JPS6140217B2 - - Google Patents

Info

Publication number
JPS6140217B2
JPS6140217B2 JP772680A JP772680A JPS6140217B2 JP S6140217 B2 JPS6140217 B2 JP S6140217B2 JP 772680 A JP772680 A JP 772680A JP 772680 A JP772680 A JP 772680A JP S6140217 B2 JPS6140217 B2 JP S6140217B2
Authority
JP
Japan
Prior art keywords
acrylamide
copper
aqueous solution
polymer
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP772680A
Other languages
Japanese (ja)
Other versions
JPS56104852A (en
Inventor
Hiroshi Ito
Tadatoshi Pponda
Jun Saito
Takatoshi Mitsuishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP772680A priority Critical patent/JPS56104852A/en
Priority to GB8028265A priority patent/GB2059952B/en
Priority to DE19803033930 priority patent/DE3033930A1/en
Priority to IT24613/80A priority patent/IT1193553B/en
Priority to NL8005120A priority patent/NL8005120A/en
Priority to US06/186,057 priority patent/US4313001A/en
Priority to FR8019783A priority patent/FR2479196A1/en
Publication of JPS56104852A publication Critical patent/JPS56104852A/en
Publication of JPS6140217B2 publication Critical patent/JPS6140217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアクリルアミド水溶液の精製法に関す
る。詳しくはアクリロニトリルを銅含有触媒の存
在下接触水和して得られるアクリルアミド水溶液
の精製法に関するものである。 アクリルアミドは、紙力増強剤、高分子凝集剤
等の用途を有するアクリルアミド系重合体の原料
として有用なものである。 アクリルアミドは、従来の製造法である硫酸法
に代つて金属銅を主成分とする触媒の存在下、ア
クリロニトリルを接触水和することにより比較的
容易に製造し得るようになつた。この方法によれ
ば、アクリルアミドは水溶液として得られるので
そのまま重合反応に供することができ極めて有利
である。 しかし乍ら、水和して得られるアクリルアミド
水溶液を直ちに重合反応に供しても、凝集性能及
び溶解性の優れたアクリルアミド系重合体を得る
ことができないばかりか、重合反応が進行しない
場合さえある。 かかる現象の原因としては、その製法に由来し
てアクリルアミド水溶液中に存在する種々の微量
不純物が重合反応に影響を与えるものと推定さ
れ、接触水和法での不純物としては、通常、(1)未
反応アクリロニトリル、(2)触媒成分から溶出する
銅などの金属イオン、(3)原料アクリロニトリル中
に含まれる不純物、(4)有機酸などの副反応生成物
が含まれている。 これらのうち未反応のアクリロニトリルは蒸留
などの常法によつて簡単に除去することができ
る。また、銅などの金属イオンは陽イオン交換樹
脂で処理すれば容易に除去することができる。 しかし乍ら、未反応アクリロニトリルを蒸留除
去し、陽イオン交換樹脂処理して得られるアクリ
ルアミド水溶液を、紙力増強剤用原料として用い
る時はともかく、高分子凝集剤用原料として用い
る場合には、充分に精製されているとはいえず、
凝集性能および溶解性の優れた高分子凝集剤とす
ることは困難である。 紙力増強剤として用いる場合は重合体の分子量
が数十万程度と比較的低いものでも使用可能であ
るが、高分子凝集剤として用いる場合は通常数百
万程度の高いものであることが必要であり、最近
では1000万以上という超高分子量のものも製造さ
れ、更に産業廃水の種類の増加、複雑化と共に、
単に超高分子量化するだけでなく、重合体中のア
ミド基の加水分解率の調整、アクリルアミド以外
の単量体との共重合等、多くの種類の高分子凝集
剤が製造されるに至つた。 この様な高分子凝集剤の性能の多様化、高度化
に伴ない、原料であるアクリルアミドもより高品
質のものが求められるようになり、従来問題とな
らなかつた微量の不純物をも除去することが必要
となつてきた。 この様な不純物を除去する方法として、イオン
交換樹脂、特に強塩基性陰イオン交換樹脂で処理
する方法がJ・Appl・Chem.of U.S.S.R.41巻.
820(1968),Anal.Chem.37巻.1546(1965),特
開昭50―82011,特開昭50―83323等により知られ
ている。 しかし乍ら、例えば、特開昭54―66618、特開
昭54―73727、特開昭54―74890にも述べられてい
るように、これらの公知の方法では高分子凝集剤
用原料として採用しうるアクリルアミド水溶液を
得ることは困難であるとされており、本発明者の
知見でも、後述する比較例2、および5〜12に示
す如く、凝集性能および溶解性の優れた高分子凝
集剤を得ることは困難であることを認めた。 更に本発明者らの知見によれば、例えばJ.
