JPS6140980B2 - - Google Patents

Info

Publication number
JPS6140980B2
JPS6140980B2 JP53064238A JP6423878A JPS6140980B2 JP S6140980 B2 JPS6140980 B2 JP S6140980B2 JP 53064238 A JP53064238 A JP 53064238A JP 6423878 A JP6423878 A JP 6423878A JP S6140980 B2 JPS6140980 B2 JP S6140980B2
Authority
JP
Japan
Prior art keywords
layer
germanium
metal layer
main metal
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53064238A
Other languages
Japanese (ja)
Other versions
JPS54156521A (en
Inventor
Akira Fuje
Takeshi Ueda
Hidehiko Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6423878A priority Critical patent/JPS54156521A/en
Publication of JPS54156521A publication Critical patent/JPS54156521A/en
Publication of JPS6140980B2 publication Critical patent/JPS6140980B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、優れた画像形成能を有し、かつ安定
性の改良された画像形成用材料に関するものであ
る。 基板上に金属層を設けた画像形成用材料は、す
でにいくつか知られているが、画像形成方法とし
て、いわゆる金属層の分散を利用したものに対し
ては、従来、画像形成能および安定性ともに良好
なものは見出されていなかつた。 上記の金属層の分散とは、光や熱の印加によつ
て、上記金属層を溶融させ、表面張力を利用し
て、比較的不連続な小粒子の集合体へと変化させ
ることを意味する。このような金属層の形状的な
変化を利用した画像形成用材料としては、たとえ
ば、特開昭51−59626号公報に記載されているよ
うに、金属層としてビスマスを用いたものが知ら
れている。 しかしながら、本発明者らが検討した結果で
は、ポリエステルフイルム上に蒸着されたビスマ
スは階調性を示さず、解像力が低く、また酸化さ
れやすいために、光学濃度が経時的に減少した
り、感度および解像力の変化が大きいものであつ
た。 このような状況に鑑み、上記諸性質の改良を図
るため、鋭意検討を進めた結果、下記の結果を得
て、本発明を完成するに到つた。 (1) 階調性および解像力等の画像形成能を改良す
るには、主金属層として鉛層の上にビスマス層
を設け、該主金属層とビスマスとの重量割合が
30:70から70:30であることが好ましい。 (2) 主金属層に接して、上下にゲルマニウムまた
は酸化ゲルマニウムの層を設けることにより、
安定性が改良され、かつ画像形成能もさらに改
良される。 主金属層は、蒸着、スパツタリング、イオンプ
レーテイングその他の薄膜形成技術により形成す
ることができるが、条件によつては、鉛ついでビ
スマスを積層する場合に、鉛とビスマスの合金化
が起きることがある。このことは、何ら差しつか
えがない。 このような主金属層に対し、ゲルマニウムまた
は酸化ゲルマニウムを設けるが、顕著な安定性改
良効果が認められるため、安定化層と呼ぶ。しか
しながら、安定性のみの改良にとどまらず、画像
形成能も改良される。 上記安定化層としてのゲルマニウムまたは酸化
ゲルマニウムは、主金属層の上下に設けることが
最も好ましく、主金属層の上層のみあるいは下層
のみでは比較的改良効果は小さい。 安定化層を主金属層の上下に設けることによ
り、光学濃度の経時的減少は極めて小さくなり、
感度変化や階調性変化もおさえられ、また最小光
学濃度(ODmin)の低下、階調性、感度の改良
等を実現することができる。 ゲルマニウムまたは酸化ゲルマニウムは、蒸
着、スパツタリング、イオンプレーテイング等に
よつて層形成が可能である。ただし、これらは、
条件によつては、ゲルマニウム、二酸化ゲルマニ
ウム、ゲルマニウムの低級酸化物等の混合物とし
て層形成されることが多い。しかしながら、その
ことによつて、本発明の効果が損われるものでは
ない。 本発明において用いられる基板は、ガラス、マ
イカ等の無機材料の他、有機材料として、ポリエ
ステル、酢酸セルロース、ニトロセルロース、ポ
リエチレン、ポリプロピレン、ポリ塩化ビニル、
ポリアミド、ポリスチレン、ポリメチルメタクリ
レート等のフイルムや板が挙げられるが、これら
に限定されない。また、あらかじめこれらの材料
に下引き層を設けておいてもよい。上記基板の中
ではポリエステルフイルムが好ましい。 主金属層は。前述のように鉛とビスマスを含む
が、その割合は巾広くとることができる。好まし
くは、鉛とビスマスの重量割合が30:70から70:
30である。ビスマスが多くなると階調性や解像力
の点で不十分になりやすく、鉛が多くなると感度
が悪くなりやすい。主金属層には第三成分を含ん
でもよい。そのような例としては、インジウム、
アルミニウム、スズ、亜鉛、アンチモン、セレ
ン、テルル、カドミウム、タリウム、金、パラジ
ウム、銅、マグネシウム、ロジウム、ゲルマニウ
ム、マンガン、クロム等の単体や、酸化鉛、酸化
ビスマス、酸化ゲルマニウム、酸化スズ、酸化ケ
イ素等の化合物を挙げることができ、画像形成能
の点より、40重量%以下である。 主金属層の厚さは、用途に応じて決められる
が、ほぼ100Å〜5000Åである。 安定化層としてのゲルマニウムまたは酸化ゲル
マニウムについては、5Å〜300Å程度の膜厚が
好ましい。安定性改良のためには、基板と主金属
層との中間に設けたゲルマニウムまたか酸化ゲル
マニウム層(主金属層の下層と呼ぶ)の存在が重
要である。しかしながら、この下層は、主金属層
の形成時の構造を規制したり、表面張力への影響
もあり、画像形成能の点も考慮して、適正な膜厚
を設定する。とくに、ゲルマニウムでは5〜50Å
が好ましく、酸化ゲルマニウムでは10〜150Åが
好ましい。安定性改良の点からは、主金属層のも
う一つの面(上層と呼ぶ)にもゲルマニウムまた
は酸化ゲルマニウムを設けることが必要であり、
上層も、表面張力への影響がある他、主金属層が
形状変化する際の障壁とならないように、5Å〜
