JP2000086578A - Production of methyl acetate - Google Patents

Production of methyl acetate

Info

Publication number
JP2000086578A
JP2000086578A JP10256934A JP25693498A JP2000086578A JP 2000086578 A JP2000086578 A JP 2000086578A JP 10256934 A JP10256934 A JP 10256934A JP 25693498 A JP25693498 A JP 25693498A JP 2000086578 A JP2000086578 A JP 2000086578A
Authority
JP
Japan
Prior art keywords
methanol
methyl acetate
acetic acid
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10256934A
Other languages
Japanese (ja)
Inventor
Hajime Yamada
元 山田
Yoshikazu Shima
義和 島
Takafumi Abe
崇文 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10256934A priority Critical patent/JP2000086578A/en
Publication of JP2000086578A publication Critical patent/JP2000086578A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain methyl acetate in a high yield in a high selectivity stably for a long time by using a zeolite catalyst and reacting methanol with acetic acid in a vapor phase. SOLUTION: (B) Methanol is catalytically reacted with (C) acetic acid in the presence of (A) a zeolite catalyst in a vapor phase to give methyl acetate. The component A has the ratio of SiO2/Al2O3 of preferably >=10 and HZSM-5 or H type mordenite is preferable as a zeolite having an especially long life. Preferably the component A is used as a fixed bed catalyst or a fluidized bed catalyst for a flow reactor. The reaction is preferably carried out in the molar ratio of the component B/the component C of 1-3. A high methanol conversion is obtained by making acetic acid excessive in this method and the amount of unreacted methanol is small. Consequently obtained methyl acetate is readily separated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はメタノールと酢酸か
ら酢酸メチルを製造する方法に関する。
[0001] The present invention relates to a method for producing methyl acetate from methanol and acetic acid.

【0002】[0002]

【従来の技術】酢酸メチルは、無水酢酸、エタノール、
酢酸アルキル、酢酸ビニル単量体などの中間体として、
工業的に非常に有用な化合物である。酢酸メチルは、従
来、一般的にメタノールと酢酸の液相エステル化反応に
より製造され、触媒としては鉱酸、例えば硫酸、または
パラトルエンスルホン酸のような有機酸が用いられてい
る。また特開昭54-98713号にはイオン交換樹脂を用いて
メタノールと酢酸から酢酸メチルを製造することが記載
されている。
2. Description of the Related Art Methyl acetate is composed of acetic anhydride, ethanol,
As intermediates such as alkyl acetate and vinyl acetate monomer,
It is a very industrially useful compound. Conventionally, methyl acetate is generally produced by a liquid phase esterification reaction of methanol and acetic acid, and a mineral acid such as sulfuric acid or an organic acid such as paratoluenesulfonic acid is used as a catalyst. JP-A-54-98713 describes that methyl acetate is produced from methanol and acetic acid using an ion exchange resin.

【0003】また酢酸メチルの製造法として、メタノー
ルと一酸化炭素の気相カルボニル化により、酢酸または
酢酸メチルを選択的に製造する方法があり、例えば特開
昭63-233936号には炭素質担体のニッケル触媒と沃化メ
チル等の助触媒を用いる方法が記載されている。この気
相カルボニル化により酢酸メチルを製造する方法は、原
料に一酸化炭素が必要であり、触媒に高価な貴金属を用
いなければならないとか、ハロゲン化合物が助触媒とし
て液相状態下で使用されるため、装置の腐蝕が苛酷で、
ハステロイなどの高価な材料を用いざるを得ないといっ
た問題がある。
As a method for producing methyl acetate, there is a method for selectively producing acetic acid or methyl acetate by gas-phase carbonylation of methanol and carbon monoxide. For example, JP-A-63-233936 discloses a carbonaceous carrier. Using a nickel catalyst and a co-catalyst such as methyl iodide. This method of producing methyl acetate by gas-phase carbonylation requires carbon monoxide as a raw material and requires the use of an expensive noble metal as a catalyst, or a halogen compound is used in a liquid state as a co-catalyst. Therefore, the corrosion of the equipment is severe,
There is a problem that an expensive material such as Hastelloy must be used.