Appl.Chem.of U.S.S.R.41巻、820(1968)、およ
び特開昭50―82011の実施例に開示されている方
法、即ち遊離型の強塩基性陰イオン交換樹脂で処
理したアクリルアミド水溶液を用いると比較例6
に示す如く、重合体の製造条件によつては重合反
応が進行しなくなることが認められている。 このような現象の原因は明らかではないが、特
開昭50―83323にも述べられているように、強塩
基性陰イオン交換樹脂処理によりアクリルアミド
水溶液のPHが高くなり、不純物が生成したためと
考えられる。 従来、アクリルアミド水溶液の精製過程での不
純物の生成は不都合であると考えられ、例えば、
特開昭50―82011、特開昭50―83323に述べられて
いるように、強塩基性陰イオン交換樹脂を用いる
場合は、弱酸塩型で用いるが、より好ましくは陽
イオン交換樹脂との混床で用いるとされていた。
しかし乍ら、これらの方法によつても比較例2、
7〜12で示す如く、凝集性能および溶解性の優れ
た高分子凝集剤用原料の精製法としては不充分な
ものであつた。 凝集性能および溶解性の優れた高分子凝集剤が
得られない原因については種々の要因が考えられ
るが、本発明者らの知見によれば、アクリルアミ
ド中に不純物として存在するメチレンビスアクリ
ルアミドの如き2官能性ビニル型単量体がアクリ
ルアミドの重合反応においてアクリルアミド重合
体の重合体連鎖中に取り込まれる結果、アクリル
アミド重合体には直鎖状構造ではなく分岐を有す
る構造となる。そのような分岐構造を有する重合
体を高分子凝集剤として使用した場合、直鎖状重
合体に比して処理すべき廃水への添加量が増加す
るばかりか、処理後の廃水の濁度も十分改善され
ず凝集剤として十分満足する結果が得られない。 更に、製品の分子量を大きくしようと試みた場
合、上記のような分岐状構造を有する重合体では
製品の溶解性が悪化し、凝集剤としての機能を果
さなくなるという問題がある。 本発明者らはイオン交換樹脂による精製方法に
ついて、詳細に検討した結果、アクリルアミド水
溶液の精製方法として、従来は全く試みられてい
なかつたアクリルアミド水溶液を遊離型の強塩基
性陰イオン交換樹脂層に通液し、次いでH型の陽
イオン交換樹脂層に通液することにより、遊離型
の強塩基性陰イオン交換樹脂処理だけの場合の重
合反応が進行しなかつた重合体の製造条件におい
て重合反応が進行するばかりでなく、従来知られ
ていた方法では得られなかつた高品質のアクリル
アミド水溶液が容易に得られることを見い出し、
本発明の方法に到つた。 従来、アクリルアミド系重合体のような水溶性
重合体中の分岐度を測定する方法は知られていな
い。そこで本発明者らはポリアクリルアミド中の
アミド基を加水分解し、加水分解前後での極限粘
度の上昇比を相対比較することにより分岐度を判
定する方法を見出し、更に重合体中の分岐度と凝
集性能との相関を求めて評価した結果、後述する
実施例1〜3及び比較例1の記載からも明らかな
ように、本発明の方法により精製したアクリルア
ミドを用いて製造したポリアクリルアミドの極限
粘度の上昇比は、晶析をくりかえして精製したア
クリルアミドを用いて製造したポリアクリルアミ
ドの極限粘度の上昇比と同等であり、分岐構造の
少い直鎖状重合体であることを確認した。 次に本発明を詳細に説明する。 本発明に適用されるアクリルアミド水溶液は、
銅含有触媒の存在下アクリロニトリルを接触水和
することにより得られるものである。 而して、アクリルアミドの製造に際し使用され
る銅含有触媒としては、種々のものが提案されて
いるが、そのいずれもが本発明において使用でき
る。 例えば、(1)銅線、銅粉等の形の銅と銅イオンを
触媒として用いる方法、(2)酸化銅、水酸化銅、銅
塩等の銅化合物を水素または一酸化炭素などで、
100〜400℃の様な高温で還元して得られる還元銅
を触媒として用いる方法、(3)酸化銅、水酸化銅、
銅塩等の銅化合物を液相でヒドラジン、アルカリ
金属またはアルカリ土類金属の硼水素化合物、お
よびホルムアルデヒドなどの還元剤を用いて還元
して得られる還元銅を触媒として用いる方法、(4)
酸化銅、水酸化銅、銅塩等の銅化合物を液相で亜
鉛、アルミニウム、鉄、錫等の銅よりイオン化傾
向の大きい金属で処理して得られる還元銅を触媒
として用いる方法、(5)アルミニウム、亜鉛または
マグネシウムなどと銅からなるラネー合金を展開
して得られるラネー銅を触媒として用いる方法、
(6)ギ酸銅、シユウ酸銅のような有機錯化合物を、
例えば100〜400℃のような温度範囲で、熱分解し
て得られる金属銅を触媒として用いる方法、(7)或
は、水素化銅の熱分解物を触媒として用いる等の
方法に見られる金属銅乃至は金属銅を含有する触
媒があげられる。而してこの等の銅含有触媒には
通常用いられる担体の他、銅以外の金属、例えば
クロムまたはモリブデン等の通常用いられる他の
金属が含まれていても差支えない。 上記した銅含有触媒の存在下アクリロニトリル
と水との反応は、通常、アクリロニトリルに対し
殆んど任意の量の水を用い、20〜200℃、好まし
くは50〜150℃の温度範囲で常圧乃至は加圧下
に、懸濁床または固定床より成る触媒床および連
続または回分式の反応型式を採用して、液相下に
反応原料および銅含有触媒と酸素または酸素含有
ガスとの接触を防止し乍ら行なわれる。 次いで、上記反応液は、液中に含まれる未反応
アクリロニトリルの溜出除去および、例えば、30
乃至50重量%程度の濃度を有するアクリルアミド
水溶液とするための濃縮を目的として通常蒸留操
作に附される。 かくして得られるアクリルアミド水溶液は、本
発明に従つて処理される。 即ち、前記したような方法によつて得られるア
クリルアミド水溶液は、遊離型の強塩基性陰イオ
ン交換樹脂層を通液し、次いでH型陽イオン交換
樹脂層を通液して処理される。 アクリルアミド水溶液と樹脂との接触は、固定
床法、懸濁床法および移動床法のいずれでもよい
が、通常は、固定床法が採用され、通液は上昇
流、下降流のいずれの方法によつてもよい。 通液温度は、アクリルアミドが変質せず、かつ
アクリルアミドの結晶が析出しない範囲で通常60
℃以下である。 本発明に用いるイオン交換樹脂は、市販されて
いる一般的なものから選ぶことができる。強塩基
性陰イオン交換樹脂としては、例えば、アンバー
ライトIRA―402(ロームアンドハース社製、商
品名)、ダイヤイオンPA―416(三菱化成工業株
式会社製、商品名)、レバチツトMP―500(バイ
エル社製、商品名)などが挙げられる。陽イオン
交換樹脂としては強酸性のものであつても弱酸性
のものであつても良く、例えば、アンバーライト
IR―120B(ロームアンドハース社製、商品名)、
ダイヤイオンWK―10(三菱化成工業株式会社
製、商品名)、レバチツトCNP―80(バイエル社
製、商品名)などが挙げられる。 本発明に用いる強塩基性陰イオン交換樹脂の概
念の中には、所謂、中塩基性陰イオン交換樹脂、
例えば、レバチツトMP―64(バイエル社製、商
品名)のように陰イオン交換能を持つ官能基とし
て3級アミンと4級アンモニウムを併せ持つもの
も含まれる。 本発明に従つて処理するに先だち、アクリルア
ミド水溶液は酸素または酸素含有ガスと接触させ
て酸素処理を行つても良く、陽イオン交換樹脂ま
たは、および弱塩基性陰イオン交換樹脂で処理し
てイオン性の不純物をあらかじめ除いておいても
良い。 本発明の実施態様の一つとして、アクリルアミ
ド重合体を製造する際の前処理として採用するこ
ともできる。この様な実施態様におけるアクリル
アミド重合体の製造に用いられる重合開始剤とし