200Åの間で膜厚を選定する。ゲルマニウムは薄
目の方がよい。 最外層として有機高分子を主体とする層を設け
ることは、本発明の目的に照して好ましいことで
ある。この層は分散性、安定性改良にも有効な場
合がある他、機械的損傷の保護にも役立つ。 このような有機高分子としては、たとえば、ポ
リ塩化ビニリデン、塩化ビニリデンとアクリロニ
トリル共重合体、ポリ塩化ビニル、ポリイミド、
ポリビニルシンナメート、ポリイソプレン、ポリ
ブタジエン、ポリスチレン、ポリメチルメタクリ
レート、ポリウレタン、ポリビニルブチラール、
フツ素ゴム、ポリアミド、ポリエステル、ポリエ
ポキシ、シリコーン樹脂、酢酸セルロース等の単
独または混合物が挙げられる。中でも、ポリエス
テル、フツ素ゴムは好ましいものである。これら
に対して、シリコーンオイル、帯電防止剤、架橋
剤等の添加は工程性能や膜強度の改良の点から好
ましい。もちろん、有機高分子を主体とする層を
2層以上重ねてもよい。これらは、有機高分子を
適当な溶剤に溶解して、塗布するか、または薄い
フイルムとしてラミネートする方法により、0.1
μ〜10μの厚さに設ける。好ましくは2μ以下で
ある。 本発明の画像形成用材料は上記のような構成よ
りなるが、画像を形成する一つの方法は、主金属
層を分散させるに十分なエネルギーをパターン状
に印加させる方法である。具体的には、適当なコ
ントラストを有するマスクを重ねて、転写する。
この場合のマスクは、光透過率の異なる画像を有
していてもよい。マスクとしては、クロムマス
ク、ドライシルバーフイルム、ジアゾフイル等が
用いられる。転写する際のエネルギーとしては、
パルス型の輻射エネルギーが好ましく、フラツシ
ユランプ、中でもキセノンフラツシユランプが好
ましい。また、赤外線ランプ、レーザー光、電子
ビーム等に対しても画像形成を行なうことができ
る。 マスクを通して光を照射する代りに光照射を基
板側から行ない、照射面の反対側に熱伝導率の異
なる材料を接触させておくことによつても画像を
形成しうる。 レーザー光に対しては、スポツト形成も可能で
ある。この場合には一部主金属層の蒸発を併なう
場合もあるが、その前に表面張力の作用による形
状変化が生じていることが普通であるため、本発
明の画像形成用材料の改良された諸性質は有用で
ある。 スポツト形成には熱を使うこともできる。いわ
ゆるヒートヘツドによつて、主金属層の形状変化
を起こさせ、画像を形成することもできる。 上記のように広範な画像形成方法が適用できる
ため、本発明の画像形成用材料は多くの分野で使
用することができる。とくに好ましいのは、ロー
ル状またはカード状のマイクロフイルムであり、
その他、ビデオデイスク、複写フイルム、印刷用
基材等においても有用である。 以下に実施例を挙げるが、実施例中の性能につ
いては、以下のような判定によつた。 画像形成能は主にキセノンフラツシユランプを
用いて判定した。感度は、一定の光学濃度に到達
させうるためのキセノンランプへの入力電圧の大
小により判定した。階調性はステツプタブレツト
を写し込んだマスクフイルムを転写し、マスクフ
イルムの光学濃度と、転写された画像部の対応す
る部分の光学濃度とを測定し、その直線部分の勾
配より、ガンマー(γ)として求めて判定した。
解像力は解像カテストターゲツトを写し込んだマ
スクを転写し測定した。 安定性は40℃90%RHの恒温恒湿柾内に放置し
た場合の光学濃度、感度、解像力等の変化により
判定した。 実施例 1 150μのポリエステルフイルム上に、高純度の
ゲルマニウムを蒸着し(下層ゲルマニウム)、膜
厚を15Åとした。ついで、鉛を蒸着し、350Åの
膜厚とし、他のボートからビスマスを蒸着し、
300Åの厚さになるまで積層した。最後に、ゲル
マニウムを蒸着により(上層ゲルマニウム)15Å
積層した。 このフイルムを評価した結果は下記の通りであ
る。 感度 850ボルト γ 3 解像力 200本/mm 安定性(10日間放置) 光学濃度低下率 5% 感度 870ボルト 解像力 180本/mm 比較例 1 実施例1において、上下のゲルマニウム層の効
果を調べるため、ほぼ同一条件の蒸着により第1
表に示した構造をもつフイルムをつくり評価し
た。
The present invention relates to an image-forming material having excellent image-forming ability and improved stability. Some image-forming materials with a metal layer provided on a substrate are already known, but image-forming methods that utilize so-called metal layer dispersion have traditionally had poor image-forming ability and stability. Neither of them were found to be good. Dispersion of the metal layer described above means melting the metal layer by applying light or heat and using surface tension to transform it into an aggregate of relatively discontinuous small particles. . As an image forming material that utilizes such a change in the shape of a metal layer, for example, one using bismuth as a metal layer is known, as described in Japanese Patent Application Laid-Open No. 51-59626. There is. However, according to the results of studies conducted by the present inventors, bismuth deposited on a polyester film does not exhibit gradation, has low resolution, and is easily oxidized, resulting in a decrease in optical density over time and a decrease in sensitivity. and the change in resolution was large. In view of this situation, as a result of intensive studies aimed at improving the above-mentioned properties, the following results were obtained and the present invention was completed. (1) In order to improve image forming performance such as gradation and resolution, a bismuth layer is provided on the lead layer as the main metal layer, and the weight ratio of the main metal layer and bismuth is
