しない庫内を構成する断熱箱体21と、この断熱箱
体21の前面開口を開閉自在に閉塞するガラス扉22、
23により構成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is a block diagram of an electric circuit of a low temperature showcase A as an embodiment of a cooling device to which the defrosting device of the present invention is applied, FIG. 2 is a perspective view of the low temperature showcase A, and FIG. It is a refrigerant circuit diagram. In FIG. 2, the low temperature showcase A of the embodiment has a heat-insulating box body 21 that opens to the front to form an interior (not shown), and a glass door 22 that opens and closes the front opening of the heat-insulating box body 21.
23.

【0009】次に、図3において1は圧縮機、SV1は
三方電磁弁、2は送風機CFを備えた凝縮器、3は受液
器、4は膨張弁、5は送風機EFを備えた蒸発器、6は
気液分離器で、これらは高圧ガス管7、高圧液管8、低
圧液管9及び低圧ガス管10にて環状に接続され、図3
に実線で示す如き冷却サイクルを形成する。また、三方
電磁弁SV1と低圧液管9間には逆止弁11を有する側
路管12が接続され、破線矢印で示す如き除霜サイクル
を形成している。
Next, in FIG. 3, 1 is a compressor, SV 1 is a three-way solenoid valve, 2 is a condenser equipped with a blower CF, 3 is a liquid receiver, 4 is an expansion valve, 5 is an evaporator equipped with a blower EF. , 6 are gas-liquid separators, which are annularly connected by a high-pressure gas pipe 7, a high-pressure liquid pipe 8, a low-pressure liquid pipe 9 and a low-pressure gas pipe 10.
A cooling cycle as shown by the solid line is formed. Further, a bypass pipe 12 having a check valve 11 is connected between the three-way solenoid valve SV1 and the low pressure liquid pipe 9 to form a defrost cycle as indicated by a dashed arrow.

【0010】13は蒸発器5の下側に配設された露受皿
で、加熱手段としての露受皿ヒータ14を備えている。
前記蒸発器5は低温ショーケースAの庫内に設置される
と共に、送風機EFは当該蒸発器5と熱交換した冷気を
庫内に強制循環する。また、露受皿12は蒸発器5の除
霜時に滴下する除霜水や氷塊を受容し、図示しない排水
管に案内して排出する機能を奏するものである。
Reference numeral 13 denotes a dew tray provided under the evaporator 5, which is provided with a dew tray heater 14 as a heating means.
The evaporator 5 is installed in the refrigerator of the low temperature showcase A, and the blower EF forcibly circulates the cool air that has exchanged heat with the evaporator 5 in the refrigerator. Further, the dew tray 12 has a function of receiving defrosting water and ice blocks that are dropped when the evaporator 5 is defrosted, and guiding the defrosting water and ice blocks to a drain pipe (not shown) to discharge them.

【0011】次に、図1において、制御手段としてのマ
イクロコンピュータ27の入力には前記断熱箱体21の
庫内温度を検出する庫内温度センサー28の出力と、前
記蒸発器5の温度を検出する温度検出手段としての除霜
復帰センサー29の出力が入力されている。一方、マイ
クロコンピュータ27の出力には、前記圧縮機1、送風
機CF、EF、三方電磁弁SV1及び露受皿ヒータ14
が接続されている。
Next, referring to FIG. 1, the microcomputer 27 serving as a control means inputs the output of the inside temperature sensor 28 for detecting the inside temperature of the heat insulating box 21 and the temperature of the evaporator 5 to the inside. The output of the defrosting recovery sensor 29 as the temperature detecting means is input. On the other hand, the output of the microcomputer 27 includes the compressor 1, the blowers CF and EF, the three-way solenoid valve SV1, and the dew pan heater 14.
Are connected.