ては従来公知のものを挙げることができ、例え
ば、アゾビスジメチルバレロニトリル、アゾビス
シアノバレリツクアシドナトリウム塩、アゾビス
イソブチロニトリル、アゾビスアミノプロパン塩
酸塩などのアゾ化合物、ベンゾイルパーオキシ
ド、ラウロイルパーオキシド、ターシヤリーブチ
ルハイドロパーオキシドなどの有機過酸化物、過
硫酸カリウム、過臭素酸ナトリウム、過硫酸アン
モニウム、過酸化水素などの無機過酸化物などを
挙げることができる。 還元剤としては、硫酸第一鉄、塩化第一鉄、重
亜硫酸ナトリウム、メタ亜硫酸ナトリウム、チオ
硫酸ナトリウム、亜硝酸塩等の無機化合物、およ
び有機化合物としては、ジメチルアニリン、3―
ジメチルアミノプロピオニトリル、フエニルヒド
ラジンを挙げることができる。 本発明の方法において、高分子量重合体を得る
ために使用される単量体は、アクリルアミド単独
またはアクリルアミドと共重合可能な単量体との
混合物である。而して、アクリルアミドと共重合
可能な単量体としては、例えば、メタアクリルア
ミド、アクリル酸またはこれらの塩、N―メチル
アクリルアミド、N,N′―ジメチルアクリルア
ミド、N―メチロールアクリルアミド、2―アク
リルアミド―2―メチルプロパンスルフオン酸、
またはこれらの塩、メタアクリル酸またはアクリ
ル酸のアミノアルコールエステル(例えば、ジメ
チルアミノエチルメタアクリレート、ジエチルア
ミノエチルアクリレート)およびこれらの塩ある
いは4級アンモニウム塩、メタアクリル酸または
アクリル酸のエステル化合物(例えば、メチルメ
タアクリレート、ヒドロキシエチルアクリレー
ト)、アクリロニトリルなどを挙げられる。 次に、本発明を実施例により更に説明する。 実施例 1 粗アクリルアミド水溶液の製造: ラネー銅70重量部と、25重量%濃度のアクリロ
ニトリル水溶液1000部とを反応器に仕込み110℃
で10時間反応を行なつた。得られた反応液中の触
媒を過した後、減圧蒸留器に通じて未反応のア
クリロニトリルと水の1部を留去し、33重量%濃
度のアクリルアミド水溶液を得た。この粗アクリ
ルアミド水溶液に残存しているアクリロニトリル
は、300ppm以下、銅は80ppm以下であつた。 アクリルアミド水溶液の精製: 内径20mm、長さ50cmのガラス製イオン交換カラ
ム2本(A,Bカラム)を用意し、Aカラムに
は、強塩基性陰イオン交換樹脂レバチツトMP―
500(バイエル社製、商品名)100mlを充填し、遊
離型(OH型)にしておき、Bカラムには強酸性
陽イオン交換樹脂アンバーライトIR―120B(ロ
ーンアンドハース社製、商品名)100mlを充填
し、H型に再生して充分に水洗しておいた。この
2本のカラムをA―Bの如く直列に連結し、前記
アクリルアミド水溶液をSV3(300ml/hr)、
0.96m/hrの速度で通液した。 重合体の製造: 前記の方法により得られたアクリルアミド水溶
液を蒸留水でアクリルアミド20%重量%濃度と
し、その100部をとり苛性ソーダ水溶液でPHを10
に調製後、窒素を吹き込んで溶存酸素を系外に除
去し、系内を30℃とし、これを触媒として過硫酸
カリウム、助触媒としてニトロトリスプロピオン
アミドをそれぞれアクリルアミド1モル当り8.0
×10-5モル及び20.0×10-5モル添加し、重合熱に
よる昇温とそれによる重合が進行するままに放置
して反応を進行させ、昇温が認められなくなつて
更に1時間放置することにより重合反応を終了せ
しめ、寒天状物を得た。 次に、この寒天状物を2mm以下の大きさの粒子
に砕いてから寒天状物中の水をメタノールで置換
後、50℃で減圧乾燥して重合体の粉末を得た。 得られた重合体の評価: 上記の方法により得られた乾燥重合物の水溶解
性、分岐度及び凝集性能を以下の方法により評価
し、表1に示した。 (1) 水溶解性は、重合体乾燥物を0.1%濃度水溶
液にしたものを200メツシユの布に通し、水
不溶解分を水溶液より別採取し、この水不溶
解分を120℃で乾燥して、水不溶解分重量%を
求めた。 (2) 分岐度は上記水溶性試験で得られた0.1重量
%濃度の重合体水溶液を100g採取し、これに
0.1規定NaOH水溶液7gを添加し、十分撹拌
後80℃の水溶中に3時間放置し、加水分解を行
つた。加水分解前後の重合体水溶液の極限粘度
を温度30℃、1規定硝酸ソーダ中で測定し、加
水分解前後での極限粘度の上昇比を算出した。 (3) 凝集性能は、本実施例および後記の実施例2
〜6および比較例2〜10については、クラフト
パルプ廃水に硫酸バンド400ppmを加えた廃水
(PH6.0)を500mlの栓付きシリンダーに300mlと
り、上記の諸例で得た各重合体の乾燥物を重量
比で2ppmとなるように添加して、5回転倒撹
拌したのち、生成したフロツクの大きさ、上澄
液の光透過度(セル厚み1cm)の測定を行つ
た。 実施例7〜8、比較例11〜12については製紙
工場廃水の活性汚泥処理により生ずる余剰汚泥
懸濁液(PH6.2,SS3.4%)を500ml栓付きシリ
ンダーに300mlとり、上記の諸例で得た各重合
体の乾燥物を重量比で10ppmとなるように添
加し、5回転倒撹拌したのち、生成したフロツ
クの大きさ、及び生成フロツクを遠心脱水して
得られる脱水ケーキの含水率(105℃で10時間
乾燥)を測定することにより行つた。 実施例 2 実施例1の方法により製造した粗アクリルアミ
ド水溶液を、実施例1の精製方法のうち、Bカラ
ムに充填した樹脂を弱酸性陽イオン交換樹脂レバ
チツトCNP―80(バイエル社製、商品名)とし
た他は実施例1と同様の方法で精製し、重合し、
水溶性、分岐度および凝集性能の評価を行つた。 実施例 3 実施例1の方法により製造した粗アクリルアミ
ド水溶液を、実施例1の精製法のうち、Aカラム
に充填した樹脂を3級アミン基と4級アンモニウ
ム基の2種の陰イオン交換樹脂を持つ陰イオン交
換樹脂レバチツトMP―64(バイエル社製、商品
名)とした他は実施例1と同様の方法で精製し、
重合し、水溶性、分岐度および凝集性能の評価を
行つた。 実施例 4〜8 実施例1の方法により製造した精製したアクリ
ルアミドと、表2記載の共重合可能な単量体とを
表2記載の単量体組成比で、重合時PHを7とした
点、触媒として過硫酸アンモン及び助触媒とし
て、重亜硫酸ソーダをそれぞれアクリルアミド1
モル当り2.2×10-5モル及び1.0×10-5モルを用い
た点を除き、実施例1と同様の方法で重合し、水
溶性および凝集性能の評価を行つた。 比較例 1 40重量%のアクリルアミド水溶液を−5℃に冷
却し、晶析したアクリルアミド結晶を採取し、こ
れに蒸留水を加え50重量%のアクリルアミド水溶
液とした。この操作を更に2回くりかえして精製
アクリルアミドを得、実施例1と同様の方法で重
合し、得られた重合体の水溶性、分岐度および凝
集性能の評価を行つた。 比較例 2〜7 実施例1の方法により製造した粗アクリルアミ
ド水溶液を表1記載のイオン交換樹脂を充填した
Aカラム、Bカラムに表1記載のSVで通液し、
得られたアクリルアミド水溶液を実施例1の方法
により重合し、水溶性および凝集性能の評価を行
つた。 比較例 8〜12 実施例1の方法により製造した粗アクリルアミ
ド水溶液を、レバチツトMP―500の炭酸塩型とア
ンバーライトIR―120BのH型との混床カラムに
SV1.5で通液し、得られたアクリルアミド水溶液
に表2記載の共重合可能な単量体を表2記載の単
量体組成比で加え、実施例4〜8と同様の方法で
重合し、水溶性ならびに凝集性能の評価を行なつ
た。