Preferably from 30:70 to 70:30. (2) By providing layers of germanium or germanium oxide above and below the main metal layer,
Stability is improved and imageability is further improved. The main metal layer can be formed by vapor deposition, sputtering, ion plating, or other thin film formation techniques, but depending on the conditions, alloying of lead and bismuth may occur when layering lead and then bismuth. be. There is nothing wrong with this. Germanium or germanium oxide is provided on such a main metal layer, and it is called a stabilizing layer because it has a remarkable effect of improving stability. However, not only the stability is improved, but also the image forming ability is improved. It is most preferable to provide germanium or germanium oxide as the above-mentioned stabilizing layer above and below the main metal layer, and the improvement effect is relatively small if only the upper layer or the lower layer of the main metal layer is used. By providing stabilizing layers above and below the main metal layer, the decrease in optical density over time is extremely small.
Changes in sensitivity and gradation can be suppressed, and it is also possible to reduce minimum optical density (ODmin) and improve gradation and sensitivity. A layer of germanium or germanium oxide can be formed by vapor deposition, sputtering, ion plating, or the like. However, these
Depending on the conditions, a layer is often formed as a mixture of germanium, germanium dioxide, lower oxides of germanium, and the like. However, this does not impair the effects of the present invention. The substrate used in the present invention includes inorganic materials such as glass and mica, as well as organic materials such as polyester, cellulose acetate, nitrocellulose, polyethylene, polypropylene, polyvinyl chloride,
Examples include, but are not limited to, films and plates made of polyamide, polystyrene, polymethyl methacrylate, and the like. Further, an undercoat layer may be provided on these materials in advance. Among the above substrates, polyester film is preferred. The main metal layer. As mentioned above, it contains lead and bismuth, but their proportions can vary widely. Preferably, the weight ratio of lead and bismuth is 30:70 to 70:
It is 30. If the amount of bismuth increases, gradation and resolution tend to be insufficient, and if the amount of lead increases, sensitivity tends to deteriorate. The main metal layer may include a third component. Such examples include indium,