【0012】以上の構成にて次に低温ショーケース1の
動作を説明する。マイクロコンピュータ27は庫内温度
センサー28の出力に基づき、低温ショーケース1の庫
内温度が例えば+5℃等の上限値に達した場合に圧縮機
1を運転すると共に、三方電磁弁SV1をOFFして図
3中実線矢印の如き冷却サイクルを形成し、冷却運転を
実行する。これによって、圧縮機1から吐出された高温
ガス冷媒は、高圧ガス管7を経て凝縮器2にて空冷凝縮
され、高圧液管8を経て膨張弁4にて絞られた後、低圧
液管9を経て蒸発器5に流入する。蒸発器5に流入した
冷媒はそこで蒸発し、周囲から熱を奪うことにより冷却
作用を発揮する。係る冷却作用により冷却された空気は
送風機EFにより前述の如く庫内に循環される。蒸発器
5を出た冷媒は低圧ガス管10を経て圧縮機1に帰還す
る。
Next, the operation of the low temperature showcase 1 having the above configuration will be described. Based on the output of the internal temperature sensor 28, the microcomputer 27 operates the compressor 1 and turns off the three-way solenoid valve SV1 when the internal temperature of the low temperature showcase 1 reaches an upper limit value such as + 5 ° C. 3 forms a cooling cycle as indicated by the solid line arrow in FIG. 3 to execute the cooling operation. As a result, the high-temperature gas refrigerant discharged from the compressor 1 is air-cooled and condensed in the condenser 2 via the high-pressure gas pipe 7, narrowed down by the expansion valve 4 via the high-pressure liquid pipe 8, and then the low-pressure liquid pipe 9 And flows into the evaporator 5. The refrigerant that has flowed into the evaporator 5 evaporates there and removes heat from the surroundings to exert a cooling effect. The air cooled by the cooling action is circulated in the refrigerator by the blower EF as described above. The refrigerant exiting the evaporator 5 returns to the compressor 1 via the low pressure gas pipe 10.

【0013】係る冷却運転により、庫内温度が例えば+
3℃等の下限値に達すると、マイクロコンピュータ27
は庫内温度センサー28の出力に基づいて圧縮機1を停
止する。尚、マイクロコンピュータ27は送風機CF及
びEFは連続運転する。このような冷却運転によって低
温ショーケースAの庫内は平均+4℃程に冷却される。
By such a cooling operation, the temperature in the refrigerator is, for example, +
When reaching the lower limit of 3 ℃, microcomputer 27
Stops the compressor 1 based on the output of the internal temperature sensor 28. The microcomputer 27 continuously operates the blowers CF and EF. By such a cooling operation, the inside of the low temperature showcase A is cooled to an average of + 4 ° C.

【0014】次に、図4を参照しながらマイクロコンピ
ュータ27による蒸発器5の除霜制御について説明す
る。図4はマイクロコンピュータ27の除霜制御に関す
るプログラムのフローチャートを示している。マイクロ
コンピュータ27は電源投入と同時に全てをリセット若
しくはクリヤし、また、その機能として有する除霜タイ
マT1によって冷却運転の時間をカウントしている。そ
して、予め定められた例えば12時間等の除霜間隔が経
過すると、マイクロコンピュータ27は除霜タイマT1
をクリアし、ステップS1で除霜運転を開始する。
Next, the defrosting control of the evaporator 5 by the microcomputer 27 will be described with reference to FIG. FIG. 4 shows a flow chart of a program relating to defrost control of the microcomputer 27. The microcomputer 27 resets or clears everything at the same time when the power is turned on, and counts the cooling operation time by the defrost timer T1 which has its function. Then, when a predetermined defrosting interval such as 12 hours elapses, the microcomputer 27 causes the defrosting timer T1.
Is cleared and the defrosting operation is started in step S1.

【0015】この除霜運転では、マイクロコンピュータ
27は露受皿ヒータ14に通電すると共に、圧縮機1を
運転し続け、前記三方電磁弁SV1を通電して送風機C
F及びEFを停止する。三方電磁弁SV1は通電される
と高温ガス冷媒の流れ方向を、図3中破線矢印の如く高
圧ガス管7から側路管12に切り換えるので、蒸発器5
は係る高温ガス冷媒の流入により加熱されて除霜されて
行く。
In this defrosting operation, the microcomputer 27 energizes the dew pan heater 14 and continues to operate the compressor 1 to energize the three-way solenoid valve SV1 to blower C.
Stop F and EF. When the three-way solenoid valve SV1 is energized, the flow direction of the high temperature gas refrigerant is switched from the high pressure gas pipe 7 to the bypass pipe 12 as indicated by the broken line arrow in FIG.
Is heated by the inflow of the high temperature gas refrigerant and defrosted.

