JPS6140175B2 - - Google Patents

Info

Publication number
JPS6140175B2
JPS6140175B2 JP56027911A JP2791181A JPS6140175B2 JP S6140175 B2 JPS6140175 B2 JP S6140175B2 JP 56027911 A JP56027911 A JP 56027911A JP 2791181 A JP2791181 A JP 2791181A JP S6140175 B2 JPS6140175 B2 JP S6140175B2
Authority
JP
Japan
Prior art keywords
zone
die
molecular weight
ultra
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56027911A
Other languages
Japanese (ja)
Other versions
JPS57140135A (en
Inventor
Takeo Nanba
Katsumi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OZAKI KOGYO KK
Original Assignee
OZAKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OZAKI KOGYO KK filed Critical OZAKI KOGYO KK
Priority to JP56027911A priority Critical patent/JPS57140135A/en
Publication of JPS57140135A publication Critical patent/JPS57140135A/en
Publication of JPS6140175B2 publication Critical patent/JPS6140175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は超高分子量ポリエチレンの厚肉成形物
の押出法による連続成形方法及びそれに用いる成
形装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous extrusion molding method for thick-walled ultra-high molecular weight polyethylene and a molding apparatus used therefor.

超高分子量ポリエチレンの分子量は、粘度法で
約50万以上、光散乱法では約150万以上と云わ
れ、通常の高密度ポリエチレンの粘度法で2〜10
万、光散乱法で6〜30万に比べて極めて大きく、
耐衝撃性、耐摩耗性、耐ストレス、クラツク性、
耐低温特性に優れ、機械的強度を高度に要求され
る分野への利用が期待されている。
The molecular weight of ultra-high molecular weight polyethylene is said to be about 500,000 or more by the viscosity method, about 1.5 million or more by the light scattering method, and 2 to 100,000 by the viscosity method of ordinary high-density polyethylene.
10,000, which is extremely large compared to 60,000 to 300,000 by light scattering method.
Impact resistance, abrasion resistance, stress resistance, crack resistance,
It has excellent low-temperature resistance and is expected to be used in fields that require a high degree of mechanical strength.

しかしながら、一方において、樹脂の溶融流動
性が極めて悪く、普通のメルトインデツクス測定
法では、プランジヤー荷重を増しても測定が困難
であり、MI<0.01でゼロに近く、流動性が全く
ないといつても過言ではない。
However, on the other hand, the melt fluidity of the resin is extremely poor, and it is difficult to measure it using the ordinary melt index measurement method even when the plunger load is increased. It is no exaggeration to say so.

このような超高分子量ポリエチレンの成形法に
ついても従来から種々の方法が提案され、例えば
射出成形法については特開昭51−81861号に、溶
融押出法については特開昭51−90360号に記載さ
れている。特に、後者は本発明と同じ溶融押出方
法に関するものであつて、その要旨は、樹脂粉末
からスクリユー押出機を用いて溶融押出する際に
押出機中で樹脂融点よりも少なくとも40℃低い温
度で樹脂粉末を圧縮した後、常法で溶融押出する
ことにある。この低温圧縮によつて、樹脂とスク
リユーとが共回りを起して押出不能になるのを防
いでいるのである。この方法は、単軸スクリユー
押出機のスクリユーの改良によつて実施できる利
点を有するが、成形物の厚みが5mm以下1mm程度
の薄物には適合できるけれども、本発明の目的と
する、厚みが5〜50mmにも及ぶ厚物の押出成形に
は全く無力であることが判明している。
Various methods have been proposed for molding such ultra-high molecular weight polyethylene. For example, injection molding is described in JP-A-51-81861, and melt-extrusion is described in JP-A-51-90360. has been done. In particular, the latter relates to the same melt extrusion method as the present invention, and its gist is that when melt extruding resin powder using a screw extruder, the resin is heated in the extruder at a temperature at least 40°C lower than the resin melting point. After the powder is compressed, it is melt-extruded in a conventional manner. This low-temperature compression prevents the resin and screw from rotating together and becoming impossible to extrude. This method has the advantage that it can be implemented by improving the screw of a single-screw extruder, but although it can be applied to thin products with a thickness of 5 mm or less and about 1 mm, It has been found that it is completely ineffective for extrusion molding of thick materials up to ~50 mm.