Aluminum, tin, zinc, antimony, selenium, tellurium, cadmium, thallium, gold, palladium, copper, magnesium, rhodium, germanium, manganese, chromium, etc., as well as lead oxide, bismuth oxide, germanium oxide, tin oxide, silicon oxide From the viewpoint of image forming ability, the amount is 40% by weight or less. The thickness of the main metal layer is determined depending on the application, but is approximately 100 Å to 5000 Å. Regarding germanium or germanium oxide as the stabilizing layer, the film thickness is preferably about 5 Å to 300 Å. For improved stability, the presence of a germanium or germanium oxide layer (referred to as a layer below the main metal layer) is important between the substrate and the main metal layer. However, this lower layer regulates the structure of the main metal layer when it is formed and has an effect on surface tension, so the proper film thickness is set in consideration of image forming ability. In particular, germanium has a thickness of 5 to 50 Å.
is preferable, and for germanium oxide, 10 to 150 Å is preferable. From the point of view of improving stability, it is necessary to provide germanium or germanium oxide on the other side of the main metal layer (referred to as the upper layer).
The upper layer also has a thickness of 5 Å or more so that it does not affect the surface tension and becomes a barrier to the shape change of the main metal layer.
Select a film thickness between 200 Å. The thinner the germanium, the better. In light of the purpose of the present invention, it is preferable to provide a layer mainly composed of an organic polymer as the outermost layer. This layer may be effective in improving dispersion and stability, and may also help protect against mechanical damage. Examples of such organic polymers include polyvinylidene chloride, vinylidene chloride and acrylonitrile copolymer, polyvinyl chloride, polyimide,
Polyvinyl cinnamate, polyisoprene, polybutadiene, polystyrene, polymethyl methacrylate, polyurethane, polyvinyl butyral,
Examples include fluororubber, polyamide, polyester, polyepoxy, silicone resin, cellulose acetate, etc., singly or in mixtures. Among these, polyester and fluororubber are preferred. To these, addition of silicone oil, antistatic agent, crosslinking agent, etc. is preferable from the viewpoint of improving process performance and film strength. Of course, two or more layers mainly composed of organic polymers may be stacked. These can be prepared by dissolving the organic polymer in a suitable solvent and applying it or laminating it as a thin film.
Provide a thickness of μ to 10μ. Preferably it is 2μ or less. The image-forming material of the present invention has the above-described structure, and one method for forming an image is to apply energy sufficient to disperse the main metal layer in a pattern. Specifically, masks having appropriate contrast are overlapped and transferred.
