JPS6140221B2 - - Google Patents

Info

Publication number
JPS6140221B2
JPS6140221B2 JP55156646A JP15664680A JPS6140221B2 JP S6140221 B2 JPS6140221 B2 JP S6140221B2 JP 55156646 A JP55156646 A JP 55156646A JP 15664680 A JP15664680 A JP 15664680A JP S6140221 B2 JPS6140221 B2 JP S6140221B2
Authority
JP
Japan
Prior art keywords
methyl formate
ammonia
reaction
carbon monoxide
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55156646A
Other languages
Japanese (ja)
Other versions
JPS5780349A (en
Inventor
Juji Onda
Masao Saito
Juko Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP55156646A priority Critical patent/JPS5780349A/en
Publication of JPS5780349A publication Critical patent/JPS5780349A/en
Publication of JPS6140221B2 publication Critical patent/JPS6140221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はギ酸メチル、アンモニア及びメタノー
ルを一酸化炭素加圧下反応させてジメチルホルム
アミドを製造する方法に関する。 ジメチルホルムアミドは工業的にはジメチルア
ミンと一酸化炭素を反応させて製造するのが一般
であるが、ジメチルアミンはアンモニアとメタノ
ールから脱水反応により製造される。しかしこの
アンモニアとメタノールの反応においてはジメチ
ルアミン以外に大量のモノメチルアミン、トリメ
チルアミンの副生が避けられず、これら副生品の
需要バランスが問題になる。本発明はこのような
問題を解決するもので、ギ酸メチル、アンモニア
及びメタノールを、塩化アンモニウム触媒存在
下、アンモニアをギ酸メチルに対し当モル以上使
用し、一酸化炭素加圧下で反応させる方法であ
る。 脂肪族カルボン酸エステル、アンモニア及びア
ルコールを原料としてN―アルキル酸アミドを製
造する方法は英国特許第789533号により公知であ
る。しかしこの方法においては触媒を使用してお
らず、このような手段をそのまゝ利用しても本発
明比較例4にも示すようにジメチルホルムアミド
の収率は低い。本発明は上記の如く触媒として塩
化アンモニウムを使用することによりジメチルホ
ルムアミドの選択率を著しく高めるものである。 本発明において原料となるアンモニアの量はギ
酸メチルに対し当モル以上であれば良く上限に限
定はないが、好ましくは2〜10倍モルが適当であ
る。2倍モル以下では副反応が促進されやすくな
り実際的でない。又10倍モル以上加えても差支え
ないが無意味である。又メタノールの量にも特に
制限がないが、一般にギ酸メチルに対し1〜20倍
モルが適当である。1倍モル以下では反応速度が
遅く実際的でなく、20倍モル以上加えることは無
意味である。触媒として使用する塩化アンモニウ
ムの添加量には特に制限はないがギ酸メチルに対
し0.1〜1.0倍モル、が好ましい。 本発明において使用する一酸化炭素は必ずしも
純粋なものである必要はなく、反応に不活性なガ
ス、例えば窒素などが混存するものであつても構
わない。一酸化炭素の圧力はCO分圧として常圧
以上、好ましくは5〜300Kg/cm2Gの圧力下で行
なうのが適当である。5Kg/cm2以下の圧力で行な
うと副反応が促進されたすくなり、また300Kg/
cm2以上の圧力を加えることは経済性を考慮すれば
実際的でない。 反応温度は特に制限されないが、好ましくは
170〜280℃で行なうのが適当である。170℃より
低いと反応速度が遅く、280℃以上では種々の副
反応が起こりやすくなる。 本発明によればギ酸メチル、アンモニア及びメ
タノールからジメチルホルムアミド以外にモノメ
チルホルムアミド及びホルムアミドが生成する。
しかしこれらは蒸留等の方法でジメチルホルムア
ミドと分離することが出来、又分離後反応系へ循
環することによりジメチルホルムアミドに転換す
ることが出来る。 本発明方法に於いてギ酸メチルに対するジメチ
ルホルムアミド、モノメチルホルムアミド、ホル
ムアミドの収率の和は条件によつては100%をこ
えることがある。この理由は明らかでないがアン
モニアと一酸化炭素が反応してホルムアミドが生
成するためと推測される。 本発明に於いては特に反応溶媒の使用は必要で
ないが、反応に不活性なものであれば溶媒を使用
しても良い。 本発明の方法は回分法、半連続法、連続法のい
ずれによつても行なうことができる。 本発明によれば原料にジメチルアミンを用いる
ことなく廉価にジメチルホルムアミドを製造する
ことが出来、工業的価値は高い。 実施例 1 内容積100mlのハステロイC製オートクレーブ
に塩化アンモニウム、4g、ギ酸メチル9.6g、アン
モニア6.24g、メタノール11.0gを仕込みオートク
レーブを冷却しながら内部の空気を窒素で置換し
た後、一酸化炭素を室温で30Kg/cm2Gに充填し
た。次いで反応温度255℃(この温度でオートク
レーブの圧力は約140Kg/cm2Gになる)で2時間
反応を行ない、生成液をガスクロマトグラフイー
で分析した結果、ギ酸メチルの転化率は100%、
ジメチルホルムアミド(DMF)、モノメチルホル
ムアミド(MMF)、ホルムアミド(FA)がギ酸
メチルに対してそれぞれ46.4、47.8、3.94%収率
で生成していることが知られた。 実施例 2 内容積100mlのハステロイC製オートクレーブ
に塩化アンモニウム4g、ギ酸メチル9.6g、アンモ
ニア、6.08g、メタノール25.5gを仕込みオートク
レーブを冷却しながら内部の空気を窒素で置換し
た後、一酸化炭素を室温で30Kg/cm2G充填した。
次いで反応温度235℃(この温度で圧力は約130
Kg/cm2Gとなる)で2時間反応を行なつたとこ
ろ、ギ酸メチルの転化率100%、ギ酸メチルに対
してDMF36.9%、MMF60.1%、FA8.38%収率が
得られ、DMF、MMF、FAの収率の和は105.38
%となることが知られた。 比較例 1〜4 実施例2においてアンモニアをギ酸メチルに対
して1倍モル以下にした場合(比較例1)、一酸
化炭素を充填せず窒素雰囲気で行なつた場合(比
較例2)、アンモニアをギ酸メチルに対して1倍
モル以下でさらに一酸化炭素を充填しなかつた場
合(比較例3)、及び触媒の塩化アンモニウムを
使用しなかつた場合(比較例4)のそれぞれにつ
いて得られた結果を第1表に示した。 第1表および実施例2の結果より本反応を一酸
化炭素加圧下、ギ酸メチルに対してアンモニアを
1倍モル以上使用すると好結果の得られること、
及び触媒として塩化アンモニウムの優れているこ
とがわかる。
The present invention relates to a method for producing dimethylformamide by reacting methyl formate, ammonia and methanol under pressure with carbon monoxide. Dimethylformamide is generally manufactured industrially by reacting dimethylamine and carbon monoxide, whereas dimethylamine is manufactured from ammonia and methanol by a dehydration reaction. However, in this reaction of ammonia and methanol, in addition to dimethylamine, large amounts of monomethylamine and trimethylamine are unavoidably produced as by-products, and the demand balance for these by-products becomes an issue. The present invention solves these problems, and is a method of reacting methyl formate, ammonia and methanol in the presence of an ammonium chloride catalyst, using at least the same molar amount of ammonia relative to methyl formate, and under pressure with carbon monoxide. . A method for producing N-alkyl acid amides using aliphatic carboxylic acid esters, ammonia and alcohol as raw materials is known from British Patent No. 789533. However, this method does not use a catalyst, and even if such means are used as is, the yield of dimethylformamide is low, as shown in Comparative Example 4 of the present invention. The present invention significantly increases the selectivity of dimethylformamide by using ammonium chloride as a catalyst as described above. In the present invention, the amount of ammonia used as a raw material is not limited as long as it is equivalent to or more than 1 molar amount of methyl formate, but it is preferably 2 to 10 times