【0004】[0004]

【発明が解決しようとする課題】メタノールと酢酸の液
相エステル化反応により酢酸メチルを製造する方法は、
化学平衡に起因するため、熱力学的に液相では原料側
(メタノール+酢酸)が有利であり、転化率が良くない
という欠点がある。熱力学定数より計算すると、酢酸と
メタノールを等モルで反応させる場合、メタノールの平
衡転化率は27.9%である。従って液相エステル化反応に
より製造する場合には、未反応である大量の酢酸やメタ
ノールを循環しなければならない。
A method for producing methyl acetate by a liquid-phase esterification reaction between methanol and acetic acid comprises:
Due to chemical equilibrium, the liquid phase is thermodynamically advantageous on the raw material side (methanol + acetic acid), and has a disadvantage that the conversion is not good. When calculated from thermodynamic constants, when equimolar reaction between acetic acid and methanol is performed, the equilibrium conversion of methanol is 27.9%. Therefore, when producing by a liquid phase esterification reaction, a large amount of unreacted acetic acid or methanol must be circulated.

【0005】またメタノールと酢酸の液相エステル化反
応では、メタノールと酢酸メチルは共沸混合物を形成
し、その量は常圧でメタノール量の 19wt%にもなる。こ
の共沸混合物は簡単に蒸留、分離することが困難で、独
国特許1070165号に記載されているように、エチレング
リコールモノエチルエーテルのような抽出剤を用いざる
を得ない。共沸混合物が多いと、分離、精製に多量の抽
出剤を用いたり、多量の共沸混合物を循環しなければな
らないため、工業的に不利である。本発明の目的は、メ
タノールと酢酸から酢酸メチルを、工業的に有利に製造
する方法を提供することである。
[0005] In the liquid phase esterification reaction of methanol and acetic acid, methanol and methyl acetate form an azeotropic mixture, which amounts to 19 wt% of the amount of methanol at normal pressure. This azeotrope is difficult to distill and separate easily and requires the use of an extractant such as ethylene glycol monoethyl ether, as described in DE 1070165. A large amount of azeotrope is industrially disadvantageous because a large amount of extractant must be used for separation and purification or a large amount of azeotrope must be circulated. An object of the present invention is to provide a method for industrially advantageously producing methyl acetate from methanol and acetic acid.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の如き
課題を有する酢酸メチルの製造方法について鋭意検討し
た結果、ゼオライト触媒を用いて、メタノールと酢酸を
気相で反応させることにより、酢酸メチルが高収率、高
選択的、かつ長時間安定して得られることを見出し、本
発明に到達した。即ち本発明は、ゼオライト触媒の存在
下、メタノールと酢酸を気相で接触反応させることを特
徴とする酢酸メチルの製造方法である。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for producing methyl acetate having the above-mentioned problems, and as a result, methanol and acetic acid are reacted in a gas phase using a zeolite catalyst to obtain acetic acid. The present inventors have found that methyl can be obtained with high yield, high selectivity, and long-term stability, and have reached the present invention. That is, the present invention is a method for producing methyl acetate, which comprises reacting methanol and acetic acid in a gas phase in the presence of a zeolite catalyst.

【0007】[0007]

【発明の実施の形態】本発明において触媒に用いられる
ゼオライトは、SiO2 /Al2 3 比が高いほど、耐
酸性、酸強度が増加し、酢酸メチルが長時間安定して得
られる。従って本反応に使用されるゼオライトのSiO
2 /Al2 3 比は、10以上であることが好ましい。ま
た特に長寿命なゼオライトとして、HZSM-5またはH型モ
ルデナイトが好適に用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the zeolite used as a catalyst in the present invention, as the SiO 2 / Al 2 O 3 ratio is higher, acid resistance and acid strength are increased, and methyl acetate can be obtained stably for a long time. Therefore, the zeolite used in this reaction
The 2 / Al 2 O 3 ratio is preferably 10 or more. HZSM-5 or H-type mordenite is particularly preferably used as a particularly long-life zeolite.