The mask in this case may have images with different light transmittances. As the mask, a chrome mask, dry silver film, diazo film, etc. are used. The energy during transfer is
Pulsed radiant energy is preferred, and flash lamps, particularly xenon flash lamps, are preferred. Further, image formation can also be performed using infrared lamps, laser beams, electron beams, and the like. Instead of irradiating light through a mask, an image can also be formed by irradiating light from the substrate side and bringing a material with a different thermal conductivity into contact with the opposite side of the irradiated surface. Spot formation is also possible with laser light. In this case, some of the main metal layer may evaporate, but before that, a shape change due to the action of surface tension usually occurs, so the improvement of the image forming material of the present invention The properties described are useful. Heat can also be used to form spots. It is also possible to form an image by causing a change in the shape of the main metal layer by means of a so-called heat head. Since a wide range of image forming methods can be applied as described above, the image forming material of the present invention can be used in many fields. Particularly preferred is a roll-shaped or card-shaped microfilm,
In addition, it is useful for video discs, copying films, printing substrates, etc. Examples are given below, and the performance in the examples was determined as follows. Image forming ability was mainly determined using a xenon flash lamp. Sensitivity was determined by the magnitude of the input voltage to the xenon lamp to reach a certain optical density. The gradation is determined by transferring a mask film with the step tablet imprinted on it, measuring the optical density of the mask film and the optical density of the corresponding part of the transferred image area, and using the slope of the straight line part, gamma ( γ).
The resolution was measured by transferring a mask with a resolution target. Stability was determined by changes in optical density, sensitivity, resolution, etc. when left in a constant temperature and humidity environment at 40°C and 90% RH. Example 1 Highly purified germanium was deposited on a 150 μm polyester film (lower layer germanium) to a film thickness of 15 Å. Next, lead was evaporated to a film thickness of 350 Å, and bismuth was evaporated from another boat.
The layers were stacked to a thickness of 300 Å. Finally, germanium is deposited (upper layer germanium) to 15Å
Laminated. The results of evaluating this film are as follows. Sensitivity 850 volts γ 3 Resolution 200 lines/mm Stability (left for 10 days) Optical density reduction rate 5% Sensitivity 870 volts Resolution 180 lines/mm Comparative example 1 In Example 1, in order to investigate the effect of the upper and lower germanium layers, approximately By vapor deposition under the same conditions, the first
Films with the structures shown in the table were made and evaluated.

