JP3555997B2 - Purification method of acrylamide aqueous solution - Google Patents

Purification method of acrylamide aqueous solution Download PDF

Info

Publication number
JP3555997B2
JP3555997B2 JP28040694A JP28040694A JP3555997B2 JP 3555997 B2 JP3555997 B2 JP 3555997B2 JP 28040694 A JP28040694 A JP 28040694A JP 28040694 A JP28040694 A JP 28040694A JP 3555997 B2 JP3555997 B2 JP 3555997B2
Authority
JP
Japan
Prior art keywords
acrylamide
copper
exchange resin
ion exchange
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28040694A
Other languages
Japanese (ja)
Other versions
JPH08143521A (en
Inventor
弘幸 朝倉
正平 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP28040694A priority Critical patent/JP3555997B2/en
Publication of JPH08143521A publication Critical patent/JPH08143521A/en
Application granted granted Critical
Publication of JP3555997B2 publication Critical patent/JP3555997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明はアクリロニトリルの接触水和法により得られるアクリルアミド水溶液を精製する際の脱銅方法に関するものである。
【0002】
【従来の技術】
アクリルアミドは紙力増強剤、凝集剤などに利用されるアクリルアミド系ポリマーの製造に用いられるほか多方面の用途に向けられる産業上有用なモノマーである。
金属銅系触媒の存在下にアクリロニトリルを接触水和してアクリルアミドを製造する方法はすでに良く知られている。しかして、この銅系触媒を使用して得られたアクリルアミド含有反応液中には微量の銅が溶出して来るのを避けることができない。そのため、アクリルアミド水溶液を原料としてポリマーを製造しようとする場合、そこに溶存する銅は重合反応を阻害するので、アクリルアミド水溶液の商品価値を著しく低下させる原因となる。従って該アクリルアミド反応液から得られるアクリルアミド水溶液をポリマー原料として使用するためには溶存銅を除去する必要がある。溶存銅の除去方法としては強酸性陽イオン交換樹脂により処理する方法やイミノジ酢酸型の弱酸性イオン交換樹脂により処理する方法がとられている。
【0003】
【発明が解決しようとする課題】
しかしながらアクリルアミドは反応性に富むため、アクリルアミドを重合させることなく工業的にアクリルアミド水溶液中に溶存する銅を除去することはきわめて難しい。たとえば強酸性イオン交換樹脂を使用する場合、遊離酸型(H型と略称する)であれば銅除去能力は大きいものの、官能基が強酸性であるため、反応性の高いアクリルアミドが重合することは避けられない。これがナトリウム塩型(Na型と略称する)である場合、アクリルアミドの重合は避けられるものの、銅の吸着能力が劣り十分な除去性能が得られない。またイミノジ酢酸型の弱酸性イオン交換樹脂を使用した場合、それらがH型であると弱酸性のために解離が弱く銅の吸着能が弱い。またさらにNa型であると官能基が弱酸性であるために、逆にアクリルアミド水溶液にNaイオンが溶出するという不都合が生じる。
【0004】
【課題を解決するための手段】
すなわち、本発明は、アクリロニトリルの接触水和法により得られるアクリルアミド水溶液を、アミノリン酸型中酸性イオン交換樹脂により処理することを特徴とするアクリルアミド水溶液の精製方法に関するものである。
本発明はアクリロニトリルの接触水和法により得られるアクリルアミド水溶液から銅を除去するする際、アミノリン酸型の中酸性イオン交換樹脂にて脱銅する方法を提供するものであるが、このようなアミノリン酸型中酸性イオン交換樹脂を使用すると、その強い銅吸着能力により極低濃度にまで銅を除去することが可能であるばかりでなく、中酸性であるために、反応性の高いアクリルアミドにおいてもその重合や加水分解が起こらず、さらにはイオン交換樹脂からNaイオンなどの溶出もないという非常に高度なアクリルアミド精製が実施できるのである。
【0005】
以下、本発明を詳細に説明する。
本発明に用いられるアクリルアミド水溶液は、アクリロニトリルを原料として通常の接触水和法により得られる。すなわちアクリロニトリルを水とともに耐圧の反応器に仕込み金属銅触媒の存在下、70〜150℃程度の温度で1〜3時間程度反応させる。得られた反応液には未反応のアクリロニトリルが残存するので、通常これを予め除去しておく。
【0006】
本発明で処理するアクリルアミド水溶液のアクリルアミド濃度に制限はないが、通常接触水和法により得られるアクリルアミド水溶液中のアクリルアミド濃度は20〜60%程度であり、この範囲のアクリルアミド水溶液を好適に処理することができる。もちろん、この範囲外のものであっても適用可能である。
【0007】
本発明で処理するアクリルアミド水溶液中の銅濃度に制限はないが、接触水和法では通常反応液中に10〜200ppm程度の銅を含有しており、このようなアクリルアミド水溶液を好適に処理することができる。もちろん、これより大なる濃度もしくは少ない濃度の銅濃度のものであっても、本発明が好適に適用できるものであることは容易に理解できるであろう。
【0008】
本発明で使用する中酸性イオン交換樹脂とは、スチレン−ジビニルベンゼン共重合体を母体とするアミノリン酸型の中酸性イオン交換樹脂であり、この種の中酸性イオン交換樹脂としては、例えばレバチットOC1060(バイエル社製)、デュオライトC467(ロームアンドハース社製)等の名称で市販されており、好適に使用できる。
【0009】
本発明で使用する該中酸性イオン交換樹脂はH型であってもNa型としてもよい。Na型として使用する場合、その調整方法は該樹脂のイオン交換容量より過剰当量の苛性ソーダ水溶液を接触させればよい。また銅吸着後の該樹脂は鉱酸で処理すればH型として使用でき、さらに苛性ソーダ水溶液で同様の処理をすればNa型とし再度使用に供することができる。
【0010】
本発明におけるアクリルアミド水溶液をアミノリン酸型中酸性イオン交換樹脂により処理するとは、要するに該水溶液を該イオン交換樹脂に接触せしめることである。
【0011】
本発明における処理法はバッチ式懸濁法による接触であっても効果は得られるが、通常カラム通液法が好ましく、該イオン交換樹脂をカラムに充填し上昇流または下降流によりアクリルアミド水溶液を接触させる方法がとられる。その際の通液速度に制限はないが、通常SV(空塔速度)が0.1以上20(Hr−1)以下の範囲で処理するのが好ましく、1以上10以下がさらに好ましい。通液温度はアクリルアミドが変質しない温度つまりは60℃以下が好ましく、さらに低い温度であればより好ましいがその濃度のアクリルアミド飽和を示す温度より高いことが好ましい。
【0012】
【実施例】
以下実施例で本発明をさらに詳細に説明する。以下においてppmあるいは%はアクリルアミド水溶液の重量基準である。
[実施例1]
イオン型をNa型に調整したアミノリン酸型中酸性イオン交換樹脂レバチットOC1060(バイエル社製)を50ml充填した内径15mmのガラス製カラムにアクリロニトリルの接触水和法により得られた銅イオン24ppmを含む40%アクリルアミド水溶液をSVが4(Hr−1)、下向流、温度30℃で30リットル通液した。カラム下部より流出した処理液中の銅イオン濃度は5ppb以下であった。また処理液中にアクリルアミド重合物は検出されなかった。