the molar amount. If the amount is less than 2 times the mole, side reactions tend to be promoted and this is not practical. It is also possible to add more than 10 times the molar amount, but it is meaningless. The amount of methanol is also not particularly limited, but it is generally appropriate to use 1 to 20 times the molar amount of methyl formate. If it is less than 1 times the mole, the reaction rate is slow and it is not practical, and if it is added more than 20 times the mole, it is meaningless. The amount of ammonium chloride used as a catalyst is not particularly limited, but is preferably 0.1 to 1.0 times the amount of methyl formate. The carbon monoxide used in the present invention does not necessarily have to be pure, and may contain a gas inert to the reaction, such as nitrogen. The pressure of carbon monoxide is suitably higher than normal pressure in terms of CO partial pressure, preferably 5 to 300 kg/cm 2 G. If the pressure is less than 5Kg/cm 2 , side reactions will be promoted;
Applying a pressure of more than cm 2 is not practical from an economic standpoint. The reaction temperature is not particularly limited, but preferably
It is appropriate to carry out the reaction at a temperature of 170 to 280°C. If the temperature is lower than 170°C, the reaction rate will be slow, and if it is higher than 280°C, various side reactions will easily occur. According to the present invention, monomethylformamide and formamide are produced in addition to dimethylformamide from methyl formate, ammonia and methanol.
However, these can be separated from dimethylformamide by a method such as distillation, and after separation, they can be converted to dimethylformamide by circulating to the reaction system. In the method of the present invention, the sum of the yields of dimethylformamide, monomethylformamide, and formamide based on methyl formate may exceed 100% depending on the conditions. Although the reason for this is not clear, it is presumed that formamide is produced by the reaction between ammonia and carbon monoxide. Although it is not necessary to use a reaction solvent in the present invention, any solvent may be used as long as it is inert to the reaction. The method of the present invention can be carried out by a batch method, a semi-continuous method, or a continuous method. According to the present invention, dimethylformamide can be produced at low cost without using dimethylamine as a raw material, and has high industrial value. Example 1 A Hastelloy C autoclave with an internal volume of 100 ml was charged with 4 g of ammonium chloride, 9.6 g of methyl formate, 6.24 g of ammonia, and 11.0 g of methanol. After cooling the autoclave and replacing the air inside with nitrogen, carbon monoxide was removed. It was packed to 30Kg/cm 2 G at room temperature. Next, the reaction was carried out for 2 hours at a reaction temperature of 255°C (at this temperature, the pressure of the autoclave was approximately 140 Kg/cm 2 G), and the resultant liquid was analyzed by gas chromatography. As a result, the conversion rate of methyl formate was 100%.
It was found that dimethylformamide (DMF), monomethylformamide (MMF), and formamide (FA) were produced at yields of 46.4%, 47.8%, and 3.94%, respectively, based on methyl formate. Example 2 4 g of ammonium chloride, 9.6 g of methyl formate, 6.08 g of ammonia, and 25.5 g of methanol were placed in a Hastelloy C autoclave with an internal volume of 100 ml. After cooling the autoclave and replacing the air inside with nitrogen, carbon monoxide was removed. It was filled with 30Kg/cm 2 G at room temperature.
Next, the reaction temperature is 235℃ (at this temperature, the pressure is about 130℃).
When the reaction was carried out for 2 hours at 100% conversion of methyl formate, yields of 36.9% DMF, 60.1% MMF, and 8.38% FA were obtained based on methyl formate. , the sum of the yields of DMF, MMF, and FA is 105.38
It is known that %. Comparative Examples 1 to 4 In Example 2, when the amount of ammonia was reduced to 1 times the mole or less relative to methyl formate (Comparative Example 1), when the process was carried out in a nitrogen atmosphere without filling with carbon monoxide (Comparative Example 2), ammonia The results obtained for the case where carbon monoxide was not further charged at 1 times the mole or less relative to methyl formate (Comparative Example 3), and the case where ammonium chloride as a catalyst was not used (Comparative Example 4). are shown in Table 1. From the results of Table 1 and Example 2, good results can be obtained when this reaction is carried out under pressure with carbon monoxide and ammonia is used at least 1 times the mole of methyl formate.
It can be seen that ammonium chloride is excellent as a catalyst.