そこで、分子量が50万以上の超高分子量ポリエ
チレンで厚肉のパイプ又は板状物の連続押出成形
方法及び装置について種々検討を加え、上記従来
の成形方法と正反対で、かつ又、通常の押出成形
方法とも異なる脱気しないままの導入方法で、樹
脂の共回りが防止でき安定したダイスへの圧入を
可能とし、更にダイス形状に工夫を加えて十分な
脱気を可能としたのである。
Therefore, we conducted various studies on continuous extrusion molding methods and equipment for thick-walled pipes or plates using ultra-high molecular weight polyethylene with a molecular weight of 500,000 or more. By introducing the resin without degassing, which is different from other methods, they were able to prevent the resin from rotating together, allowing stable press-fitting into the die, and by making improvements to the shape of the die, they were able to achieve sufficient degassing.

本発明の製造方法の特徴は、したがつて、超高
分子量ポリエチレン粉末原料を直ちにその融点以
上の温度で急激に加熱し、内部に空気を包含した
状態の顆粒状にしたものを圧力15〜200Kg/cm2、温
度160〜330℃の高圧高温下のモールド中へ圧入し
て溶融し、ダイス内通路を絞つて脱気しながら成
形ノズルより0.15〜10m/hrという低速度で押出
すことにある。そして、この製造方法を具体化す
る装置についても開発し、ここに本発明の完成に
至つたのである。
The feature of the manufacturing method of the present invention is that the ultra-high molecular weight polyethylene powder raw material is immediately and rapidly heated to a temperature above its melting point, and the granules containing air are granulated at a pressure of 15 to 200 kg. /cm 2 , is melted by being press-fitted into a mold under high pressure and high temperature at a temperature of 160 to 330℃, and is extruded from a molding nozzle at a low speed of 0.15 to 10 m/hr while degassing by narrowing the passage inside the die. . They also developed an apparatus that embodies this manufacturing method, leading to the completion of the present invention.

製造装置の特徴は、装置の構成をシリンダーゾ
ーン、加熱溶融ゾーン、断熱ゾーン、冷却ゾー
ン、及び圧力矯正ゾーンの5区分としたことにあ
り、具体的構造は後に詳述する。
A feature of the manufacturing apparatus is that the apparatus is configured into five sections: a cylinder zone, a heating melting zone, a heat insulation zone, a cooling zone, and a pressure correction zone, the specific structure of which will be described in detail later.

ここで用いる超高分子量ポリエチレンは、既に
市販されており、粉末の粒子径が100〜300μのも
のが入手できる。その平均分子量は粘度法で50万
以上、光散乱法で150万以上にも達する。したが
つて、その物性も通常のポリエチレンと異なり、
極めて耐衝撃強度が大でASTMD 256のアイゾツ
ト衝撃値で測定できない非破壊物であり、摩耗度
にあつてもASTMD 1175のテーパー法で70mg/
1000回というナイロン樹脂の約1/3の値を示すも
のである。このように優れた物理的強度を有する
反面において極めて成形性が悪く、通常の溶融押
出成形法や押出成形機では全く成形ができない。
これは、超高分子量ポリエチレンをその融点の
130〜140℃以上に加熱溶融しても高粘性でMI≒
0であるからである。
The ultra-high molecular weight polyethylene used here is already commercially available, and powder particles with a particle size of 100 to 300 μm are available. Its average molecular weight reaches over 500,000 when determined by the viscosity method, and over 1.5 million when determined by the light scattering method. Therefore, its physical properties are different from ordinary polyethylene,
It has extremely high impact resistance and is a non-destructive material that cannot be measured by the isot impact value of ASTMD 256, and even at abrasion levels of 70 mg/min by the taper method of ASTMD 1175.
This value is approximately 1/3 that of nylon resin, which is 1000 times. Although it has such excellent physical strength, it has extremely poor moldability and cannot be molded at all using ordinary melt extrusion molding methods or extrusion molding machines.
This makes ultra-high molecular weight polyethylene below its melting point.
High viscosity even when heated and melted above 130-140℃, MI≒
This is because it is 0.