【0013】
[実施例2]
イオン型をH型に調整したアミノリン酸型中酸性イオン交換樹脂レバチットOC1060(バイエル社製)を50ml充填した内径15mmのガラス製カラムにアクリロニトリルの接触水和法により得られた銅イオン28ppmを含む40%アクリルアミド水溶液をSVが8(Hr−1)、下向流、温度30℃で30リットル通液した。カラム下部より流出した処理液中の銅イオン濃度は5ppb以下であった。また処理液中にアクリルアミド重合物は検出されなかった。
【0014】
[比較例1]
イオン交換樹脂を、イオン型をH型に調整した強酸性イオン交換樹脂レバチットSP112(バイエル社製)としたほかは実施例1と同様にアクリルアミド水溶液を処理した。アクリルアミド水溶液を2リットル処理したときにアクリルアミドが重合しカラムが閉塞し処理が不能となった。
【0015】
[比較例2]
イオン交換樹脂を、イオン型をNa型に調整した強酸性イオン交換樹脂レバチットSP112(バイエル社製)としたほかは実施例1と同様にアクリルアミド水溶液を処理した。カラム下部より流出した処理液中の銅イオン濃度は455ppbであった。
【0016】
[比較例3]
イオン交換樹脂を、イオン型をH型に調整したイミノジ酢酸型弱酸性イオン交換樹脂レバチットTP207(バイエル社製)としたほかは実施例1と同様にアクリルアミド水溶液を処理した。カラム下部より流出した処理液中の銅イオン濃度は85ppbであった。また試験後カラム内を点検したところアクリルアミドの重合物が見られた。
【0017】
[比較例4]
イオン交換樹脂を、イオン型をNa型に調整したイミノジ酢酸型弱酸性イオン交換樹脂レバチットTP207(バイエル社製)としたほかは実施例1と同様にアクリルアミド水溶液を処理した。カラム下部より流出した処理液中の銅イオン濃度は165ppbであった。
【0018】
【発明の効果】
本発明によって、アクリロニトリルの接触水和反応によりアクリルアミド水溶液から長期、安定的に微量の銅を除去することが可能になり、このことはアクリルアミドの工業的生産にとって、きわめて大きな利益を与えるものである。
[0001]
[Industrial applications]
The present invention relates to a copper removal method for purifying an aqueous acrylamide solution obtained by a contact hydration method of acrylonitrile.
[0002]
[Prior art]
Acrylamide is an industrially useful monomer used for the production of acrylamide-based polymers used for paper strength agents, flocculants, and the like, and for various uses.
A method for producing acrylamide by catalytic hydration of acrylonitrile in the presence of a copper metal catalyst is already well known. Therefore, it is inevitable that a trace amount of copper is eluted into the acrylamide-containing reaction solution obtained by using this copper-based catalyst. Therefore, when an attempt is made to produce a polymer using an aqueous acrylamide solution as a raw material, the copper dissolved therein inhibits the polymerization reaction, which significantly reduces the commercial value of the aqueous acrylamide solution. Therefore, in order to use an acrylamide aqueous solution obtained from the acrylamide reaction solution as a polymer raw material, it is necessary to remove dissolved copper. As a method for removing the dissolved copper, a method of treating with a strongly acidic cation exchange resin or a method of treating with a weakly acidic ion exchange resin of iminodiacetic acid type has been adopted.
[0003]
[Problems to be solved by the invention]
However, since acrylamide is highly reactive, it is extremely difficult to industrially remove copper dissolved in an aqueous acrylamide solution without polymerizing acrylamide. For example, when a strongly acidic ion exchange resin is used, the free acid type (abbreviated as H type) has a large copper removing ability, but the functional group is strongly acidic, so that highly reactive acrylamide is not polymerized. Inevitable. When this is a sodium salt type (abbreviated as Na type), polymerization of acrylamide can be avoided, but copper adsorption capacity is poor and sufficient removal performance cannot be obtained. When an iminodiacetic acid type weakly acidic ion exchange resin is used, if it is H type, it is weakly acidic, so that dissociation is weak and copper adsorption ability is weak. Further, in the case of the Na type, since the functional group is weakly acidic, there is a disadvantage that Na ions are eluted into the aqueous acrylamide solution.
[0004]
[Means for Solving the Problems]
That is, the present invention relates to a method for purifying an aqueous acrylamide solution, comprising treating an aqueous acrylamide solution obtained by a contact hydration method of acrylonitrile with an acidic ion exchange resin of aminophosphoric acid type.