【0008】本発明では、ゼオライトを固定床触媒また
は流動床触媒として流通系反応装置にて使用する。また
反応の前処理として、該ゼオライトを窒素またはへリウ
ム気流下、乾燥焼成、あるいは酸素気流下、焼成処理を
行なうこともできる。本発明において、原料の酢酸/メ
タノールのモル比は、通常は1〜3であり、好ましくは
1.5〜2.5 の範囲である。該モル比が高いほどメタノー
ルの反応率が高くなる。また酢酸メチルの分離、精製工
程を考えると、未反応メタノールが少ない方が好まし
い。このためには酢酸過剰にすることで、化学平衡を生
成液側(酢酸メチル+水)にずらし、未反応メタノール
を減らすことができる。しかし、酢酸/メタノールモル
比が大きすぎると、多量の酢酸を回収し、リサイクルし
なければならない。従って上記の酢酸/メタノールのモ
ル比で反応が行われる。
In the present invention, zeolite is used as a fixed bed catalyst or a fluidized bed catalyst in a flow reactor. Further, as a pretreatment for the reaction, the zeolite can be subjected to drying and firing under a stream of nitrogen or helium, or firing under a stream of oxygen. In the present invention, the molar ratio of acetic acid / methanol as a raw material is usually 1 to 3, preferably
It is in the range of 1.5 to 2.5. The higher the molar ratio, the higher the conversion of methanol. Considering the separation and purification steps of methyl acetate, it is preferable that the amount of unreacted methanol is small. For this purpose, an excess of acetic acid shifts the chemical equilibrium toward the product solution (methyl acetate + water), thereby reducing unreacted methanol. However, if the acetic acid / methanol molar ratio is too large, a large amount of acetic acid must be recovered and recycled. Therefore, the reaction is carried out at the acetic acid / methanol molar ratio described above.

【0009】原料の酢酸/メタノールの供袷量は、多す
ぎると十分な成績を得ることができず、酢酸メチルを高
収率で得ることができない。供給量として、WHSVで10H
-1以下、好ましくは4H-1以下である。反応温度は 100
〜300 ℃であり、好ましくは 150〜250 ℃である。温度
が低い方が、酢酸メチルを高収率で得られるが、気相反
応とするための温度が必要であり、またあまり温度が低
すぎると十分な反応速度が得られない。逆に温度が高す
ぎると、副生物が多量に生成し、酢酸メチルの選択率が
低下する。圧力は通常、大気圧下あるいは数気圧以下で
行なわれるが、それ以上の加圧下においても実施するこ
とができる。本発明の反応は窒素などの不活性ガスの共
存下で実施することもできる。
If the raw material acetic acid / methanol content is too large, sufficient results cannot be obtained and methyl acetate cannot be obtained in high yield. 10H in WHSV as supply amount
-1 or less, preferably 4H -1 or less. Reaction temperature is 100
C. to 300.degree. C., preferably 150 to 250.degree. The lower the temperature, the higher the yield of methyl acetate, but the temperature required for the gas phase reaction is required. If the temperature is too low, a sufficient reaction rate cannot be obtained. Conversely, if the temperature is too high, a large amount of by-products will be generated, and the selectivity for methyl acetate will decrease. The pressure is usually at atmospheric pressure or at most several atmospheric pressures, but it can also be carried out under higher pressure. The reaction of the present invention can also be carried out in the presence of an inert gas such as nitrogen.