The present invention relates to a method for purifying aqueous acrylamide solutions. Specifically, the present invention relates to a method for purifying an aqueous acrylamide solution obtained by catalytically hydrating acrylonitrile in the presence of a copper-containing catalyst. Acrylamide is useful as a raw material for acrylamide-based polymers that have uses such as paper strength agents and polymer flocculants. Acrylamide can now be produced relatively easily by catalytic hydration of acrylonitrile in the presence of a catalyst containing metallic copper as a main component, instead of the conventional sulfuric acid method. According to this method, since acrylamide is obtained as an aqueous solution, it can be directly subjected to the polymerization reaction, which is extremely advantageous. However, even if the acrylamide aqueous solution obtained by hydration is immediately subjected to a polymerization reaction, not only is it not possible to obtain an acrylamide-based polymer with excellent flocculation performance and solubility, but the polymerization reaction may not even proceed. It is assumed that the cause of this phenomenon is that various trace impurities present in the acrylamide aqueous solution due to the manufacturing method affect the polymerization reaction, and the impurities in the contact hydration method are usually (1) It contains unreacted acrylonitrile, (2) metal ions such as copper eluted from the catalyst component, (3) impurities contained in the raw material acrylonitrile, and (4) side reaction products such as organic acids. Among these, unreacted acrylonitrile can be easily removed by conventional methods such as distillation. Further, metal ions such as copper can be easily removed by treatment with a cation exchange resin. However, the acrylamide aqueous solution obtained by distilling off unreacted acrylonitrile and treating it with a cation exchange resin is not only sufficient when used as a raw material for a paper strength agent but also as a raw material for a polymer flocculant. It cannot be said that it has been refined into
It is difficult to create a polymer flocculant with excellent flocculation performance and solubility. When used as a paper strength enhancer, it is possible to use a polymer with a relatively low molecular weight of around several hundred thousand, but when used as a polymer flocculant, it is usually necessary to have a high molecular weight of around several million. Recently, products with ultra-high molecular weights of 10 million or more have been produced, and as the types of industrial wastewater increase and become more complex,
Many types of polymer flocculants have come to be produced not only by simply increasing the molecular weight to ultra-high molecular weight, but also by adjusting the hydrolysis rate of amide groups in the polymer, copolymerizing with monomers other than acrylamide, etc. . As the performance of polymer flocculants becomes more diverse and sophisticated, the raw material acrylamide is also required to be of higher quality, and it is now necessary to remove trace amounts of impurities that have not been a problem in the past. has become necessary. As a method for removing such impurities, a method of treatment with an ion exchange resin, particularly a strongly basic anion exchange resin, is described in J. Appl. Chem. of USSR Vol. 41.