【0016】次に、マイクロコンピュータ27はステッ
プS2にてその機能として有する除霜時間タイマT2に
より除霜時間(高温冷媒が蒸発器5に供給されている時
間)を積算し、次にステップS3にて除霜復帰センサー
29の出力に基づき、蒸発器5の温度が例えば+10℃
等の所定の除霜終了温度に達したか否か、即ち、除霜復
帰条件を満足したか判断し、否であればステップS1に
戻って除霜運転を継続する。係る除霜運転により蒸発器
5から落下した除霜水や氷塊は露受皿13に受容され、
図示しない排水管により排出される。また、このときに
露受皿13上に落下した氷塊は、露受皿ヒータ14にて
加熱されて融解するので、排水は円滑に行われる。
Next, the microcomputer 27 integrates the defrosting time (the time during which the high temperature refrigerant is supplied to the evaporator 5) by the defrosting time timer T2 which has its function in step S2, and then proceeds to step S3. Based on the output of the defrost recovery sensor 29, the temperature of the evaporator 5 is, for example, + 10 ° C.
It is determined whether or not a predetermined defrosting end temperature such as the above has been reached, that is, whether or not the defrosting return condition is satisfied. If not, the process returns to step S1 to continue the defrosting operation. Defrosting water and ice blocks that have fallen from the evaporator 5 due to such defrosting operation are received by the dew tray 13,
It is discharged by a drain pipe (not shown). Further, at this time, the ice blocks falling on the dew tray 13 are heated by the dew tray heater 14 and melted, so that the drainage is smoothly performed.

【0017】そして、蒸発器5の除霜が終了し、その温
度が前記+10℃に達して復帰条件が満足されると、マ
イクロコンピュータ27は除霜復帰センサー29の出力
に基づいてステップS3からステップS4に進み、除霜
時間タイマT2により積算した除霜時間より水切り時間
を算出する。このとき、除霜が長くかかって例えば30
分等の積算値に達した場合には、水切り時間を例えば7
分等の長い時間に設定し、逆に除霜が早く終わって例え
ば20分等の積算値の場合には、水切り時間を例えば3
分等の短い時間に設定する。
When the defrosting of the evaporator 5 is completed and the temperature thereof reaches the above + 10 ° C. and the restoration condition is satisfied, the microcomputer 27 performs steps S3 to S3 based on the output of the defrosting restoration sensor 29. In S4, the draining time is calculated from the defrosting time accumulated by the defrosting time timer T2. At this time, defrosting takes a long time, for example, 30
When the accumulated value such as minutes is reached, drainage time is set to 7
If a long time such as minutes is set and conversely defrosting ends early and the integrated value is, for example, 20 minutes, the draining time is set to 3
Set a short time such as minutes.

【0018】そして、マイクロコンピュータ27はステ
ップS5に進み、上記のように算出した結果の水切り時
間を自らの機能として有する水切り時間タイマT3にセ
ットする。そして、ステップS6で水切り動作を開始す
る。この水切り動作では圧縮機1は停止され、蒸発器5
への高温冷媒の供給、或いは減圧液冷媒の供給は停止さ
れる。その間蒸発器5に残っている露(除霜水)や溶け
かかった氷塊は露受皿13上に落下して行く。一方、露
受皿ヒータ14は通電され続けるので、蒸発器5から落
下した除霜水や氷塊は融解し、円滑に排出されて行く。
Then, the microcomputer 27 proceeds to step S5 and sets the drainage time calculated as above as the drainage time timer T3 having its own function. Then, in step S6, the water draining operation is started. In this draining operation, the compressor 1 is stopped and the evaporator 5
The supply of the high temperature refrigerant or the supply of the depressurized liquid refrigerant is stopped. During that time, dew (defrost water) remaining in the evaporator 5 and melted ice blocks fall on the dew tray 13. On the other hand, since the dew tray heater 14 continues to be energized, the defrost water and ice blocks that have fallen from the evaporator 5 are melted and smoothly discharged.

【0019】次に、マイクロコンピュータ27はステッ
プS7で前記水切り時間タイマT3を減算(カウントダ
ウン)し、ステップS8で水切り時間タイマT3のカウ
ントが終了した(カウント0になったか否か)か判断
し、否であればステップS6に戻って水切り動作を継続
する。そして、前述の如く設定した水切り時間が経過
し、水切り時間タイマT3の減算が終了したら、ステッ
プS8からステップS9に進んで水切り動作を終了し、
以後冷却運転に復帰する。
Next, the microcomputer 27 subtracts (counts down) the draining time timer T3 in step S7, and determines in step S8 whether or not the draining time timer T3 has finished counting (whether the count reaches 0). If not, the process returns to step S6 to continue the water draining operation. Then, when the draining time set as described above has elapsed and the subtraction of the draining time timer T3 is completed, the process proceeds from step S8 to step S9 to end the draining operation,
After that, it returns to the cooling operation.