【0010】本発明の方法では、酢酸過剰にすることで
高いメタノール転化率が得られ、未反応のメタノールが
少ないため、酢酸メチルを容易に分離することができ
る。すなわち従来のメタノールと酢酸の液相エステル化
反応では、メタノールと酢酸メチルが共沸混合物を形成
するため、分離、精製は困難であるが、本発明の方法で
は、生成物中のメタノールが少ないため、少量の未反応
メタノールと酢酸メチルの共沸混合物を分離すればよ
い。その後の酢酸メチルの分離、精製は、必要に応じ
て、蒸留や脱水により行われる。
In the method of the present invention, a high methanol conversion is obtained by excess acetic acid, and the amount of unreacted methanol is small, so that methyl acetate can be easily separated. That is, in the conventional liquid-phase esterification reaction of methanol and acetic acid, since methanol and methyl acetate form an azeotropic mixture, separation and purification are difficult.However, in the method of the present invention, the amount of methanol in the product is small. The azeotropic mixture of a small amount of unreacted methanol and methyl acetate may be separated. The subsequent separation and purification of methyl acetate is performed by distillation or dehydration as necessary.

【0011】すなわち本発明による反応生成物は、冷却
・凝縮した後、例えば、特開54-98713号に記載されてい
るように、一連の分留によって容易に分離できる。ま
ず、生成物を蒸留してメタノールと酢酸メチルとの共沸
混合物を塔底留分の残留酢酸メチル、酢酸および水から
分離する。次の蒸留工程で、塔頂より酢酸メチル、塔底
より酢酸を取り出す。未反応の酢酸や共沸混合物は原科
側に循環使用される。分離された酢酸メチルは、必要に
応じて任意の方法によって脱水する。例えば、米国特許
3904676号に記載されているように、溶媒抽出を用いる
ことができる。
That is, the reaction product according to the present invention can be easily separated after cooling and condensation by a series of fractional distillation as described in, for example, JP-A-54-98713. First, the product is distilled to separate an azeotrope of methanol and methyl acetate from residual methyl acetate, acetic acid and water in the bottoms fraction. In the next distillation step, methyl acetate is taken out from the top and acetic acid is taken out from the bottom. Unreacted acetic acid and azeotropes are recycled to the original family. The separated methyl acetate is dehydrated by any method as required. For example, US Patent
Solvent extraction can be used, as described in 3904676.

【0012】本発明の方法によれば、以上の如くメタノ
ールと酢酸を気相において、ゼオライト触媒を使用して
反応させることで、酢酸メチルを高収率で、選択的に長
時間安定して得ることができる。また未反応のメタノー
ルが少ないため、酢酸メチルを容易に分離することがで
きる。
According to the method of the present invention, as described above, by reacting methanol and acetic acid in the gas phase using a zeolite catalyst, methyl acetate can be selectively and stably obtained for a long time in a high yield. be able to. In addition, since there is little unreacted methanol, methyl acetate can be easily separated.

【0013】[0013]

【実施例】次に本発明の方法を実施例および比較例によ
りさらに具体的に説明する。但し本発明は、以下の実施
例によりその範囲を限定されるものではない。
Next, the method of the present invention will be described more specifically with reference to examples and comparative examples. However, the scope of the present invention is not limited by the following examples.