820 (1968), Anal.Chem.37 volume. 1546 (1965), Japanese Patent Publication No. 50-82011, Japanese Patent Application Publication No. 1973-83323, etc. However, as described in, for example, JP-A-54-66618, JP-A-54-73727, and JP-A-54-74890, these known methods do not use the raw materials for polymer flocculants. It is said that it is difficult to obtain an aqueous solution of acrylamide, and according to the knowledge of the present inventors, it is possible to obtain a polymer flocculant with excellent flocculating performance and solubility, as shown in Comparative Examples 2 and 5 to 12, which will be described later. He admitted that it was difficult. Furthermore, according to the findings of the present inventors, for example, J.
Comparison with the method disclosed in Appl.Chem.of USSR Vol. 41, 820 (1968) and Examples of JP-A-82011, that is, using an aqueous acrylamide solution treated with a free form of strongly basic anion exchange resin. Example 6
As shown in Figure 2, it has been recognized that the polymerization reaction may not proceed depending on the polymer manufacturing conditions. The cause of this phenomenon is not clear, but as stated in JP-A No. 83323/1983, it is thought that the PH of the acrylamide aqueous solution increases due to treatment with a strongly basic anion exchange resin, resulting in the formation of impurities. It will be done. Conventionally, the production of impurities during the purification process of acrylamide aqueous solutions was considered to be disadvantageous; for example,
As described in JP-A-50-82011 and JP-A-50-83323, when using a strongly basic anion exchange resin, it is used in the weak acid form, but it is more preferable to use it in the form of a weak acid salt. It was said to be used on the floor.
However, even with these methods, comparative example 2,
As shown in Nos. 7 to 12, this method was insufficient as a method for purifying raw materials for polymer flocculants having excellent flocculating performance and solubility. Various factors may be responsible for the inability to obtain a polymer flocculant with excellent flocculation performance and solubility, but according to the findings of the present inventors, two factors such as methylenebisacrylamide, which exists as an impurity in acrylamide, are considered to be the cause. As a result of the functional vinyl monomer being incorporated into the polymer chain of an acrylamide polymer in the polymerization reaction of acrylamide, the acrylamide polymer has a branched structure instead of a linear structure. When a polymer with such a branched structure is used as a polymer flocculant, not only does the amount added to the wastewater to be treated increase compared to a linear polymer, but also the turbidity of the wastewater after treatment increases. It is not sufficiently improved and results that are fully satisfactory as a flocculant cannot be obtained. Furthermore, when an attempt is made to increase the molecular weight of the product, there is a problem that the polymer having a branched structure as described above deteriorates the solubility of the product and no longer functions as a flocculant. As a result of detailed studies on purification methods using ion exchange resins, the present inventors found that a method for purifying acrylamide aqueous solutions, which had never been attempted before, was to pass an acrylamide aqueous solution through a layer of free-type strongly basic anion exchange resin. By draining the liquid and then passing the solution through the H-type cation exchange resin layer, the polymerization reaction can be carried out under the conditions for producing a polymer that would not have proceeded when the polymerization reaction was only treated with a free-type strongly basic anion exchange resin. They discovered that not only the process progressed, but also that a high-quality acrylamide aqueous solution, which could not be obtained by conventional methods, could be easily obtained.
The method of the present invention has been arrived at. Conventionally, there is no known method for measuring the degree of branching in water-soluble polymers such as acrylamide polymers. Therefore, the present inventors found a method to determine the degree of branching by hydrolyzing the amide groups in polyacrylamide and relatively comparing the ratio of increase in the intrinsic viscosity before and after hydrolysis, and further determined the degree of branching in the polymer. The intrinsic viscosity of polyacrylamide produced using acrylamide purified by the method of the present invention was evaluated as a result of evaluating the correlation with flocculation performance, as is clear from the descriptions of Examples 1 to 3 and Comparative Example 1 described below. The ratio of increase in the intrinsic viscosity of polyacrylamide produced using acrylamide purified by repeated crystallization was equivalent to the ratio of increase in the intrinsic viscosity of polyacrylamide, confirming that it was a linear polymer with little branched structure. Next, the present invention will be explained in detail. The acrylamide aqueous solution applied to the present invention is
It is obtained by catalytic hydration of acrylonitrile in the presence of a copper-containing catalyst. Various types of copper-containing catalysts have been proposed for use in the production of acrylamide, any of which can be used in the present invention. For example, (1) a method using copper in the form of copper wire, copper powder, etc. and copper ions as a catalyst, (2) a method using copper compounds such as copper oxide, copper hydroxide, copper salt, etc. with hydrogen or carbon monoxide, etc.
A method using reduced copper obtained by reduction at a high temperature such as 100 to 400°C as a catalyst, (3) copper oxide, copper hydroxide,
A method in which reduced copper obtained by reducing a copper compound such as a copper salt in a liquid phase using hydrazine, a borohydride compound of an alkali metal or alkaline earth metal, and a reducing agent such as formaldehyde is used as a catalyst, (4)
A method in which reduced copper obtained by treating a copper compound such as copper oxide, copper hydroxide, or copper salt in a liquid phase with a metal that has a greater ionization tendency than copper such as zinc, aluminum, iron, or tin as a catalyst, (5) A method using Raney copper, which is obtained by developing a Raney alloy consisting of aluminum, zinc or magnesium, and copper, as a catalyst;
(6) Organic complex compounds such as copper formate and copper oxalate,
For example, metals found in methods such as using metallic copper obtained by thermal decomposition as a catalyst in a temperature range of 100 to 400°C, (7) or methods using thermal decomposition products of copper hydride as a catalyst. Examples include catalysts containing copper or metallic copper. These copper-containing catalysts may contain, in addition to commonly used carriers, other commonly used metals such as chromium or molybdenum. The reaction between acrylonitrile and water in the presence of the copper-containing catalyst described above is usually carried out using almost any amount of water relative to the acrylonitrile, at a temperature range of 20 to 200°C, preferably 50 to 150°C, at normal pressure to adopts a catalyst bed consisting of a suspended bed or a fixed bed and a continuous or batch reaction type under pressure to prevent contact between the reaction raw materials and the copper-containing catalyst and oxygen or oxygen-containing gas under the liquid phase. However, it is done. Next, the reaction solution is subjected to distillation removal of unreacted acrylonitrile contained in the solution and, for example, 30%
It is usually subjected to a distillation operation for the purpose of concentration to obtain an aqueous acrylamide solution having a concentration of about 50% by weight. The aqueous acrylamide solution thus obtained is treated according to the invention. That is, the acrylamide aqueous solution obtained by the method described above is treated by passing it through a free-type strongly basic anion exchange resin layer and then through an H-type cation exchange resin layer. The contact between the acrylamide aqueous solution and the resin can be carried out by any of the fixed bed method, suspended bed method, and moving bed method, but usually the fixed bed method is adopted, and the liquid can be passed by either an upward flow or a downward flow method. You can read it. The passing temperature is usually 60°C as long as the acrylamide does not change in quality and acrylamide crystals do not precipitate.
below ℃. The ion exchange resin used in the present invention can be selected from common commercially available ones. Strongly basic anion exchange resins include, for example, Amberlite IRA-402 (manufactured by Rohm and Haas, trade name), Diaion PA-416 (manufactured by Mitsubishi Chemical Corporation, trade name), and Revacit MP-500 (manufactured by Mitsubishi Chemical Corporation, trade name). (manufactured by Bayer AG, product name), etc. The cation exchange resin may be either strongly acidic or weakly acidic; for example, Amberlite
IR-120B (manufactured by Rohm and Haas, product name),
Examples include Diaion WK-10 (manufactured by Mitsubishi Chemical Industries, Ltd., trade name) and Revachit CNP-80 (manufactured by Bayer AG, trade name). The concept of strongly basic anion exchange resins used in the present invention includes so-called medium basic anion exchange resins,
For example, it includes those having both a tertiary amine and a quaternary ammonium as a functional group having anion exchange ability, such as Revachit MP-64 (manufactured by Bayer AG, trade name). Prior to processing in accordance with the present invention, the aqueous acrylamide solution may be oxygenated by contacting with oxygen or an oxygen-containing gas, and treated with a cation exchange resin or a weakly basic anion exchange resin to make it ionic. Impurities may be removed in advance. As one embodiment of the present invention, it can also be employed as a pretreatment when producing an acrylamide polymer. The polymerization initiator used in the production of the acrylamide polymer in this embodiment includes conventionally known initiators, such as azobisdimethylvaleronitrile, azobiscyanovaleric acid sodium salt, and azobisisobutylene. Azo compounds such as ronitrile, azobisaminopropane hydrochloride, organic peroxides such as benzoyl peroxide, lauroyl peroxide, tert-butyl hydroperoxide, potassium persulfate, sodium perbromate, ammonium persulfate, hydrogen peroxide Examples include inorganic peroxides such as. Reducing agents include inorganic compounds such as ferrous sulfate, ferrous chloride, sodium bisulfite, sodium metasulfite, sodium thiosulfate, and nitrite; organic compounds include dimethylaniline, 3-
Dimethylaminopropionitrile and phenylhydrazine can be mentioned. In the method of the invention, the monomer used to obtain the high molecular weight polymer is acrylamide alone or a mixture of acrylamide and a monomer copolymerizable with it. Examples of monomers copolymerizable with acrylamide include methacrylamide, acrylic acid or salts thereof, N-methylacrylamide, N,N'-dimethylacrylamide, N-methylolacrylamide, and 2-acrylamide. 2-methylpropanesulfonic acid,
or salts thereof, methacrylic acid or amino alcohol esters of acrylic acid (e.g. dimethylaminoethyl methacrylate, diethylaminoethyl acrylate) and salts or quaternary ammonium salts thereof, ester compounds of methacrylic acid or acrylic acid (e.g. Methyl methacrylate, hydroxyethyl acrylate), acrylonitrile, etc. Next, the present invention will be further explained by examples. Example 1 Production of crude acrylamide aqueous solution: 70 parts by weight of Raney copper and 1000 parts of a 25% by weight acrylonitrile aqueous solution were charged into a reactor and heated at 110°C.
The reaction was carried out for 10 hours. After the catalyst in the resulting reaction solution was filtered out, unreacted acrylonitrile and a portion of water were distilled off through a vacuum distillation device to obtain an acrylamide aqueous solution with a concentration of 33% by weight. The amount of acrylonitrile remaining in this crude acrylamide aqueous solution was 300 ppm or less, and the amount of copper remaining was 80 ppm or less. Purification of acrylamide aqueous solution: Prepare two glass ion exchange columns (A and B columns) with an inner diameter of 20 mm and a length of 50 cm.
Fill the B column with 100 ml of 500 (manufactured by Bayer, trade name) to make it a free form (OH type), and fill the B column with 100 ml of strongly acidic cation exchange resin Amberlite IR-120B (manufactured by Rohn & Haas, trade name). was filled, regenerated into H-type, and thoroughly washed with water. These two columns were connected in series as shown in A-B, and the acrylamide aqueous solution was added to SV3 (300ml/hr).
The liquid was passed at a speed of 0.96 m/hr. Production of polymer: The acrylamide aqueous solution obtained by the above method was adjusted to a 20% acrylamide concentration by weight with distilled water, and 100 parts of the acrylamide solution was adjusted to a pH of 10 with a caustic soda aqueous solution.
After the preparation, dissolved oxygen was removed from the system by blowing nitrogen into the system, the temperature inside the system was set at 30°C, and potassium persulfate was used as a catalyst, and nitrotrispropionamide was used as a cocatalyst at 8.0% per mole of acrylamide.
x10 -5 mol and 20.0 x 10 -5 mol were added, the temperature was raised by the heat of polymerization, and the resulting polymerization was allowed to proceed to allow the reaction to proceed. When no temperature increase was observed, the reaction was left for another 1 hour. In this way, the polymerization reaction was terminated and an agar-like material was obtained. Next, this agar-like material was crushed into particles with a size of 2 mm or less, water in the agar-like material was replaced with methanol, and then dried under reduced pressure at 50°C to obtain a polymer powder. Evaluation of the obtained polymer: The water solubility, degree of branching, and aggregation performance of the dried polymer obtained by the above method were evaluated by the following methods and are shown in Table 1. (1) Water solubility is determined by passing a 0.1% aqueous solution of the dried polymer through a 200-mesh cloth, collecting the water-insoluble content separately from the aqueous solution, and drying this water-insoluble content at 120°C. The weight percent of the water-insoluble content was determined. (2) The degree of branching is determined by taking 100g of the 0.1% by weight aqueous polymer solution obtained in the water solubility test above, and
7 g of 0.1N NaOH aqueous solution was added, and after thorough stirring, the mixture was left in an aqueous solution at 80° C. for 3 hours to perform hydrolysis. The intrinsic viscosity of the aqueous polymer solution before and after hydrolysis was measured in 1N sodium nitrate at a temperature of 30°C, and the ratio of increase in the intrinsic viscosity before and after hydrolysis was calculated. (3) The flocculation performance was measured in this example and in Example 2 below.
~ 6 and Comparative Examples 2 to 10, 300 ml of waste water (PH 6.0) obtained by adding 400 ppm of sulfate to kraft pulp waste water was placed in a 500 ml cylinder with a stopper, and the dried products of each polymer obtained in the above examples were added. was added at a weight ratio of 2 ppm, and after stirring by inverting 5 times, the size of the generated flocs and the light transmittance of the supernatant (cell thickness: 1 cm) were measured. For Examples 7 to 8 and Comparative Examples 11 to 12, 300 ml of surplus sludge suspension (PH 6.2, SS 3.4%) produced by activated sludge treatment of paper mill wastewater was placed in a cylinder with a 500 ml stopper, and the above-mentioned examples were added. After adding the dried product of each polymer obtained in step 1 to a weight ratio of 10 ppm and stirring it upside down 5 times, the size of the floc produced and the water content of the dehydrated cake obtained by centrifugally dehydrating the floc produced were determined. (dried at 105°C for 10 hours). Example 2 The crude acrylamide aqueous solution produced by the method of Example 1 was packed into column B of the purification method of Example 1, and the resin was packed with a weakly acidic cation exchange resin Revachit CNP-80 (manufactured by Bayer AG, trade name). Purified and polymerized in the same manner as in Example 1 except that
Water solubility, degree of branching and flocculation performance were evaluated. Example 3 The crude acrylamide aqueous solution produced by the method of Example 1 was purified using two types of anion exchange resins, one with tertiary amine group and one with quaternary ammonium group, using the resin packed in column A in the purification method of Example 1. Purification was carried out in the same manner as in Example 1, except that the anion exchange resin Revachit MP-64 (manufactured by Bayer AG, trade name) was used.
It was polymerized and evaluated for water solubility, degree of branching, and flocculation performance. Examples 4 to 8 The purified acrylamide produced by the method of Example 1 and the copolymerizable monomers listed in Table 2 were used in the monomer composition ratios listed in Table 2, and the pH during polymerization was 7. , ammonium persulfate as a catalyst and sodium bisulfite as a cocatalyst, respectively.