【表】 実施例 3 内容積100mlのハステロイC製オートクレーブ
に塩化アンモニウム2.5g、ギ酸メチル6g、アンモ
ニア3.6g、メタノール16g及びMMF11.8gを仕込
みオートクレーブを冷却しながら内部の空気を窒
素で置換した後、一酸化炭素を室温で30Kg/cm2
に充填した。次いで反応温度230℃(この温度で
圧力は約100Kg/cm2Gとなる)で2時間反応を行
なつたところ、ギ酸メチルの転化率100%、ギ酸
メチルに対してDMF85.7%、MMF0%、CA10.2
%の収率が得られた。 実施例 4 実施例3に於いて更にFAを0.8g加えたほかは
同様の反応を行ない、ギ酸メチル転化率100%、
ギ酸メチルに対してDMF85.7%、MMF15.2%、
FA0%の収率が得られた。 実施例3及び実施例4の結果よりMF、FAを
それぞれ反応系に戻すことにより実質的に
MMF、FAを生成することなく、DMFだけを製
造できることは明らかである。 実施例 5〜9 塩化アンモニウムを触媒に用いギ酸メチルとア
ンモニア、メタノールの反応を種々の条件で行な
い、第2表の結果を得た。こゝで実施例6〜8は
MMFをギ酸メチルに対し0.953倍モルに仕込んで
いる。
[Table] Example 3 2.5 g of ammonium chloride, 6 g of methyl formate, 3.6 g of ammonia, 16 g of methanol, and 11.8 g of MMF were charged into a Hastelloy C autoclave with an internal volume of 100 ml, and the air inside was replaced with nitrogen while cooling the autoclave. , carbon monoxide at room temperature 30Kg/cm 2 G
was filled. Next, when the reaction was carried out for 2 hours at a reaction temperature of 230°C (at this temperature, the pressure was approximately 100 Kg/cm 2 G), the conversion rate of methyl formate was 100%, DMF was 85.7%, and MMF was 0% relative to methyl formate. , CA10.2
% yield was obtained. Example 4 The same reaction as in Example 3 was carried out except that 0.8 g of FA was added, and the conversion rate of methyl formate was 100%.
DMF85.7%, MMF15.2% for methyl formate,
A yield of 0% FA was obtained. From the results of Example 3 and Example 4, by returning MF and FA to the reaction system, substantially
It is clear that only DMF can be produced without producing MMF or FA. Examples 5 to 9 Using ammonium chloride as a catalyst, reactions between methyl formate, ammonia, and methanol were carried out under various conditions, and the results shown in Table 2 were obtained. Here, Examples 6 to 8 are
MMF is charged at a molar ratio of 0.953 times that of methyl formate.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ギ酸メチル、アンモニア及びメタノールを、
塩化アンモニア触媒存在下、アンモニアをギ酸メ
チルに対し当モル以上使用し、一酸化炭素加圧下
で反応させることを特徴とするジメチルホルムア
ミドの製造法。
1 Methyl formate, ammonia and methanol,
1. A method for producing dimethylformamide, which comprises using molar or more of ammonia relative to methyl formate in the presence of an ammonia chloride catalyst and reacting under pressure with carbon monoxide.
JP55156646A 1980-11-07 1980-11-07 Production of dimethylformamide Granted JPS5780349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55156646A JPS5780349A (en) 1980-11-07 1980-11-07 Production of dimethylformamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55156646A JPS5780349A (en) 1980-11-07 1980-11-07 Production of dimethylformamide

Publications (2)

Publication Number Publication Date
JPS5780349A JPS5780349A (en) 1982-05-19
JPS6140221B2 true JPS6140221B2 (en) 1986-09-08

Family

ID=15632201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55156646A Granted JPS5780349A (en) 1980-11-07 1980-11-07 Production of dimethylformamide

Country Status (1)

Country Link
JP (1) JPS5780349A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559147A (en) * 1978-04-28 1980-05-02 Mitsubishi Gas Chem Co Inc Production of dimethylformamide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559147A (en) * 1978-04-28 1980-05-02 Mitsubishi Gas Chem Co Inc Production of dimethylformamide

Also Published As

Publication number Publication date
JPS5780349A (en) 1982-05-19

Similar Documents

Publication Publication Date Title
US4471136A (en) Preparation of ethyl acetate
US4092368A (en) Vapor phase transesterification
US5087737A (en) Process for producing methyl methacrylate
JP2963396B2 (en) Method for producing methyl mercaptan
US20040171886A1 (en) Method for producing 2- (alkyl) cycloalkenone
JPS6178745A (en) Production of methyl isobutyl ketone
JPS6140221B2 (en)
US5072049A (en) Process for the preparation of bis(4-hydroxyphenyl) sulfone
JP2508773B2 (en) Method for producing dimethylaminoethanol
US4326068A (en) Process of preparing hexafluorothioacetone dimer
JPS59110677A (en) Manufacture of nicotinic acid amide
US4967019A (en) Method of manufacturing 2-propyn-1-ol
US5300692A (en) Process for producing 4-amino-3-fluorobenzotrifluoride
EP0456157B1 (en) Process of producing chloroacetals
EP0983993A1 (en) Process for producing allyl-2-hydroxyisobutyrate
JPH062702B2 (en) Method for producing methyl isobutyl ketone
JP2002533437A (en) Method for producing N-vinyl-2-pyrrolidone by vinylation
JP2859422B2 (en) Method for producing perfluoro (2-methoxypropionic acid) fluoride
JP2877166B2 (en) Process for producing perfluoro (2-propoxypropionic acid) fluoride
JP2000086578A (en) Production of methyl acetate
JPH0115505B2 (en)
JP2737295B2 (en) Method for producing methyl isobutyl ketone
US3984462A (en) Process for producing dodecanedioic acid dimethyl
US4450293A (en) Preparation of α-hydroxyisobutyric acid using a thallic halide catalyst
US4510341A (en) Process for producing chloroprene