【0020】このように、マイクロコンピュータ27は
蒸発器5の除霜時間を積算し、この積算値に基づいてそ
の後の水切り時間を算出するので、例えば夏季等に蒸発
器5への着霜量が増大して除霜時間が長くなった場合に
は、水切り時間も長くし、逆に冬季等に蒸発器5への着
霜量が減少して除霜時間が短くなった場合には、水切り
時間も短くして、着霜量に応じた最適な水切り時間を設
定することができるようになる。従って、蒸発器5の霜
残りや過剰な水切り時間による庫内の無用な温度上昇を
解消することができる。
In this way, the microcomputer 27 integrates the defrosting time of the evaporator 5 and calculates the subsequent draining time based on this integrated value, so that the amount of frost on the evaporator 5 can be calculated, for example, in summer. When the defrosting time increases and the defrosting time increases, the draining time also increases, and conversely, when the defrosting amount on the evaporator 5 decreases and the defrosting time decreases in winter, etc., the draining time decreases. By shortening, it becomes possible to set the optimum draining time according to the amount of frost formation. Therefore, it is possible to eliminate unnecessary temperature rise in the refrigerator due to residual frost on the evaporator 5 and excessive drainage time.

【0021】尚、実施例では蒸発器5の除霜を高温ガス
冷媒により行ったが、それに限らず、電気ヒータにより
除霜しても良い。また、本発明は実施例の低温ショーケ
ースに限らず、種々の冷凍・冷蔵機器に有効であること
は云うまでもない。
Although the evaporator 5 is defrosted by the high temperature gas refrigerant in the embodiment, it is not limited to this and may be defrosted by an electric heater. Needless to say, the present invention is effective not only in the low temperature showcase of the embodiment but also in various freezing and refrigerating equipment.

【0022】[0022]

【発明の効果】以上詳述した如く本発明によれば、時限
手段により蒸発器の除霜時間を積算し、制御手段がこの
積算値に基づいてその後の水切り時間を算出するように
したので、季節の移り変わり等により蒸発器への着霜量
が変化しても、当該着霜量に応じた最適な水切り時間を
設定することができるようになる。従って、蒸発器の霜
残りによる冷却作用の低下や、過剰な水切り時間による
無用な温度上昇の発生を未然に防止することができるも
のである。
As described in detail above, according to the present invention, the defrosting time of the evaporator is integrated by the time limit means, and the control means calculates the subsequent draining time based on this integrated value. Even if the amount of frost on the evaporator changes due to changes in seasons or the like, it is possible to set the optimum draining time according to the amount of frost. Therefore, it is possible to prevent a decrease in the cooling action due to the remaining frost in the evaporator and an unnecessary increase in temperature due to an excessive drainage time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の除霜装置を適用した冷却装置の実施例
としての低温ショーケースの電気回路図である。
FIG. 1 is an electric circuit diagram of a low temperature showcase as an example of a cooling device to which a defrosting device of the present invention is applied.

【図2】同低温ショーケースの斜視図である。FIG. 2 is a perspective view of the low temperature showcase.

【図3】同低温ショーケースの冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of the low temperature showcase.

【図4】マイクロコンピュータの除霜制御に関するプロ
グラムを示すフローチャートである。
FIG. 4 is a flowchart showing a program relating to defrost control of a microcomputer.

【符号の説明】[Explanation of symbols]

1 圧縮機 5 蒸発器 12 側路管 27 マイクロコンピュータ 29 除霜復帰センサー A 低温ショーケース SV1 三方電磁弁 T2 除霜時間タイマ T3 水切り時間タイマ 1 Compressor 5 Evaporator 12 Side pipe 27 Microcomputer 29 Defrost return sensor A Low temperature showcase SV1 Three-way solenoid valve T2 Defrost time timer T3 Drain time timer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却装置の蒸発器を加熱する除霜手段
と、前記蒸発器の温度を検出する温度検出手段と、前記
除霜手段を制御する制御手段とを具備し、該制御手段
は、冷却運転を停止して前記除霜手段による蒸発器の除
霜を開始した後、前記温度検出手段の出力に基づいて前
記蒸発器の温度が所定の除霜終了温度に達した場合に前
記除霜手段の加熱作用を停止させると共に、その後水切
り時間を置いて前記冷却運転を再開する冷却装置におい
て、前記除霜手段による除霜時間を積算する時限手段を
設け、前記制御手段は、前記時限手段の積算値に基づい
て前記水切り時間を算出し、当該水切り時間の経過後、
前記冷却運転を再開することを特徴とする冷却装置の除
霜装置。
1. A defrosting means for heating an evaporator of a cooling device, a temperature detecting means for detecting a temperature of the evaporator, and a control means for controlling the defrosting means, the control means comprising: After the cooling operation is stopped and the defrosting of the evaporator by the defrosting means is started, the defrosting is performed when the temperature of the evaporator reaches a predetermined defrosting end temperature based on the output of the temperature detecting means. While stopping the heating action of the means, in the cooling device that restarts the cooling operation after leaving a draining time, a time limit means for integrating the defrost time by the defrost means is provided, and the control means is the time limit means. Calculate the draining time based on the integrated value, after the passage of the draining time,
A defroster for a cooling device, which restarts the cooling operation.
JP5196297A 1993-08-06 1993-08-06 Defrosting device for cooling device Pending JPH0755327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5196297A JPH0755327A (en) 1993-08-06 1993-08-06 Defrosting device for cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5196297A JPH0755327A (en) 1993-08-06 1993-08-06 Defrosting device for cooling device