Polymerization was carried out in the same manner as in Example 1, except that 2.2×10 −5 mol and 1.0×10 −5 mol were used per mole, and water solubility and flocculation performance were evaluated. Comparative Example 1 A 40% by weight acrylamide aqueous solution was cooled to -5°C, the crystallized acrylamide crystals were collected, and distilled water was added thereto to obtain a 50% by weight acrylamide aqueous solution. This operation was repeated two more times to obtain purified acrylamide, which was polymerized in the same manner as in Example 1, and the resulting polymer was evaluated for water solubility, degree of branching, and aggregation performance. Comparative Examples 2 to 7 The crude acrylamide aqueous solution produced by the method of Example 1 was passed through columns A and B packed with the ion exchange resins listed in Table 1 at the SVs listed in Table 1,
The obtained acrylamide aqueous solution was polymerized by the method of Example 1, and its water solubility and aggregation performance were evaluated. Comparative Examples 8 to 12 The crude acrylamide aqueous solution produced by the method of Example 1 was placed in a mixed bed column of Rebachit MP-500 carbonate type and Amberlite IR-120B H type.
The copolymerizable monomers listed in Table 2 were added to the resulting acrylamide aqueous solution at the monomer composition ratio listed in Table 2, and polymerization was carried out in the same manner as in Examples 4 to 8. , water solubility and flocculation performance were evaluated.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリルを銅含有触媒の存在下に接
触水和して得られるアクリルアミド水溶液を精製
するにあたり、該アクリルアミド水溶液を遊離型
の強塩基性陰イオン交換樹脂層に通液し、次いで
H型の陽イオン交換樹脂層に通液することを特徴
とするアクリルアミド水溶液の精製方法。
1. In purifying the acrylamide aqueous solution obtained by catalytic hydration of acrylonitrile in the presence of a copper-containing catalyst, the acrylamide aqueous solution is passed through a free-type strongly basic anion exchange resin layer, and then H-type cations are purified. A method for purifying an acrylamide aqueous solution, which comprises passing the solution through an exchange resin layer.
JP772680A 1979-09-13 1980-01-28 Purification of aqueous solution of acrylamide Granted JPS56104852A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP772680A JPS56104852A (en) 1980-01-28 1980-01-28 Purification of aqueous solution of acrylamide
GB8028265A GB2059952B (en) 1979-09-13 1980-09-02 Purifying aqueous acrylamide solutions
DE19803033930 DE3033930A1 (en) 1979-09-13 1980-09-10 METHOD FOR CLEANING AQUEOUS ACRYLAMIDE SOLUTIONS
IT24613/80A IT1193553B (en) 1979-09-13 1980-09-11 PROCESS TO PURIFY ACRYLAMIDE AQUEOUS SOLUTIONS
NL8005120A NL8005120A (en) 1979-09-13 1980-09-11 PROCESS FOR PURIFYING ACRYLAMIDE SOLUTION.
US06/186,057 US4313001A (en) 1979-09-13 1980-09-11 Process for purifying aqueous acrylamide solutions
FR8019783A FR2479196A1 (en) 1979-09-13 1980-09-12 PROCESS FOR THE PURIFICATION OF AQUEOUS ACRYLAMIDE SOLUTIONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP772680A JPS56104852A (en) 1980-01-28 1980-01-28 Purification of aqueous solution of acrylamide

Publications (2)

Publication Number Publication Date
JPS56104852A JPS56104852A (en) 1981-08-20
JPS6140217B2 true JPS6140217B2 (en) 1986-09-08

Family

ID=11673708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP772680A Granted JPS56104852A (en) 1979-09-13 1980-01-28 Purification of aqueous solution of acrylamide

Country Status (1)

Country Link
JP (1) JPS56104852A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289148B1 (en) 2006-05-15 2013-07-23 미쓰이 가가쿠 가부시키가이샤 Acrylamide methacrylamide production method
JP5541766B2 (en) * 2009-05-19 2014-07-09 株式会社ダイセル Method for producing polymer compound for photoresist

Also Published As

Publication number Publication date
JPS56104852A (en) 1981-08-20

Similar Documents

Publication Publication Date Title
EP0419654A1 (en) Water-soluble cationic polymer
EP0635484B1 (en) Preparation process of acrylamide
EP0532894B1 (en) Weakly basic anion exchange resins, process for their preparation by aminolysis and use for removing sulfates ions from acqueous solutions
CA1223700A (en) Process for producing acrylamide-type cationic polymeric flocculant
KR0164921B1 (en) Productor of acrylamide
JPS6140217B2 (en)
US4313001A (en) Process for purifying aqueous acrylamide solutions
GB2078734A (en) Process for purifying an aqueous solution of acrylamide
JPH0134983B2 (en)
JPS5924708A (en) Production of cationic acrylamide polymer
JP3908803B2 (en) Method for producing acrylamide
JPH0212945B2 (en)
JP3683916B2 (en) Method for producing acrylamide
JPH11246498A (en) Purification of aqueous solution of acrylamide and production of acrylamide polymer
JP3476226B2 (en) Purification method of methacrylamide aqueous solution
JP2697093B2 (en) Method for producing neutralized salt of dialkylaminoalkyl acrylate
JP2008247979A (en) Method for producing high-quality (meth)acrylamide polymer
JP3555997B2 (en) Purification method of acrylamide aqueous solution
JPS6343381B2 (en)
JP3732544B2 (en) Method for producing acrylamide
JP3476227B2 (en) Method for producing methacrylamide
JPH09208544A (en) Production of acrylamide
KR800000501B1 (en) Purification of acrylamide solution
JPS59120609A (en) Production of polyacrylamide resin
JPH02304051A (en) Production of high-molecular weight polymer having excellent water-solubility