【0014】比較例1 一般的な固体酸触媒として、シリカアルミナ(水澤化学
製、SiO2 /Al23 比=60/40)を用い、10〜20
メッシュに粉砕して内径15mmφの反応菅に2.5g充填し
た。触媒の上下には、直径 2mmφ、高さ 2mmの磁製ラシ
ヒリングを充墳して触媒を固定した。この反応管を窒素
ガスでパージしながら、マントルヒーターで加熱し、所
定の温度(150℃)まで昇温し、保持した。その後、窒素
ガスを止め、酢酸/メタノールのモル比を2の割合で混
合した原料液を反応管塔頂より 5g /h で供給して気化
させ触媒に通した。反応開始1時間後に、反応菅下部で
凝縮した生成液を回収し、ガスクロマトグラフィーによ
り分析を行なった。酢酸メチル収率は40.1%(メタノー
ル基準)であった。
Comparative Example 1 Silica alumina (manufactured by Mizusawa Chemical Co., SiO 2 / Al 2 O 3 ratio = 60/40) was used as a general solid acid catalyst.
The mixture was pulverized into a mesh and charged into a reaction tube having an inner diameter of 15 mmφ by 2.5 g. Above and below the catalyst, porcelain Raschig rings with a diameter of 2 mm and a height of 2 mm were filled to fix the catalyst. The reaction tube was heated with a mantle heater while purging with nitrogen gas, heated to a predetermined temperature (150 ° C.) and held. Thereafter, the nitrogen gas was stopped, and a raw material liquid obtained by mixing acetic acid / methanol at a molar ratio of 2 was supplied at a rate of 5 g / h from the top of the reaction tube, vaporized and passed through the catalyst. One hour after the start of the reaction, the product liquid condensed in the lower part of the reaction tube was recovered and analyzed by gas chromatography. The methyl acetate yield was 40.1% (based on methanol).

【0015】実施例1 Y型ゼオライトを用いて比較例1と同様に活性試験を行
なった。使用したY型ゼオライトは、HY-600(水澤化学
製、SiO2 /Al2 3 比=6)である。反応成績は 1
50℃で、87.1%の酢酸メチル収率(メタノール基準)で
あった。
Example 1 An activity test was conducted in the same manner as in Comparative Example 1 using Y-type zeolite. Y-type zeolite used was, HY-600 (manufactured by Mizusawa Chemical Co., SiO 2 / Al 2 O 3 ratio = 6). Reaction score is 1
At 50 ° C., the yield of methyl acetate was 87.1% (based on methanol).

【0016】実施例2 触媒にHZSM-5(SiO2 /Al2 3 比=95)を用い、
実施例1と同様な反応試験を行なった。 150℃での酢酸
メチル収率(メタノール基準)は97.6%と高活性を示し
た。また副生物として、ジメチルエーテルの生成が僅か
ながら見られ、酢酸メチルの選択率(メタノール基準)
は99%以上であった。
Example 2 HZSM-5 (SiO 2 / Al 2 O 3 ratio = 95) was used as a catalyst.
The same reaction test as in Example 1 was performed. The methyl acetate yield (based on methanol) at 150 ° C. showed a high activity of 97.6%. A small amount of dimethyl ether was observed as a by-product, and the selectivity of methyl acetate (based on methanol)
Was over 99%.

【0017】実施例3 触媒にH型モルデナイト(東ソー製、HSZ-620HOA、Si
2 /Al2 3 比=14.7)を用い、実施例1と同様な
反応試験を行なった。150℃での酢酸メチル収率(メタ
ノール基準)は97.6%と高活性を示した。また副生物と
して、ジメチルエーテルの生成が僅かながら見られ、酢
酸メチルの選択率(メタノール基準)は99%以上であっ
た。
Example 3 H-type mordenite (manufactured by Tosoh, HSZ-620HOA, Si
With O 2 / Al 2 O 3 ratio = 14.7) was subjected to similar reaction test as in Example 1. The methyl acetate yield (based on methanol) at 150 ° C. showed a high activity of 97.6%. Further, as a by-product, the production of dimethyl ether was slightly observed, and the selectivity of methyl acetate (based on methanol) was 99% or more.

【0018】実施例4 HZSM-5触媒について、実施例2と同様な触媒の連続反応
を行なった。反応条件は、酢酸/メタノールのモル比=
2、反応温度 150℃、WHSV=2H-1である。その結果、
約1200時間まで活性の低下は認められず、約7300時間後
でも酢酸メチル収率(メタノール基準)は96.5%であっ
た。
Example 4 A continuous reaction of the HZSM-5 catalyst was carried out in the same manner as in Example 2. The reaction conditions were as follows: acetic acid / methanol molar ratio =
2. Reaction temperature 150 ° C, WHSV = 2H -1 . as a result,
No decrease in activity was observed until about 1200 hours, and the methyl acetate yield (based on methanol) was 96.5% even after about 7300 hours.