Publications (1)

Publication Number Publication Date
JPH0755327A true JPH0755327A (en) 1995-03-03

Family

ID=16355468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5196297A Pending JPH0755327A (en) 1993-08-06 1993-08-06 Defrosting device for cooling device

Country Status (1)

Country Link
JP (1) JPH0755327A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908338A (en) * 1997-01-31 1999-06-01 Suzuki Motor Corporation Exhaust system for outboard motor
JP2003314932A (en) * 2002-04-23 2003-11-06 Denso Corp Refrigerator
JP2010133590A (en) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp Refrigerator-freezer
JP2010139206A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Refrigeration air conditioner
US9574816B2 (en) * 2010-05-26 2017-02-21 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
JP2020133918A (en) * 2019-02-13 2020-08-31 富士電機株式会社 Showcase
CN112484379A (en) * 2020-11-20 2021-03-12 珠海格力电器股份有限公司 Defrosting control method and device of refrigerator, controller and refrigerator
CN115682586A (en) * 2022-11-04 2023-02-03 珠海格力电器股份有限公司 Defrosting control method, refrigerating unit and refrigerating equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908338A (en) * 1997-01-31 1999-06-01 Suzuki Motor Corporation Exhaust system for outboard motor
JP2003314932A (en) * 2002-04-23 2003-11-06 Denso Corp Refrigerator
JP2010133590A (en) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp Refrigerator-freezer
JP2010139206A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Refrigeration air conditioner
US9574816B2 (en) * 2010-05-26 2017-02-21 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
US10222115B2 (en) 2010-05-26 2019-03-05 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
JP2020133918A (en) * 2019-02-13 2020-08-31 富士電機株式会社 Showcase
CN112484379A (en) * 2020-11-20 2021-03-12 珠海格力电器股份有限公司 Defrosting control method and device of refrigerator, controller and refrigerator
CN115682586A (en) * 2022-11-04 2023-02-03 珠海格力电器股份有限公司 Defrosting control method, refrigerating unit and refrigerating equipment

Similar Documents

Publication Publication Date Title
KR100796283B1 (en) Energy saving style refrigeration equipment that use waste heat of discharge gas
RU2130570C1 (en) Defroster for refrigerators and method of control of such defroster
CN110736188A (en) air conditioner self-cleaning control method and device
EP2505929B1 (en) Outdoor unit of air conditioner and method for controlling the same
CN112665286B (en) Refrigerator dehumidification and frost removal device, control method and refrigerator
KR100186666B1 (en) Defrosting device of low temperature
JP2009144951A (en) Defrosting operation control device for refrigerating-freezing device and its method
JPH0755327A (en) Defrosting device for cooling device
KR100708622B1 (en) Defrosting method for refrigerator
KR100288927B1 (en) Defrost Control Method of Refrigerator
JPH0719710A (en) Defrosting device
JPH10205980A (en) Refrigerator
JPH07120114A (en) Refrigeration cold storage box
CN211823001U (en) Ice melting device of dehumidifier water pan
JP2896051B2 (en) Defroster
JP2001324248A (en) Defrosting controller for freezing apparatus
JPH04268179A (en) Device for control of defrosting of air conditioner
JP3006005B2 (en) Operation control device for refrigeration equipment
JP4308069B2 (en) Defrost control device for direct cooling refrigerator
JPH03291486A (en) Air cooler
JP4240904B2 (en) Cooling storage
KR100905087B1 (en) A defrosting method of refrigerator
JPH05302780A (en) Refrigerating device
JP4462501B2 (en) refrigerator
WO2012089454A2 (en) A cooling device comprising a collection container

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060213

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060621