【表】 実施例 2 120μのポリエステルフイルム上に、99.99%の
純度の二酸化ゲルマニウムのターゲツトにより、
RFスパツタリングによつて50Åの厚さに酸化ゲ
ルマニウム層を設け、鉛を入れたボートとビスマ
スを入れたボートから蒸着によつて鉛およびビス
マスを飛ばし、酸化ゲルマニウム層上に鉛600
Å、ビスマス500Åの膜厚の割合になるように設
けた。ついで、スパツタリングによつて、酸化ゲ
ルマニウム層を30Å設けた。このフイルムは感度
830V、γ3.0、解像力200本/mm、安定性として
は、光学濃度の低下率(14日間)5%、感度
850V、解像力180本/mmであつた。 さらに、フツ素ゴム(商品名Technoflon)を
メチルエチルケトンに溶解したものを塗布し乾燥
して0.5μの厚さに設けた場合には、γが2.5とな
り光学濃度の低下率2%、解像力として200本/
mmを維持した。 実施例 3 100μの酢酸セルロースフイルム上に蒸着に、
よつてゲルマニウムを20Åの厚さに設けた。この
上に蒸着により鉛を積層し、200Å積層した段階
で、鉛の蒸着をつづけながら、他のボートに入れ
たビスマスの蒸着を開始し、全体として鉛が400
Å、ビスマスが200Åの膜厚となつたところで、
鉛の蒸着を止め、ビスマスのみの蒸着を続けてさ
らに200Å積層した。ついで、蒸着によつて酸化
ゲルマニウムを40Å設けた。このフイルムにポリ
エステル樹脂(商品名Vyron)をエトキシエチル
アセテートに溶解したものを塗布し乾燥後の0.4
μの膜厚に設けた。 フイルムは、感度820V、γ2.0、解像力220
本/mmを示し、安定性評価では、1カ月放置で、
光学濃度低下率3%、感度、解像力ともほとんど
変化しなかつた。
[Table] Example 2 A germanium dioxide target of 99.99% purity was deposited on a 120μ polyester film.
A germanium oxide layer with a thickness of 50 Å was formed by RF sputtering, and lead and bismuth were removed by vapor deposition from a boat containing lead and a boat containing bismuth, and a layer of lead 600 nm was deposited on the germanium oxide layer.
The thickness of the bismuth film was 500 Å. Then, a germanium oxide layer with a thickness of 30 Å was formed by sputtering. This film has a sensitivity
830V, γ3.0, resolution 200 lines/mm, stability: optical density decrease rate (14 days) 5%, sensitivity
It was 850V and had a resolution of 180 lines/mm. Furthermore, when fluorocarbon rubber (trade name: Technoflon) dissolved in methyl ethyl ketone is applied and dried to a thickness of 0.5μ, γ is 2.5, the optical density decreases by 2%, and the resolution is 200 lines. /
mm was maintained. Example 3 Vapor deposition on 100μ cellulose acetate film,
Therefore, germanium was provided to a thickness of 20 Å. Lead was layered on top of this by vapor deposition, and when a layer of 200 Å was layered, while continuing the lead vapor deposition, the bismuth placed in another boat was started, resulting in a total of 400 Å of lead.
Å, when the bismuth film has a thickness of 200 Å,
The evaporation of lead was stopped and only bismuth was continued to be deposited to form an additional layer of 200 Å. Then, germanium oxide was deposited to a thickness of 40 Å by vapor deposition. A polyester resin (trade name: Vyron) dissolved in ethoxyethyl acetate was applied to this film, and after drying,
The film thickness was set at μ. The film has a sensitivity of 820V, γ2.0, and a resolution of 220.
In the stability evaluation, after leaving it for one month,
The optical density reduction rate was 3%, and there was almost no change in sensitivity or resolution.