本発明の溶融成形方法及び装置はMI≒0の樹
脂で、しかも厚肉成形物を押出成形法で連続的に
成形可能にした点で従来にない独特のものであ
る。
The melt molding method and apparatus of the present invention are unique in that they are made of a resin with MI≈0 and can be continuously molded into thick-walled products by extrusion molding.

以下、図面に従つて本発明の方法及び装置を具
体的に説明する。
Hereinafter, the method and apparatus of the present invention will be specifically explained with reference to the drawings.

第1図はシリンダーゾーンの断面図であり、第
2図は押出機要部縦断面図である。
FIG. 1 is a sectional view of the cylinder zone, and FIG. 2 is a longitudinal sectional view of the main part of the extruder.

本発明の厚肉成形物の成形方法は連続押出成形
法であり、超高分子量ポリエチレン粉末をいきな
りその融点以上の高温で加熱し、空気を内部に包
含した状態のまま加圧して顆粒状で押出機へ圧入
することである。その具体的装置は、第1図に示
すシリンダーゾーン1であり、ホツパー2から原
料粉末をバンドヒーター3で加熱されたシリンダ
ー4内へ供給する。この場合、スクリユー5の溝
幅は同じピツチにしてスクリユー軸を順次太くし
た溝深さの変更により圧縮している。従来の押出
機では圧縮時の温度は通常樹脂の融点付近より10
〜20℃低い状態で行うのであるが、これでは本発
明の原料である超高分子量ポリエチレンでは共回
りを起して押出不能である。そこで、更に融点よ
り40℃も低い低温押出がなされているが、本発明
では空気の包含する欠点を無視して、いきなり融
点よりはるかに高い高温にしたのである。一例を
挙げれば、シリンダーゾーンのC1で270℃、C2
260℃である。その結果、樹脂は空気を含んだ顆
粒状のまま外層のみが溶融し、スクリユーと共回
りすることなく極めて安定かつ押出機へ高圧縮状
態で押出すことができたのである。
The method for forming the thick-walled molded product of the present invention is a continuous extrusion method, in which ultra-high molecular weight polyethylene powder is suddenly heated to a high temperature above its melting point, and then extruded into granules by pressurizing it while still containing air. It is press-fitting into the machine. The specific device is a cylinder zone 1 shown in FIG. 1, in which raw powder is supplied from a hopper 2 into a cylinder 4 heated by a band heater 3. In this case, the groove width of the screw 5 is compressed by changing the groove depth by keeping the same pitch and making the screw shaft gradually thicker. In conventional extruders, the temperature during compression is usually 10°C above the melting point of the resin.
This is carried out at a temperature of ~20° C., but under this condition, the ultra-high molecular weight polyethylene, which is the raw material of the present invention, causes co-rotation and cannot be extruded. Therefore, extrusion at a lower temperature of 40°C lower than the melting point has been carried out, but in the present invention, the temperature was suddenly increased to a temperature far higher than the melting point, ignoring the drawbacks of air. To give an example, 270℃ in C 1 and C 2 in the cylinder zone
It is 260℃. As a result, only the outer layer of the resin remained in the form of granules containing air, which melted, making it possible to extrude the resin into an extruder in an extremely stable and highly compressed state without rotating with the screw.