【0019】実施例5 H型モルデナイト(東ソー製、HSZ-620HOA)について、
実施例3と同様な触媒の寿命試験を行なった。反応条件
は、酢酸/メタノールのモル比=2、反応温度150℃、W
HSV=2H-1である。その結果、約3000時間まで活性の
低下は認められず、約7400時間後でも酢酸メチル収率
(メタノール基準)は96.4%であった。
Example 5 H-type mordenite (manufactured by Tosoh, HSZ-620HOA)
A catalyst life test similar to that in Example 3 was performed. The reaction conditions were as follows: acetic acid / methanol molar ratio = 2, reaction temperature 150 ° C., W
HSV = 2H -1 . As a result, no decrease in activity was observed until about 3000 hours, and the methyl acetate yield (based on methanol) was 96.4% even after about 7400 hours.

【0020】実施例6 実施例3において酢酸/メタノールのモル比を1の割合
で混合した原料液を用いた。 150℃での酢酸メチル収率
(メタノール基準)は86.4%であり、酢酸メチルの選択
率(メタノール基準)は99%以上であった。
Example 6 A raw material liquid obtained by mixing acetic acid / methanol at a molar ratio of 1 in Example 3 was used. The yield of methyl acetate at 150 ° C. (based on methanol) was 86.4%, and the selectivity for methyl acetate (based on methanol) was 99% or more.

【0021】[0021]

【発明の効果】以上の実施例よりも明らかなように、本
発明によればメタノールと酢酸を気相においてゼオライ
ト触媒の存在下反応させることで、酢酸メチルを高収
率、高選択的に、かつ長時間にわたって製造することが
できる。本発明によれば高いメタノール転化率が得ら
れ、未反応メタノールが少ないことから、製品の酢酸メ
チルを容易に分離することができ、またゼオライト触媒
は極めて高寿命を有することから、酢酸メチルを工業的
に有利に製造することができる。
As is clear from the above examples, according to the present invention, by reacting methanol and acetic acid in the gas phase in the presence of a zeolite catalyst, methyl acetate can be produced with high yield and high selectivity. And it can be manufactured for a long time. According to the present invention, a high methanol conversion rate is obtained and the amount of unreacted methanol is small, so that methyl acetate of the product can be easily separated.Because the zeolite catalyst has an extremely long life, methyl acetate is industrially used. It can be advantageously manufactured.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4H006 AA02 AC48 BA71 BA85 BC13 BC31 KA06 4H039 CA66 CD10 CD30 CE10 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) // C07B 61/00 300 C07B 61/00 300 F term (reference) 4H006 AA02 AC48 BA71 BA85 BC13 BC31 KA06 4H039 CA66 CD10 CD30 CE10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ゼオライト触媒の存在下、メタノールと酢
酸を気相で接触反応させることを特徴とする酢酸メチル
の製造方法。
1. A process for producing methyl acetate, comprising reacting methanol and acetic acid in the gas phase in the presence of a zeolite catalyst.
【請求項2】ゼオライト触媒のSiO2 /Al2 3
が10以上である請求項1記載の酢酸メチルの製造方法。
2. The method according to claim 1, wherein the zeolite catalyst has a SiO 2 / Al 2 O 3 ratio of 10 or more.
【請求項3】ゼオライト触媒が、HZSM-5またはH型
モルデナイトである請求項2記載の酢酸メチルの製造方
法。
3. The method for producing methyl acetate according to claim 2, wherein the zeolite catalyst is HZSM-5 or H-type mordenite.
【請求項4】原料の酢酸/メタノールのモル比を1〜3
の範囲で反応させる請求項1記載の酢酸メチルの製造方
法。
4. The raw material acetic acid / methanol molar ratio is 1 to 3
The method for producing methyl acetate according to claim 1, wherein the reaction is carried out in the range of:
JP10256934A 1998-09-10 1998-09-10 Production of methyl acetate Pending JP2000086578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10256934A JP2000086578A (en) 1998-09-10 1998-09-10 Production of methyl acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10256934A JP2000086578A (en) 1998-09-10 1998-09-10 Production of methyl acetate