The present invention provides a method of removing copper from an aqueous solution of acrylamide obtained by a contact hydration method of acrylonitrile using an aminophosphate type intermediate acid ion exchange resin. The use of a medium acidic ion exchange resin not only enables the removal of copper to an extremely low concentration due to its strong copper adsorption capacity, but also enables the polymerization of highly reactive acrylamide due to its moderate acidity. It is possible to carry out a very high degree of acrylamide purification, in which no hydrolysis occurs and no elution of Na ions or the like from the ion exchange resin.
[0005]
Hereinafter, the present invention will be described in detail.
The aqueous acrylamide solution used in the present invention can be obtained by a usual catalytic hydration method using acrylonitrile as a raw material. That is, acrylonitrile is charged together with water into a pressure-resistant reactor and reacted at a temperature of about 70 to 150 ° C. for about 1 to 3 hours in the presence of a metal copper catalyst. Since unreacted acrylonitrile remains in the obtained reaction solution, it is usually removed in advance.
[0006]
The acrylamide concentration of the acrylamide aqueous solution to be treated in the present invention is not limited, but the acrylamide concentration in the acrylamide aqueous solution usually obtained by the contact hydration method is about 20 to 60%, and the acrylamide aqueous solution in this range is preferably treated. Can be. Of course, it is applicable even if it is out of this range.
[0007]
The copper concentration in the acrylamide aqueous solution to be treated in the present invention is not limited, but the contact hydration method usually contains about 10 to 200 ppm of copper in the reaction solution, and such an acrylamide aqueous solution is preferably treated. Can be. Of course, it can be easily understood that the present invention can be suitably applied even if the concentration of copper is higher or lower.
[0008]
The medium-acid ion exchange resin used in the present invention is a medium-acid ion exchange resin of an aminophosphate type having a styrene-divinylbenzene copolymer as a base. (Manufactured by Bayer), Duolite C467 (manufactured by Rohm and Haas), and the like, and can be suitably used.
[0009]
The medium acidic ion exchange resin used in the present invention may be of H type or Na type. When used as the Na type, its adjustment method may be such that an aqueous solution of caustic soda in excess of the ion exchange capacity of the resin is brought into contact. Further, the resin after copper adsorption can be used as H-form by treating with a mineral acid, and can be converted into Na-form by performing the same treatment with an aqueous solution of caustic soda and reused.
[0010]
The treatment of the aqueous acrylamide solution in the present invention with an acidic ion exchange resin in an aminophosphoric acid type means that the aqueous solution is brought into contact with the ion exchange resin.
[0011]
The effect can be obtained even if the treatment method in the present invention is a contact by a batch suspension method.However, a column passing method is usually preferable, and the ion exchange resin is packed in a column and the acrylamide aqueous solution is contacted by an ascending flow or a descending flow. The method to make it take is taken. The liquid passing speed at this time is not limited, but the treatment is usually preferably performed at a SV (superficial velocity) of 0.1 to 20 (Hr -1 ), more preferably 1 to 10 (Hr -1 ). The liquid passing temperature is preferably a temperature at which acrylamide does not deteriorate, that is, 60 ° C. or lower, and more preferably a lower temperature, but preferably higher than a temperature at which the acrylamide is saturated at that concentration.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. In the following, ppm or% is based on the weight of the aqueous acrylamide solution.