シリンダーゾーン1内で顆粒状なつた樹脂は押
出機本体6の加熱溶融ゾーン7へ圧入される。押
出機本体6の断面構造は、厚肉パイプ製造の場
合、第2図に示すところで、加熱溶融ゾーン7に
続いて断熱ゾーン8、冷却ゾーン9そして圧力矯
正ゾーン10からなる。これは厚板製造の場合も
全く同じである。
The granulated resin in the cylinder zone 1 is press-fitted into the heating melting zone 7 of the extruder main body 6. In the case of producing thick-walled pipes, the cross-sectional structure of the extruder main body 6 is shown in FIG. 2, and consists of a heat-melting zone 7, a heat-insulating zone 8, a cooling zone 9, and a pressure-correcting zone 10. This is exactly the same in the case of plate manufacturing.

加熱溶融ゾーン7は、温度330℃〜160℃の間で
高温から低温の温度勾配を与えるようにその外部
に加熱ヒーター11がD0〜D5の6分割で備えら
れ、かつ樹脂原料の移動間隙12を順次狭めて圧
力を15〜200Kg/cm2の範囲内に加圧できるダイス構
造である。温度は樹脂の融点が136℃程度である
から、通常の押出条件よりもはるかに高温であ
る。温度が160℃以下では樹脂の溶融が困難であ
り、成形速度が極端に遅くなるし、気泡の追出し
もできなく生産性が不良である。また、逆に330
℃以上の高温になると、解重合が起り分子量低下
をもたらす。より望ましい温度範囲は290〜170℃
である。ダイス内圧力も15Kg/cm2以下ではダイス
の規定寸法に製品寸法を合せることが困難であ
る。高圧の方は200Kg/cm2以上であつても差支えな
いが、装置の耐圧に問題があり不必要かつ不経済
である。通常40〜80Kg/cm2の圧力が操作上より好
ましい範囲である。
The heating melting zone 7 is equipped with heating heaters 11 outside thereof in six divisions D 0 to D 5 so as to provide a temperature gradient from high temperature to low temperature between 330° C. and 160° C., and a movement gap for the resin raw material. It has a die structure in which the pressure can be increased within the range of 15 to 200 Kg/cm 2 by sequentially narrowing 12. Since the melting point of the resin is about 136°C, the temperature is much higher than normal extrusion conditions. If the temperature is below 160°C, it is difficult to melt the resin, the molding speed becomes extremely slow, and it is impossible to expel air bubbles, resulting in poor productivity. Also, conversely, 330
When the temperature reaches a temperature higher than 0.degree. C., depolymerization occurs, resulting in a decrease in molecular weight. The more desirable temperature range is 290-170℃
It is. If the pressure inside the die is less than 15 kg/cm 2 , it is difficult to match the product dimensions to the specified dimensions of the die. The high pressure may be 200 kg/cm 2 or more, but it is unnecessary and uneconomical because there is a problem with the pressure resistance of the device. Generally, a pressure of 40 to 80 Kg/cm 2 is a more preferable range for operation.

D0及びD1は予熱ダイス部で、例えば250〜290
℃とシリンダー部と同じかあるいは、それより高
めでここでD2に至る間に完全に溶融し、高圧下
で気泡を追出したのち、D4〜D5の更に高圧縮の
ゾーンへ導びく、ここでダイスの原料移動間隙1
2が狭められ、目的とするパイプ径の近くまで絞
るのである。D5では樹脂の融点近くまで加熱温
度を落し、次の断熱ゾーン8へ移る。
D 0 and D 1 are preheating die parts, e.g. 250-290
The temperature is the same as or higher than that of the cylinder part, where it completely melts while reaching D 2 , and after expelling air bubbles under high pressure, it is led to an even higher compression zone of D 4 to D 5 . , where the die material movement gap 1
2 is narrowed to close to the desired pipe diameter. At D5 , the heating temperature is lowered to near the melting point of the resin, and the process moves to the next heat insulation zone 8.

断熱ゾーン8は加熱溶融ゾーン7から連続し、
断熱空冷装置13を備えたダイス構造である。こ
こでパイプの内外筒の寸法に接近させ、D4〜D5
の圧縮ゾーンで残るかも知れない気泡と冷却に伴
う「巣」の発生を防ぐ作用をさせる樹脂の養生部
分であると共に次の冷却ゾーン9との間の装置間
断熱部としての作用もさせている。この断熱ゾー
ンは樹脂がその融点を通過して冷却される部分で
あるから、ダイスの長さが大となる欠点さえ許せ
ば自然空冷であつても同様の作用をする。
The heat insulation zone 8 is continuous from the heating melting zone 7,
It has a die structure equipped with an adiabatic air cooling device 13. Here, approach the dimensions of the inner and outer cylinders of the pipe, D 4 ~ D 5
It is a resin curing part that prevents the generation of air bubbles that may remain in the compression zone and "nests" caused by cooling, and also acts as an inter-device heat insulating part between it and the next cooling zone 9. . Since this heat insulation zone is the part where the resin passes through its melting point and is cooled, the same effect can be obtained even if natural air cooling is used, as long as the drawback that the length of the die is long is tolerated.

冷却ゾーン9は、断熱ゾーン8から連続する水
冷強制冷却装置を備えたダイス構造である。水冷
強制冷却装置は第2図の例では3分割された外筒
ジヤケツト14でF1〜F3に分けており、かつ内
筒内へ内筒ジヤケツト15を設け、図の右方から
左方へ水を流し、強制的に樹脂成形品を冷却する
構造としている。冷却ゾーン9の長さは比較的長
く、加熱溶融ゾーンとほぼ同程度であり、この部
分で成形物の形状をほぼ規制し、冷却をも完了さ
せる。しかし、成形物が厚肉の場合には内部まで
冷却されず、樹脂の移動速度が速くなり、場合に
よりダイス内の圧力が規定値より低下することが
ある。そこで、ダイス内の圧力と連動して、押出
成形物の外寸を絞る圧力矯正ゾーン10を押出機
先端へ設けたのである。
The cooling zone 9 has a die structure including a water-cooled forced cooling device continuous from the heat insulation zone 8 . In the example shown in Fig. 2, the water-cooled forced cooling system is divided into F 1 to F 3 by an outer cylinder jacket 14 divided into three parts, and an inner cylinder jacket 15 is provided inside the inner cylinder. The structure is such that the resin molded product is forcibly cooled by flowing water. The length of the cooling zone 9 is relatively long and is approximately the same as that of the heating and melting zone, and this portion substantially controls the shape of the molded product and also completes cooling. However, if the molded product is thick, the inside of the molded product will not be cooled, and the moving speed of the resin will increase, which may cause the pressure inside the die to drop below the specified value. Therefore, a pressure correction zone 10 was provided at the tip of the extruder to reduce the outer size of the extruded product in conjunction with the pressure inside the die.

圧力矯正ゾーン10は前記冷却ゾーン9のダイ
ス先端へ設け、この例の場合は成形品16の外周
を紋る2分割フランジ状ダイス17で、第2図の
ように複数枚設け、加熱溶融ゾーン7のダイス内
圧力の変動に応じてダイス17の内径の絞りを変
動する自動装置としている。このダイス17を設
けたことにより、成形品16の寸法精度が高ま
り、連続的に安定した厚物製品が得られるように
なつたのである。
The pressure straightening zone 10 is provided at the tip of the die of the cooling zone 9, and in this example, a plurality of two-part flange-shaped dies 17 are provided around the outer periphery of the molded product 16 as shown in FIG. The device is an automatic device that changes the restriction of the inner diameter of the die 17 in response to changes in the internal pressure of the die. By providing this die 17, the dimensional accuracy of the molded product 16 is improved, and a stable thick product can be obtained continuously.

以上のような押出条件で超高分子量ポリエチレ
ン厚肉成形物を製造するのであるが、製品の押出
速度は0.15〜10m/hrと極めて遅く、成形物の肉
厚が大であり成形物そのものの大きさが大であれ
ばあるほど押出速度が遅くなる。しかし、0.15
m/hr以下の速度では一般に経済性に乏しくなつ
て実用的でない。逆に10m以上にもなると、樹脂
が十分溶融しきらなくなり、内部に未溶解物や気
泡が残存し、表面光沢の悪い厚肉成形物となるの
で好ましくないので、上記条件内に設定する必要
がある。
Ultra-high molecular weight polyethylene thick-walled molded products are produced under the extrusion conditions described above, but the extrusion speed of the product is extremely slow at 0.15 to 10 m/hr, and the wall thickness of the molded product is large. The larger the diameter, the slower the extrusion speed. But 0.15
Speeds below m/hr are generally uneconomical and impractical. On the other hand, if the length exceeds 10 m, the resin will not be fully melted and undissolved substances and bubbles will remain inside, resulting in a thick molded product with poor surface gloss, which is not desirable, so it is necessary to set it within the above conditions. be.

以下実施例によつて、本発明を更に具体的に説
明する。
The present invention will be explained in more detail below with reference to Examples.

実施例 超高分子量ポリエチレン原料として、ハイゼツ
クス・ミリオン(登録商標、三井石油化学工業株
式会社製)240M粉末(平均粒子径200μ)を用い
た。このものの平均分子量は粘度法で約100万、
光散乱法で約300万といわれている。
Example Hi-Zex Million (registered trademark, manufactured by Mitsui Petrochemical Industries, Ltd.) 240M powder (average particle size 200 μm) was used as a raw material for ultra-high molecular weight polyethylene. The average molecular weight of this substance is approximately 1 million by the viscosity method.
It is said to be about 3 million by light scattering method.

押出成形機は第1図及び第2図に示すもので、
その規格及び押出条件は次の通りである。
The extrusion molding machine is shown in Figures 1 and 2,
Its specifications and extrusion conditions are as follows.

シリンダーゾーン スクリユー外径 50mmφ スクリユーの有効長さ L/D=20 フライトピツチ 50mm一定 C1 270℃ C2 260℃ 加熱溶融ゾーン 圧力 65Kg/cm2 D0 260℃ D1 260℃ D2 260℃ D3 230℃ D4 200℃ D5 170℃ 断熱ゾーン 140℃ 冷却ゾーン F1 入水50℃、出水53℃ F2 入水30℃、出水32℃ F3 入水18℃、出水19℃ ダイス外径 150mm ダイス内径 110mm 押出速度 1800mm/hr 以上の条件で得られた成形品は厚肉の連続した
丸パイプであつて、樹脂層の厚さは18mm、丸パイ
プ外径148mmであり、これを長さ600mmに切断して
内部に金属パイプを圧入し、製鉄所における冷間
圧延した鉄板や型鋼の移送用ローラーコンベアの
ローラーに仕上げた。
Cylinder zone Screw outer diameter 50mmφ Screw effective length L/D=20 Flight pitch 50mm constant C 1 270℃ C 2 260℃ Heating melting zone Pressure 65Kg/cm 2 D 0 260℃ D 1 260℃ D 2 260℃ D 3 230℃ D 4 200℃ D 5 170℃ Insulation zone 140℃ Cooling zone F 1 Water input 50℃, water output 53℃ F 2 Water input 30℃, water output 32℃ F 3 Water input 18℃, water output 19℃ Die outer diameter 150mm Die inner diameter 110mm The molded product obtained at an extrusion speed of 1800 mm/hr or more was a thick continuous round pipe with a resin layer thickness of 18 mm and an outer diameter of 148 mm, which was cut into lengths of 600 mm. A metal pipe was then press-fitted into the inside, and the roller was completed as a roller for a roller conveyor used to transport cold-rolled steel plates and shaped steel at a steelworks.

本装置における押出速度は0.15〜10m/hrと通
常の押出機に比べて極めて遅いように見えるが、
従来の超高分子量ポリエチレン厚物成形はプレス
成形であり、特に厚肉パイプの場合は円柱成形物
の内部を機械加工により穿孔するような製法によ
つていたので、本方法よりもはるかに効率が悪か
つたのである。
The extrusion speed in this device is 0.15 to 10 m/hr, which seems extremely slow compared to a normal extruder, but
Conventional molding of ultra-high molecular weight polyethylene thick materials is press molding, and in the case of thick-walled pipes in particular, the manufacturing method involves drilling holes inside the cylindrical molded material by machining, which is much more efficient than this method. was at fault.

更に、プレス加工では、自由寸法のパイプや板
の製造が困難であるが、本方法及び装置によると
連続押出成形が可能であるから、この点でも極め
て優れたものである。
Furthermore, with press working, it is difficult to manufacture pipes and plates of free dimensions, but the present method and apparatus allow continuous extrusion molding, and are therefore extremely superior in this respect as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリンダーゾーンの断面図であり、第
2図は押出機要部縦断面図である。 1……シリンダーゾーン、6……押出機本体、
7……加熱溶融ゾーン、8……断熱ゾーン、9…
…冷却ゾーン、10……圧力矯正ゾーン、16…
…成形品、17……フランジ状ダイス。
FIG. 1 is a sectional view of the cylinder zone, and FIG. 2 is a longitudinal sectional view of the main part of the extruder. 1... Cylinder zone, 6... Extruder main body,
7... Heat melting zone, 8... Heat insulation zone, 9...
...Cooling zone, 10...Pressure correction zone, 16...
...Molded product, 17...Flanged die.

Claims (1)

【特許請求の範囲】 1 平均分子量50万以上の超高分子量ポリエチレ
ン粉末をその融点以上の高温で加熱して内部に空
気を包含した状態の顆粒状にしたものを、圧力15
〜200Kg/cm2、温度160〜330℃の高圧高温下のモー
ルド中へ圧入して溶融し、成形ノズルより押出
し、厚肉パイプ、厚板等に成形することを特徴と
する超高分子量ポリエチレン厚肉成形物の連続成
形方法。 2 シリンダーゾーン、加熱溶融ゾーン、断熱ゾ
ーン、冷却ゾーン及び圧力矯正ゾーンとからな
り、シリンダーゾーンは超高分子量ポリエチレン
の融点以上の高温に加熱したスクリユーコンベア
であり、加熱溶融ゾーンは温度330℃〜160℃の間
で高温から低温の温度勾配を与える外部加熱ヒー
ターを備えかつ圧力を15〜200Kg/cm2の範囲に加圧
するダイス構造であり、断熱ゾーンは前記加熱溶
融ゾーンから連続する断熱空冷装置を備えたダイ
ス構造であり、冷却ゾーンは前記断熱ゾーンから
連続する水冷強制冷却装置を備えたダイス構造で
あり、圧力矯正ゾーンは前記冷却ゾーンダイス先
端へ設け、成形品外周を紋る分割ダイスで加熱溶
融ゾーンダイス内圧力と連動の可変ダイスである
超高分子量ポリエチレン厚肉成形物の連続成形装
置。
[Claims] 1 Ultra-high molecular weight polyethylene powder with an average molecular weight of 500,000 or more is heated at a high temperature above its melting point to form granules containing air inside, and then heated to a pressure of 150,000 yen.
~200Kg/ cm2 , ultra-high molecular weight polyethylene that is press-fitted into a mold under high pressure and high temperature of 160~330℃, melted, extruded from a molding nozzle, and formed into thick-walled pipes, thick plates, etc. Continuous molding method for meat molded products. 2 Consists of a cylinder zone, heat melting zone, heat insulation zone, cooling zone and pressure straightening zone, the cylinder zone is a screw conveyor heated to a high temperature higher than the melting point of ultra-high molecular weight polyethylene, and the heat melting zone is a screw conveyor heated to a temperature of 330℃~ It has a die structure that is equipped with an external heater that provides a temperature gradient from high temperature to low temperature between 160℃ and pressurizes in the range of 15 to 200Kg/ cm2 , and the adiabatic zone is an adiabatic air cooling device that is continuous from the heating melting zone. The cooling zone is a die structure equipped with a water-cooled forced cooling device that is continuous from the adiabatic zone, and the pressure correction zone is provided at the tip of the cooling zone die, and is a split die that forms the outer periphery of the molded product. Continuous molding equipment for ultra-high molecular weight polyethylene thick-walled molded products, which is a variable die that is linked to the internal pressure of the heat-melting zone die.
JP56027911A 1981-02-26 1981-02-26 Method and apparatus for continuously forming superhigh-molecular weight polyethylene thick article Granted JPS57140135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56027911A JPS57140135A (en) 1981-02-26 1981-02-26 Method and apparatus for continuously forming superhigh-molecular weight polyethylene thick article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56027911A JPS57140135A (en) 1981-02-26 1981-02-26 Method and apparatus for continuously forming superhigh-molecular weight polyethylene thick article

Publications (2)

Publication Number Publication Date
JPS57140135A JPS57140135A (en) 1982-08-30
JPS6140175B2 true JPS6140175B2 (en) 1986-09-08

Family

ID=12234058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56027911A Granted JPS57140135A (en) 1981-02-26 1981-02-26 Method and apparatus for continuously forming superhigh-molecular weight polyethylene thick article

Country Status (1)

Country Link
JP (1) JPS57140135A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD230826A1 (en) * 1984-03-05 1985-12-11 Univ Dresden Tech METHOD AND EXTRUSION DEVICE FOR FORMING FLOW-PROOF MASSES

Also Published As

Publication number Publication date
JPS57140135A (en) 1982-08-30

Similar Documents

Publication Publication Date Title
US3404203A (en) Method of extruding bi-helically oriented thermoplastic tube
CA1096573A (en) Extruder screw
US2702408A (en) Extrusion of thermoplastic materials
CA1119370A (en) Method and apparatus for the continuous extrusion and blowing of thin films of plastic material in particular of rigid pvc
EE9800342A (en) A method and apparatus for making a plastic product by extrusion, and a plastic product
CN105142876B (en) Single screw rod Plasticator, one group of equipment and the method for plastifying output
US3483597A (en) Ram extrusion of granular resins
AU664309B2 (en) Process and device for producing extrudates from ultra-high molecular weight polyethylene
US3402427A (en) Apparatus for extruding plastics
US3461490A (en) Extruding molding compounds
US3583033A (en) Valving die for in-line extrusion of thermoplastic material
JPS6140175B2 (en)
US4431600A (en) Extrusion molding of polyamidoimide resins
CN109849307A (en) A kind of high viscosity molded composites single screw extrusion machine
US3308506A (en) Process and apparatus for the continuous production of profiles from thermoplastics
US4069001A (en) Apparatus for forming a thick-walled tubular product
JPH0378053B2 (en)
JPS59230734A (en) Screw type extrusion molding apparatus for thermosetting resin
CN100434255C (en) Water-assisted extrusion molding method and device
CN107186993A (en) A kind of tube forming equipment extrusion die
JPS6116828A (en) Screw type extruding apparatus for thermosetting resin
CN207256838U (en) A kind of screw extrusion apparatus for being used to mould wood production
CN207256833U (en) A kind of wooden screw extruder of short distance modeling
GB917443A (en) Method and apparatus for making thermoplastic pipes
GB1317323A (en) Method for processing unstabilized polyvinylchloride