Publications (1)

Publication Number Publication Date
JP2000086578A true JP2000086578A (en) 2000-03-28

Family

ID=17299408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10256934A Pending JP2000086578A (en) 1998-09-10 1998-09-10 Production of methyl acetate

Country Status (1)

Country Link
JP (1) JP2000086578A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010329A (en) * 2010-11-30 2011-04-13 江苏怡达化工有限公司 Synthesis method for aliphatic diacid alkoxy ethyl ester or propyl ester
CN104628560A (en) * 2013-11-07 2015-05-20 范月辉 Synthesizing and refining method of ethyl acetate
CN105773767A (en) * 2016-04-20 2016-07-20 江苏金聚合金材料有限公司 Wood acetylation and acetate cooperative production method
CN105983433A (en) * 2015-01-28 2016-10-05 中国石油天然气股份有限公司 Method of catalytic methanol to aromatics, catalyst for methanol to aromatics, and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010329A (en) * 2010-11-30 2011-04-13 江苏怡达化工有限公司 Synthesis method for aliphatic diacid alkoxy ethyl ester or propyl ester
CN104628560A (en) * 2013-11-07 2015-05-20 范月辉 Synthesizing and refining method of ethyl acetate
CN105983433A (en) * 2015-01-28 2016-10-05 中国石油天然气股份有限公司 Method of catalytic methanol to aromatics, catalyst for methanol to aromatics, and preparation method thereof
CN105773767A (en) * 2016-04-20 2016-07-20 江苏金聚合金材料有限公司 Wood acetylation and acetate cooperative production method

Similar Documents

Publication Publication Date Title
KR920010471B1 (en) Method for producing alpha-(p-isobutyl phenyl) propionic acid or its alkyl esters
KR19990013692A (en) Method for producing methyl methacrylate
JPS6247857B2 (en)
EP0037149A1 (en) Method for the preparation of aldehydes
JP2000086578A (en) Production of methyl acetate
JPS5811846B2 (en) Resorcinol Resorcinol
EP0060717A1 (en) Process for the production of methyl acetate by esterifying methanol with acetic acid
JPS58124781A (en) Manufacture of epsilon-caprolactone
US2932665A (en) Preparation of nu, nu-diethyltoluamides
US3972951A (en) Process for the formation of 2,6-diphenyl-phenol
US4239703A (en) Process for the preparation of terephthalic, isophthalic and phthalic dialdehydes
US4311854A (en) Process for the production of di-n-propyl-acetic acid
US6147233A (en) Process for the preparation of 3-methyltetrahydrofuran
EP0060719B1 (en) Process for the production of methyl acetate by esterifying methanol with acetic acid
US4465872A (en) Process for producing p-cresol
US4250344A (en) Cracking process for styrene
US20020062047A1 (en) Process for producing 2,4,5,-trialkylbenzaldehydes
US5227517A (en) Process for preparing ethylidene diacetate using iodide catalysts
JPS6256141B2 (en)
US4057472A (en) Method of separating diacetoxybutene
EP0365996A2 (en) Process for producing homoallyl alcohols
JPH08500359A (en) Process for 2,5-diphenyl terephthalic acid
JPH0615498B2 (en) Process for producing α- (p-isobutylphenyl) propionic acid or its alkyl ester
JPH11217351A (en) Production of dimethylolalkanoic acid
GB2086889A (en) Process for preparing acetaldehyde