[Example 1]
A glass column having an inner diameter of 15 mm filled with 50 ml of aminophosphoric acid type acid ion exchange resin LEVATIT OC1060 (manufactured by Bayer) whose ion type has been adjusted to Na type contains 24 ppm of copper ions obtained by the contact hydration method of acrylonitrile. A 30% aqueous solution of acrylamide was passed through at a temperature of 30 ° C. in a downward flow at an SV of 4 (Hr −1 ). The copper ion concentration in the processing solution flowing out from the lower part of the column was 5 ppb or less. No acrylamide polymer was detected in the treatment liquid.
[0013]
[Example 2]
A glass column having an inner diameter of 15 mm filled with 50 ml of an aminophosphoric acid type acid ion exchange resin Levatit OC1060 (manufactured by Bayer) whose ion form has been adjusted to H form contains 28 ppm of copper ions obtained by the contact hydration method of acrylonitrile. A 30% aqueous acrylamide solution was passed through at a SV of 8 (Hr -1 ), in a downward flow at a temperature of 30 ° C. The copper ion concentration in the processing solution flowing out from the lower part of the column was 5 ppb or less. No acrylamide polymer was detected in the treatment liquid.
[0014]
[Comparative Example 1]
An acrylamide aqueous solution was treated in the same manner as in Example 1 except that the ion exchange resin was a strongly acidic ion exchange resin Levatit SP112 (manufactured by Bayer) whose ion type was adjusted to H type. When 2 liters of the acrylamide aqueous solution was treated, acrylamide was polymerized and the column was blocked, and the treatment became impossible.
[0015]
[Comparative Example 2]
An acrylamide aqueous solution was treated in the same manner as in Example 1 except that the ion exchange resin was a strongly acidic ion exchange resin Levatit SP112 (manufactured by Bayer) whose ion type was adjusted to Na type. The copper ion concentration in the processing solution flowing out from the lower part of the column was 455 ppb.
[0016]
[Comparative Example 3]
An aqueous acrylamide solution was treated in the same manner as in Example 1 except that the ion exchange resin was iminodiacetic acid type weak acid ion exchange resin Levatit TP207 (manufactured by Bayer) whose ion type was adjusted to H type. The copper ion concentration in the processing solution flowing out from the lower part of the column was 85 ppb. When the inside of the column was inspected after the test, a polymer of acrylamide was found.
[0017]
[Comparative Example 4]
An acrylamide aqueous solution was treated in the same manner as in Example 1 except that the ion exchange resin was iminodiacetic acid type weak acid ion exchange resin Levatit TP207 (manufactured by Bayer) whose ion type was adjusted to Na type. The copper ion concentration in the processing solution flowing out from the lower part of the column was 165 ppb.
[0018]
【The invention's effect】
According to the present invention, it is possible to stably remove trace amounts of copper from an aqueous solution of acrylamide by a catalytic hydration reaction of acrylonitrile for a long time, which has a great advantage for industrial production of acrylamide.

