JPS6141348B2 - - Google Patents

Info

Publication number
JPS6141348B2
JPS6141348B2 JP9034578A JP9034578A JPS6141348B2 JP S6141348 B2 JPS6141348 B2 JP S6141348B2 JP 9034578 A JP9034578 A JP 9034578A JP 9034578 A JP9034578 A JP 9034578A JP S6141348 B2 JPS6141348 B2 JP S6141348B2
Authority
JP
Japan
Prior art keywords
reaction
guanidine
dicyandiamide
yield
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9034578A
Other languages
Japanese (ja)
Other versions
JPS5519204A (en
Inventor
Isamu Hirotsu
Motoharu Yamashita
Yoshio Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Chemical Co Ltd
Original Assignee
Sanwa Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Chemical Co Ltd filed Critical Sanwa Chemical Co Ltd
Priority to JP9034578A priority Critical patent/JPS5519204A/en
Publication of JPS5519204A publication Critical patent/JPS5519204A/en
Publication of JPS6141348B2 publication Critical patent/JPS6141348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fireproofing Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えばアンメリン、アンメリドなど
の如き不都合なヒドロオキシアミノトリアジン類
その他の副生反応を顕著に抑制し、さらに、従
来、満足し得る収率及び/又は操作で共融反応に
よるグアニジン無機酸塩を形成せしめることの困
難であつたグアニジン塩を、収率及び操作上も有
利に製造できるグアニジン無機酸塩の製法に関す
る。 従来、ジシアンジアミドと酸アンモニウム塩と
を共融反応せしめてグアニジンの対応する酸塩を
形成することは知られている。 この際、用いる酸アンモニウム塩の種類によつ
て差異はあるにせよ、可成りな量の水不溶性副反
応生成物が形成される不利益を伴なう。更に、収
率及び/又は操作上のトラブルも多く、工業的実
施に困難を伴なう。例えば、ジシアンジアミドと
硫酸アンモニウムや燐酸2アンモニウムとの共融
反応によつて、これら酸のグアニジン塩を形成す
る場合、たとえば等モル反応において、得られる
目的グアニジン塩の収率は約50〜約65%程度と不
満足である上に、約5〜10%或はそれ以上にも達
する副生成物が形成され、更に、反応生成物は反
応温度において固化し、反応終了後、固結した反
応生成物を反応区域から回収することが困難で工
業的操作に適さないなどの不利益を伴う。 本発明者等は、ジシアンジアミドと無機酸アン
モニウム塩との共融反応における上述の如き困難
乃至不利益を克服すべく研究を行つてきた。その
結果、ジシアンジアミドと無機酸アンモニウム塩
との共融反応を、スルフアミン酸アンモニウム塩
の共存下に行うことにより、副反応の生起が顕著
に抑制されると共に、グアニジン無機酸塩の形成
が顕著に促進されるという、意外な作用効果を生
ずることを発見した。更に、スルフアミン酸グア
ニジン含有のグアニジン無機酸塩の形で形成され
る反応生成物は、反応温度において固化するトラ
ブルがなく、反応生成物の回収操作も著るしく容
易となる利益を伴うことを知つた。例えば、ジシ
アンジアミドと硫酸アンモニウムとの共融反応に
よる硫酸グアニジンの製造に際しては、高々、約
65%程度であつた収率が、スルフアミン酸アンモ
ニウムの共存下に該反応を行うことにより、一挙
に約90℃程度に顕著に向上し、且つ又、水不溶性
副反応生成物の量も約1/3程度にまで顕著に低減
せしめることができ、更に、生成物が固結してそ
の反応区域からの取り出し回収を困難にするトラ
ブルも回避できる利点を有することがわかつた。
又、得られたスルフアミン酸グアニジン含有の硫
酸グアニジンは、硫酸根およびスルフアミン酸根
を容易に除去でき、すぐれたグアニジン原料とし
て利用できるほかに、そのままの形態で例えばセ
ルロース系材料の防炎剤として利用でき優れた防
炎剤性能を示す利点があり、更に又、高濃度水溶
液の提供が容易であるなどの利益を有することが
わかつた。 従つて、本発明の目的は共融反応によるグアニ
ジン無機酸塩製造のための改善方法を提供するに
ある。 本発明の上記目的及び更に多くの他の目的なら
びに利点は、以下の記載から一層明らかとなるで
あろう。 本発明方法によれば、スルフアミン酸アンモニ
ウム塩の共存下に、ジシアンジアミドと無機酸ア
ンモニウム塩とを共融反応せしめる。 本発明方法によつて達成された水不溶性副反応
生成物の顕著な低減作用及びグアニジン無機酸塩
形成の顕著な促進作用の生ずる機構は未だ詳かで
ないが、その予想外の作用効果は、後に、例えば
実施例1及び比較例1において、ジシアンジアミ
ドと硫酸アンモニウムとの共融反応について示す
実験、更に、実施例2及び比較例2において、ジ
シアンジアミドとリン酸2アンモニウムとの共融
反応について示す実験から容易に理解できよう。
その結果をまとめて、下表1及び表2に示す。
The present invention significantly suppresses the reactions of undesirable hydroxyaminotriazines and other by-products such as ammeline, ammelide, etc., and furthermore, the present invention provides a method for producing guanidine inorganic acids by eutectic reaction with a satisfactory yield and/or operation. The present invention relates to a method for producing a guanidine inorganic acid salt, which is advantageous in terms of yield and operation, even though it has been difficult to form a guanidine salt. It is known in the art to cause a eutectic reaction of dicyandiamide and an acid ammonium salt to form the corresponding acid salt of guanidine. In this case, although there are differences depending on the type of acid ammonium salt used, there is a disadvantage that a considerable amount of water-insoluble side reaction products are formed. Furthermore, there are many problems in yield and/or operation, making industrial implementation difficult. For example, when guanidine salts of these acids are formed by a eutectic reaction between dicyandiamide and ammonium sulfate or diammonium phosphate, the yield of the target guanidine salt obtained is about 50 to about 65% in an equimolar reaction. In addition, by-products amounting to about 5-10% or more are formed, and furthermore, the reaction products solidify at the reaction temperature, and after the reaction is completed, the solidified reaction products are removed from the reaction. It has disadvantages such as being difficult to recover from the area and unsuitable for industrial operations. The present inventors have conducted research to overcome the above-mentioned difficulties and disadvantages in the eutectic reaction between dicyandiamide and an inorganic acid ammonium salt. As a result, by performing the eutectic reaction between dicyandiamide and an inorganic acid ammonium salt in the coexistence of a sulfamic acid ammonium salt, the occurrence of side reactions is significantly suppressed, and the formation of guanidine inorganic acid salt is significantly promoted. We have discovered that it produces unexpected effects. Furthermore, it has been found that the reaction product formed in the form of a guanidine inorganic acid salt containing guanidine sulfamate does not have the trouble of solidifying at the reaction temperature, and has the benefit of significantly facilitating the recovery operation of the reaction product. Ivy. For example, in the production of guanidine sulfate by the eutectic reaction of dicyandiamide and ammonium sulfate, at most
By carrying out the reaction in the presence of ammonium sulfamate, the yield, which was about 65%, was significantly improved to about 90°C, and the amount of water-insoluble side reaction products was also reduced to about 1%. It has been found that it is possible to significantly reduce the amount of the product to about 1/3, and that it also has the advantage of avoiding the problem of solidification of the product, which makes it difficult to remove and recover the product from the reaction zone.
In addition, the obtained guanidine sulfate containing guanidine sulfamate can easily remove the sulfate group and the sulfamate group, and can be used not only as an excellent guanidine raw material but also as a flame retardant for cellulose materials, for example. It has been found that it has the advantage of exhibiting excellent flame retardant performance and further has the advantage of being easy to provide a highly concentrated aqueous solution. Accordingly, it is an object of the present invention to provide an improved method for producing guanidine inorganic acid salts by eutectic reaction. The above objects and many other objects and advantages of the present invention will become more apparent from the following description. According to the method of the present invention, dicyandiamide and an inorganic acid ammonium salt are subjected to a eutectic reaction in the presence of an ammonium sulfamate salt. Although the mechanism of the remarkable reduction of water-insoluble side reaction products and the remarkable promotion of the formation of guanidine inorganic salts achieved by the method of the present invention is not yet clear, the unexpected effects will be explained later. , for example, in Example 1 and Comparative Example 1, the experiment shows the eutectic reaction between dicyandiamide and ammonium sulfate, and in Example 2 and Comparative Example 2, the experiment shows the eutectic reaction between dicyandiamide and diammonium phosphate. I can understand it.
The results are summarized in Tables 1 and 2 below.

【表】 で、スルフアミン酸グアニジン収率を
91.2%として算出された硫酸グアニジ
ン収率。
[Table] shows the yield of guanidine sulfamate.
Guanidium sulfate calculated as 91.2%
yield.

【表】 ン収率
(註)*…表1と同様にスルフアミン酸グアニ
ジン収率を91.2%として算出されたリ
ン酸グアニジン収率。
本発明方法においては、その実施に際して、ス
ルフアミン酸アンモニウム塩の共存下に、ジシア
ンジアミドと無機酸アンモニウム塩とを共融反応
せしめればよい。反応は、反応系が共融する温度
条件に加熱溶融せしめて行うことができ、この
際、所望により撹拌条件下に共融反応せしめるこ
とができる。共融反応温度は、用いる無機酸アン
モニウム塩の種類ならびに量、スルフアミン酸ア
ンモニウム塩の量、などによつても適宜に選択さ
れるが、例えば、約150〜約200℃、一層好ましく
は約160〜約190℃の如き共融温度を例示すること
ができる。反応時間も適宜に変更でき、例えば約
30分〜約5時間の如き反応時間を例示できる。
又、反応は大気圧条件下で行うことができるが、
望むならば、例えば10〜100気圧の如き加圧条件
を採用することもできる。 本発明方法の実施に際して、ジシアンジアミド
に対するスルフアミン酸アンモニウム塩及び無機
酸アンモニウム塩の使用量は適宜に変更可能であ
るが、例えば、目的に応じて、ジシアンジアミド
と無機酸アンモニウム塩のいずれか一方を他方に
対して計算量の5〜15%程度過剰に或は過少に使
用することができ、例えば反応物をそのままセル
ロース系用防炎剤として使用する場合などには、
ジシアンジアミドを過剰に使用することによつ
て、より優れた防炎剤適性を有する製品を得るこ
とができる。 本発明方法によれば、得られた共融反応生成物
は、反応温度条件下に溶融状態をなすため、反応
終了後、溶融状態で反応区域から容易に取り出し
回収することができる。得られたスルフアミン酸
グアニジンと他の無機酸グアニジン塩との混合物
は、そのまま利用することができる。列えば本願
反応生成物を有機合成用のグアニジン源として使
用したい場合、グアニジンは大部分の場合におい
て遊離塩基の形で作用させるものであるから、本
願反応物を水またはアルコールを溶媒として、苛
性アルカリ、アルカリ土類の水酸化物その他の強
アルカリ性物質をもつてグアニジンを遊離化して
使用すればよい。本願発明の反応生成物の代表例
であるスルフアミン酸グアニジン−硫酸グアニジ
ン混合物の場合、硫酸根やスルフアミン酸根が例
えば水に難溶性のアルカリ土類の塩として反応系
外に除去でき、本発明の大きな利点となる。又、
例えば、セルロース系用防炎剤への利用には、混
合物の両成分が互いにその長所を失わずに優れた
防炎剤効果を発揮できる利点がある。 なお、水に溶解して防炎剤液とする際に、所望
により、ホルマリン、パラホルム、トリオキサ
ン、ヘキサミンの如きホルムアルデヒド系化合物
を添加して、不溶部が生ずるのを防止することが
できる。 本発明方法は、ジシアンジアミドと無機酸アン
モニウム塩との共融反応に広く利用可能である
が、とくに硫酸アンモニウムや燐酸アンモニウム
との共融反応に好適に利用できる。又、塩化アン
モニウム、硝酸アンモニウムなどの共融反応にも
利用でき、例えば水不溶性副反応生成物の低減に
役立つ。 以下、比較例をまじえ、実施例により、本発明
方法実施の数態様について、さらに詳しく説明す
る。 実施例 1 ジシアンジアミド84g(1mol)、硫酸アンモニ
ウム66g(0.5mol)、スルフアミン酸アンモニウ
ム114g(1mol)を混合し、内容300mlの磁性ビ
ーカーにいれ、油浴中で撹拌下に加熱し、175℃
〜185℃に1時間保持した。反応物は120℃以下に
ならなければ固化しないからそれ以上の温度では
容器から容易に流し出すかまたはかき出すことが
できる。反応物中のグアニジン含量は遊離塩基と
して(以下の例においても同様)106.3g、収率
は90.1%で、また反応物を200mlの水で処理した
ときの水不溶性物の量は3.3gであつた。 ジシアンジアミド1molとスルフアミン酸アン
モニウム2molを上記と同一条件下に反応させた
ときのスルフアミン酸グアニジン収率は91.2%で
あつた(水不溶性物はなし)。この値を用いて上
記反応の硫酸グアニジン収率を算出すると89.0%
であつた。 比較例 1 ジシアンジアミド84g(1mol)、硫酸アンモニ
ウム132g(1mol)を実施例1と同じ条件下に共
融反応させた。反応中に生成物の結晶が析出して
撹拌困難となり最後に反応系全体が固化した。反
応終了後反応物をかき出しによつて容器から取出
すことは極めて困難であるから熱水に溶解させて
回収した。グアニジン生成量は遊離塩基として
75.9g、硫酸グアニジンとして138.9gで収率は
64.3%であつた。また反応物を400mlの水で処理
したときの水不溶性物の量は19.2gであつた。 実施例 2 ジシアンジアミド84g(1mol)、硫酸アンモニ
ウム79.2g(0.6mol)、スルフアミン酸アンモニ
ウム91.2g(0.8mol)の混合物を実施例1と同じ
条件下に共融反応させて、グアニジン含量105.3
gの生成物を得た、収率89.2%。また反応物を
200mlの水で処理したときの水不溶性物の量は4.1
gであつた。 この反応の硫酸グアニジン収率は実施例1と同
様の方法で算出すると88.0%であつた。 実施例 3 内容500mlの磁性ビーカーにジシアンジアミド
84g(1mol)、リン酸2アンモニウム26.4g
(0.2mol)、スルフアミン酸アンモニウム182.4g
(1.6mol)をいれ、よく混合したのち、油浴を用
いて撹拌下に加熱し、温度175℃〜185℃に1時間
保持した。反応生成物中のグアニジン含量は
102.6g、収率86.4%、水不溶性物の量は1.2gで
あつた。またこの反応のリン酸グアニジン収率を
実施例1と同様の方法で算出すると67.7%であつ
た。 比較例 2 ジシアンジアミド84g(1mol)、リン酸2アン
モニウム132g(1mol)を実施例3と同様の条件
下で共融反応させた。反応生成物中のグアニジン
含量は遊離塩基として60.8g、リン酸グアニジン
として111.2gで収率は51.5%であつた。また反
応生成物を1の水で処理したときの水不溶性物
の量は9.2gであつた。 実施例 4 内容300mlの磁性ビーカーにジシアンジアミド
84g(1mol)、塩化アンモニウム71.3g
(1.33mol)、スルフアミン酸アンモニウム76g
(0.67mol)をいれ、よく混合したのち、油浴を用
いて撹拌下に加熱し175℃〜185℃に1時間保持し
た。反応生成物中のグアニジン含量は遊離塩基と
して108.9g、収率92.3%であつた。また反応生
成物を200mlの水で処理したときの水不溶性物の
量は1.2gであつた。
[Table] Yield *
(Note) *…As in Table 1, guani sulfamate
Guanidine phosphate yield calculated assuming 91.2% guanidine phosphate yield.
In carrying out the method of the present invention, dicyandiamide and an inorganic acid ammonium salt may be subjected to a eutectic reaction in the presence of an ammonium sulfamate salt. The reaction can be carried out by heating and melting the reaction system under temperature conditions that produce eutectic melting. At this time, if desired, the eutectic reaction can be carried out under stirring conditions. The eutectic reaction temperature is appropriately selected depending on the type and amount of inorganic acid ammonium salt used, the amount of sulfamic acid ammonium salt, etc., but is, for example, about 150 to about 200°C, more preferably about 160 to about 200°C. A eutectic temperature such as about 190°C can be exemplified. The reaction time can also be changed as appropriate, for example about
Reaction times such as 30 minutes to about 5 hours can be exemplified.
Also, the reaction can be carried out under atmospheric pressure conditions,
If desired, pressurized conditions such as 10 to 100 atmospheres can be employed. When implementing the method of the present invention, the amounts of sulfamic acid ammonium salt and inorganic acid ammonium salt relative to dicyandiamide can be changed as appropriate; For example, when using the reactant as it is as a flame retardant for cellulose,
By using excess dicyandiamide, products with better flame retardant suitability can be obtained. According to the method of the present invention, the obtained eutectic reaction product is in a molten state under the reaction temperature conditions, so that it can be easily taken out and recovered from the reaction zone in a molten state after the reaction is completed. The obtained mixture of guanidine sulfamate and other inorganic acid guanidine salts can be used as is. For example, if it is desired to use the reaction product of the present invention as a guanidine source for organic synthesis, since guanidine acts in the form of a free base in most cases, the reaction product of the present invention is reacted with water or alcohol as a solvent, and in a caustic alkali solution. , guanidine may be liberated with an alkaline earth hydroxide or other strong alkaline substance before use. In the case of a guanidine sulfamate-guanidine sulfate mixture, which is a typical example of the reaction product of the present invention, the sulfate group and the sulfamate group can be removed from the reaction system as, for example, an alkaline earth salt that is sparingly soluble in water. It is an advantage. or,
For example, when used as a flame retardant for cellulose, there is an advantage that both components of the mixture can exhibit excellent flame retardant effects without losing their advantages. In addition, when dissolving in water to obtain a flame retardant liquid, if desired, a formaldehyde compound such as formalin, paraform, trioxane, or hexamine may be added to prevent the formation of an insoluble portion. The method of the present invention can be widely used for eutectic reactions between dicyandiamide and inorganic acid ammonium salts, and is particularly suitable for eutectic reactions with ammonium sulfate or ammonium phosphate. It can also be used in eutectic reactions with ammonium chloride, ammonium nitrate, etc., and is useful for reducing water-insoluble side reaction products, for example. Hereinafter, several embodiments of the method of the present invention will be explained in more detail by way of examples and comparative examples. Example 1 84 g (1 mol) of dicyandiamide, 66 g (0.5 mol) of ammonium sulfate, and 114 g (1 mol) of ammonium sulfamate were mixed, placed in a 300 ml magnetic beaker, heated with stirring in an oil bath, and heated to 175°C.
Hold at ~185°C for 1 hour. The reactants do not solidify unless the temperature is below 120°C, so they can be easily poured or scraped out of the container at higher temperatures. The content of guanidine in the reaction product was 106.3 g as a free base (same in the following examples), the yield was 90.1%, and the amount of water-insoluble material was 3.3 g when the reaction product was treated with 200 ml of water. Ta. When 1 mol of dicyandiamide and 2 mol of ammonium sulfamate were reacted under the same conditions as above, the yield of guanidine sulfamate was 91.2% (no water-insoluble substances were present). Using this value to calculate the yield of guanidine sulfate for the above reaction, it is 89.0%.
It was hot. Comparative Example 1 84 g (1 mol) of dicyandiamide and 132 g (1 mol) of ammonium sulfate were subjected to a eutectic reaction under the same conditions as in Example 1. During the reaction, crystals of the product precipitated, making stirring difficult and finally solidifying the entire reaction system. After the reaction was completed, it was extremely difficult to remove the reactant from the container by scraping it out, so it was recovered by dissolving it in hot water. Guanidine production amount as free base
The yield is 75.9g and 138.9g as guanidine sulfate.
It was 64.3%. Further, when the reaction product was treated with 400 ml of water, the amount of water-insoluble material was 19.2 g. Example 2 A mixture of 84 g (1 mol) of dicyandiamide, 79.2 g (0.6 mol) of ammonium sulfate, and 91.2 g (0.8 mol) of ammonium sulfamate was subjected to a eutectic reaction under the same conditions as in Example 1, and the guanidine content was 105.3.
g of product was obtained, yield 89.2%. Also, the reactants
The amount of water-insoluble substances when treated with 200ml of water is 4.1
It was hot at g. The yield of guanidine sulfate in this reaction was calculated in the same manner as in Example 1 and was 88.0%. Example 3 Dicyandiamide in a 500ml magnetic beaker
84g (1mol), diammonium phosphate 26.4g
(0.2mol), ammonium sulfamate 182.4g
(1.6 mol) was added, mixed well, and then heated using an oil bath while stirring, and maintained at a temperature of 175°C to 185°C for 1 hour. The guanidine content in the reaction product is
102.6g, yield 86.4%, amount of water-insoluble material was 1.2g. Further, the yield of guanidine phosphate in this reaction was calculated in the same manner as in Example 1 and was 67.7%. Comparative Example 2 84 g (1 mol) of dicyandiamide and 132 g (1 mol) of diammonium phosphate were subjected to a eutectic reaction under the same conditions as in Example 3. The guanidine content in the reaction product was 60.8 g as a free base, 111.2 g as guanidine phosphate, and the yield was 51.5%. Further, when the reaction product was treated with 1 water, the amount of water-insoluble substances was 9.2 g. Example 4 Dicyandiamide in a 300ml magnetic beaker
84g (1mol), ammonium chloride 71.3g
(1.33mol), ammonium sulfamate 76g
(0.67 mol) was added, mixed well, and then heated using an oil bath while stirring and maintained at 175°C to 185°C for 1 hour. The guanidine content in the reaction product was 108.9 g as a free base, and the yield was 92.3%. Further, when the reaction product was treated with 200 ml of water, the amount of water-insoluble substances was 1.2 g.

Claims (1)

【特許請求の範囲】[Claims] 1 スルフアミン酸アンモニウム塩の共存下に、
ジシアンジアミドと無機酸アンモニウム塩とを共
融反応せしめることを特徴とするグアニジン無機
酸塩の製法。
1 In the presence of ammonium sulfamate salt,
A method for producing a guanidine inorganic acid salt, which comprises causing a eutectic reaction between dicyandiamide and an inorganic acid ammonium salt.
JP9034578A 1978-07-26 1978-07-26 Production of inorganic acid salt of guanidine Granted JPS5519204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9034578A JPS5519204A (en) 1978-07-26 1978-07-26 Production of inorganic acid salt of guanidine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9034578A JPS5519204A (en) 1978-07-26 1978-07-26 Production of inorganic acid salt of guanidine

Publications (2)

Publication Number Publication Date
JPS5519204A JPS5519204A (en) 1980-02-09
JPS6141348B2 true JPS6141348B2 (en) 1986-09-13

Family

ID=13995930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9034578A Granted JPS5519204A (en) 1978-07-26 1978-07-26 Production of inorganic acid salt of guanidine

Country Status (1)

Country Link
JP (1) JPS5519204A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115380A (en) * 1980-02-15 1981-09-10 Chisso Corp Flame-retardant and its preparation
JPS56116773A (en) * 1980-02-21 1981-09-12 Chisso Corp Fire retardant and preparation thereof
JP2683762B2 (en) * 1991-10-30 1997-12-03 千代田化工建設株式会社 Method for producing bisphenol A / phenol crystal adduct having good hue
AT402819B (en) * 1995-02-06 1997-09-25 Chemie Linz Gmbh METHOD FOR PRODUCING GUANIDINE OR MELAMINE PHOSPHATES
DE19506330A1 (en) * 1995-02-23 1996-08-29 Chemie Linz Deutschland Gmbh I Prepn. of guanidine phosphate or melamine phosphate

Also Published As

Publication number Publication date
JPS5519204A (en) 1980-02-09

Similar Documents

Publication Publication Date Title
US2371100A (en) Tavailabl
US3030376A (en) Preparation of 4-methylimidazole from glucose
JPS6141348B2 (en)
US2464247A (en) Preparation of guanidine sulfates
US3073843A (en) Preparation of n-hydroxymethyl pyrrolidone
US2230965A (en) Process of preparing guanyl taurine
US3383408A (en) Process for preparing (1-alkylalkyl) guanidine salts
FI103790B (en) Process for the preparation of N-hydroxy-N'-diazenium oxides
JPH0244472B2 (en)
GB2125036A (en) Process for the preparation of the anhydride of n-formyl-l-aspartic acid
US3689502A (en) Preparation of n-(2-alkylthioethyl) nitroimidazoles
US2712002A (en) Method for purifying crude cyanuric
KR100549354B1 (en) Method of Purifying Ketosan
US2884415A (en) Oxidation of 2, 5-dialkyl pyridines
US3478101A (en) Method of resolving dl-ephedrine into its optically active components
JPS6127979A (en) Preparation of hydroxyflavan compound
JPS60239456A (en) Improved synthesis of sulfonated sulfonated rubrene
US3043864A (en) Process for the production of cyclohexylsulfamates
US3314989A (en) Process of preparing n-methyl-5-nitroisophthalamic acid
US3360555A (en) Process for producing monosodium glutamate
JPS61137838A (en) Production of 3,3',4,4'-biphenyltetracarboxylic acid salt
JPS5838268A (en) Preparation of uracil
JPH06329634A (en) Production of 3-amino-5-methylpyrazole
JPS61221160A (en) Production of (meth)acrylamide
US3075824A (en) Manganese pentacarbonyl hydride and a process for its preparation