Claims (1)

【特許請求の範囲】[Claims] 1 基板、主金属層および安定化層からなり、主
金属層は鉛層の上にビスマス層を設け、該主金属
層の鉛とビスマスとの重量割合が30:70から70:
30であり、安定化層はゲルマニウムまたは酸化ゲ
ルマニウムであつて、安定化層が主金属層に接し
て上下に設けられていることを特徴とする画像形
成用材料。
1 Consisting of a substrate, a main metal layer, and a stabilizing layer, the main metal layer has a bismuth layer on a lead layer, and the weight ratio of lead and bismuth in the main metal layer is 30:70 to 70:
30, wherein the stabilizing layer is made of germanium or germanium oxide, and the stabilizing layer is provided above and below the main metal layer in contact with the main metal layer.
JP6423878A 1978-05-31 1978-05-31 Picture forming material Granted JPS54156521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6423878A JPS54156521A (en) 1978-05-31 1978-05-31 Picture forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6423878A JPS54156521A (en) 1978-05-31 1978-05-31 Picture forming material

Publications (2)

Publication Number Publication Date
JPS54156521A JPS54156521A (en) 1979-12-10
JPS6140980B2 true JPS6140980B2 (en) 1986-09-12

Family

ID=13252346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6423878A Granted JPS54156521A (en) 1978-05-31 1978-05-31 Picture forming material

Country Status (1)

Country Link
JP (1) JPS54156521A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105993A (en) * 1980-01-29 1981-08-22 Nec Corp Laser heat mode recording film
JPS5724040A (en) * 1980-07-18 1982-02-08 Sony Corp Information recording medium
JPS5741997A (en) * 1980-08-27 1982-03-09 Asahi Chem Ind Co Ltd Information recording member
JPS57195336A (en) * 1981-05-26 1982-12-01 Mitsui Toatsu Chem Inc Recording and record reading method and recorded body
JPS57195341A (en) * 1981-05-26 1982-12-01 Mitsui Toatsu Chem Inc Optical reproducing disk or sheet
CN85104504A (en) * 1984-11-01 1986-04-10 能源转换装置公司 The formation method of optical data storage device
JP2538046B2 (en) * 1989-04-10 1996-09-25 松下電器産業株式会社 Optical information recording / reproducing / erasing member

Also Published As

Publication number Publication date
JPS54156521A (en) 1979-12-10

Similar Documents

Publication Publication Date Title
DE2519403A1 (en) CARRIER MATERIAL AND ITS USE IN A PHOTOGRAPHICAL RECORDING MATERIAL
JPH0363603A (en) Method of manufacturing grid line for thermal transfer color filter array element
JPS6140980B2 (en)
DE2325729C2 (en) Radiation-sensitive photographic recording material with an antistatic adhesive layer
US4137078A (en) Method of continuous tone imaging using dispersion imaging material
DE1597756A1 (en) Mask for producing a mask by exposure and manufacturing process
JP2004240039A (en) Color composition and photosensitive transfer material for manufacturing black matrix, black matrix and its manufacturing method, color filter, liquid crystal display element, and black matrix substrate
EP0176693A2 (en) Process for protecting vapor-deposited metal layers
JP2926622B2 (en) Pattern formation method
US4243746A (en) Dispersion imaging material and method of producing image thereon
JPS5945443A (en) Manufacture of chrome mask
US4266009A (en) Imaging material and method of producing image thereon
CA1092877A (en) Photosensitive film and methods
JPS595116B2 (en) Dry processing image forming method
US3790380A (en) Image recording medium and process
US6124075A (en) Laser ablative recording material
EP0087317B1 (en) Cold water soluble gelatin and process
DE2543008A1 (en) METHOD OF FORMATION OF A TRANSPARENT CONDUCTIVE LAYER AND PHOTOGRAPHICAL RECORDING MATERIAL CONTAINING THIS LAYER
US6696233B2 (en) Silver halide photographic photosensitive material having a polyethylene terephthalate film base support into which ultraviolet light absorber is kneaded
US3219449A (en) Photographic medium having a binder-free silver halide layer and methods of preparing same
JPS60167142A (en) Laser recording material
JP3387252B2 (en) Base film and photosensitive photographic material using the same
JPS582078B2 (en) image forming material
DE2326334A1 (en) PHOTOGRAPHIC MATERIAL WITH AN ANTISTATICALLY EFFECTIVE, ELECTRICALLY CONDUCTIVE LAYER
JPS59231526A (en) Image forming article