Claims (1)

アクリロニトリルの接触水和法により得られるアクリルアミド水溶液を、アミノリン酸型中酸性イオン交換樹脂により処理することを特徴とするアクリルアミド水溶液の精製方法。A method for purifying an aqueous acrylamide solution, comprising treating an aqueous acrylamide solution obtained by a contact hydration method of acrylonitrile with an acidic ion exchange resin in an aminophosphoric acid type.
JP28040694A 1994-11-15 1994-11-15 Purification method of acrylamide aqueous solution Expired - Fee Related JP3555997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28040694A JP3555997B2 (en) 1994-11-15 1994-11-15 Purification method of acrylamide aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28040694A JP3555997B2 (en) 1994-11-15 1994-11-15 Purification method of acrylamide aqueous solution

Publications (2)

Publication Number Publication Date
JPH08143521A JPH08143521A (en) 1996-06-04
JP3555997B2 true JP3555997B2 (en) 2004-08-18

Family

ID=17624597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28040694A Expired - Fee Related JP3555997B2 (en) 1994-11-15 1994-11-15 Purification method of acrylamide aqueous solution

Country Status (1)

Country Link
JP (1) JP3555997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247979A (en) * 2007-03-29 2008-10-16 Mitsui Chemicals Inc Method for producing high-quality (meth)acrylamide polymer

Also Published As

Publication number Publication date
JPH08143521A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US4895905A (en) Gel-type chelating resins and a process for removal of multi-valent, alkaline earth or heavy metal cations from solutions
US3984314A (en) Process for selective removal and recovery of cyanide values by ion exchange
AU621300B2 (en) Alkylaminophosphonic chelating resins, their preparation and use in purifying brines
JP3567206B2 (en) Hydroxylamine purification method
US4818773A (en) Alkylaminophosphonic chelating resins, their preparation and use in purifying brines
US3067007A (en) Separation of strong polybasic acids from their salts
US4150205A (en) Composite ion exchange resins having low residual amounts of quaternary ammonium cation
KR20010013064A (en) Method for preparing an ultrapure hydrogen peroxide solution by ion exchange in the presence of ion acetate
JP3555997B2 (en) Purification method of acrylamide aqueous solution
US4405574A (en) Removal of Mg++ and Ca++ ions from NaCl brine
US2734915A (en) Acrylic acid
US4108893A (en) Purification of an aqueous solution of acrylamide
US4522951A (en) Removal of Mg++ and Ca++ ions from NaCl brine
JP3529113B2 (en) Method for removing impurities from hydrazine hydrate
KR960000480B1 (en) Process for demineralizing a sweet juices
JP3476226B2 (en) Purification method of methacrylamide aqueous solution
JPS581108B2 (en) Acrylonitrile purification method
JP4476367B2 (en) Purification method of acrylamide aqueous solution
EP0691889B1 (en) Resin regeneration process
JPS61201611A (en) Purification method for aqueous solution of phosphate
JP2001131221A (en) Method for production of ionic polymer compound
JPH0545299B2 (en)
US4302600A (en) Process for the purification of an aqueous acrylamide solution
JPS6343381B2 (en)
SU1087514A1 (en) Method for purifying aqueous acrylamide solution

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees