JPS6140149B2 - - Google Patents

Info

Publication number
JPS6140149B2
JPS6140149B2 JP53136650A JP13665078A JPS6140149B2 JP S6140149 B2 JPS6140149 B2 JP S6140149B2 JP 53136650 A JP53136650 A JP 53136650A JP 13665078 A JP13665078 A JP 13665078A JP S6140149 B2 JPS6140149 B2 JP S6140149B2
Authority
JP
Japan
Prior art keywords
type
polycrystalline silicon
solar cell
substrate
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53136650A
Other languages
Japanese (ja)
Other versions
JPS5563883A (en
Inventor
Yasuo Igawa
Masanaru Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13665078A priority Critical patent/JPS5563883A/en
Publication of JPS5563883A publication Critical patent/JPS5563883A/en
Publication of JPS6140149B2 publication Critical patent/JPS6140149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は光電変換装置に係り、特にいくつかの
結晶粒からなるシリコン結晶所謂る多結晶シリコ
ンを基板として用いた半導体光電変換装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric conversion device, and more particularly to a method for manufacturing a semiconductor photoelectric conversion device using a silicon crystal consisting of several crystal grains, so-called polycrystalline silicon, as a substrate.

近年、所謂る石油シヨツク以来、エネルギー源
として太陽光エネルギーの利用が注目されてい
る。光電変換装置の一つである太陽電池は、光エ
ネルギーを直接電気エネルギーに変換する素子で
あり、従来から人工衛星等の宇宙用および無人灯
台、無人無線中継所等僻地における電源として用
いられてきた。しかし、この太陽電池がより汎用
電源として用いられるためには、素子価格の低減
がなされないと、他の火力発電等の汎用の発電手
段に比べ、コスト的に困難である。
In recent years, the use of solar energy as an energy source has attracted attention since so-called oil shocks. A solar cell, which is a type of photoelectric conversion device, is an element that directly converts light energy into electrical energy, and has traditionally been used as a power source for space applications such as artificial satellites, and in remote areas such as unmanned lighthouses and unmanned wireless relay stations. . However, in order for this solar cell to be used as a general-purpose power source, it is difficult to reduce the cost of the device compared to other general-purpose power generation means such as thermal power generation unless the cost of the device is reduced.

太陽電池価格の低減のため、とくに太陽電池用
基板に関して種々の方法が提案されている。しか
し、現状ではこれら基板はいくつかの結晶粒より
構成される多結晶状のシリコンである場合が多
く、これを用いて太陽電池を作製すると、結晶粒
界部分においてリーク電流が発生し、太陽電池特
性を悪化させるという欠点を有している。
In order to reduce the cost of solar cells, various methods have been proposed, particularly regarding solar cell substrates. However, at present, these substrates are often made of polycrystalline silicon made up of several crystal grains, and when solar cells are fabricated using this, leakage current occurs at the grain boundaries, causing solar cells to It has the disadvantage of deteriorating the characteristics.

本発明は、上記のような従来法で製作される多
結晶状のシリコンを基板とする光電変換装置の結
晶粒界部分におけるリーク電流による特性悪化現
象に鑑みなされたもので、このリーク電流を抑制
する光電変換装置の製造方法を提供しようとする
ものである。
The present invention was developed in view of the phenomenon in which characteristics deteriorate due to leakage current at the crystal grain boundaries of photoelectric conversion devices manufactured using the conventional method as described above and using polycrystalline silicon as a substrate. The present invention aims to provide a method for manufacturing a photoelectric conversion device.

すなわち、本発明は多結晶シリコンの結晶粒界
部分を選択的に酸化して、絶縁物質化することに
より、太陽電池のリーク電流を減少させる半導体
光電変換装置の製造方法である。
That is, the present invention is a method for manufacturing a semiconductor photoelectric conversion device in which the leakage current of a solar cell is reduced by selectively oxidizing the grain boundary portion of polycrystalline silicon and converting it into an insulating material.

以下、実施例を用いて本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail using Examples.

基板に用いたシリコン結晶は従来のチヨクラル
スキ法(CZ)により得たものではあるが、多数
の結晶粒界を含有するものであつた。この結晶は
Asドープn型結晶でその電子濃度は室温にて1
×1017cm-3であつた。このシリコン結晶には第1
図に示すように、2個の結晶粒界11,12によ
り三つの結晶領域13,14,15に分けられて
いる。それぞれの結晶領域にオーミツク電極1
6,17,18を取りつけて、この三つの電極の
うちの二つを二端子とする素子の特性を実験的に
調べた。これらの素子の電流−電圧特性を光照射
した時としない時について調べた結果を第2図、
第3図、第4図に示す。第2図は電極16と18
を二端子とする素子の特性で、図において21は
タングステンランプ光で入力エネルギー約80m
W/cm2の光照射した時の特性、22は光照射をし
ない時の特性であり、この二つの特性はn−p−
n接合(又はP−n−P接合)ダイオードの特性
と一致する。一方第3図は電極16と17を二端
子とする素子の特性で電流と電圧は比例関係にあ
り、二端子間の抵抗も1Ωと第2図の場合に比べ
極めて小さくなつている。第4図は電極17と1
8を二端子とする素子の特性で41はタングステ
ンランプ光で入力エネルギー約80mV/cm2の光を
照射した時の特性、42は光を照射しない時の特
性であり、第2図とほとんど同一の特性である。
一方、熱電能による判定で第1図における結晶領
域13,14,15はn型であることがわかつ
た。従つて第2図、第3図、第4図に示す特性か
ら、n型多結晶シリコンの結晶粒界12付近はp
型に反転しており、結晶粒界11付近はp型に反
転していないといえる。なお、結晶粒界付近がP
型に反転したものと反転していないものとが存在
する原因については、現時点においても、まだ明
確になつていない。この結晶を基に考えれば多結
晶シリコンを基板として作製したP−n接合型太
陽電池の場合、結晶粒界12と同種の粒界が表面
から裏面へ走つていれば、表面のP型層から裏面
のオーミツク電極まで、このP型に反転した結晶
粒界を介して電位障壁なしに電気的に導通する結
果となり、また表面から裏面まで走らずとも結晶
粒界部のP−n接合は、結晶性も悪く不完全なの
で太陽電池表面層と基板側の電流をリークさせる
ことになり、太陽電池において結晶粒界部が電流
リークの径路として働らくという現象を矛循なく
説明できる。
Although the silicon crystal used for the substrate was obtained by the conventional Czochralski method (CZ), it contained many grain boundaries. This crystal is
As-doped n-type crystal whose electron concentration is 1 at room temperature
It was ×10 17 cm -3 . This silicon crystal has a first
As shown in the figure, it is divided into three crystal regions 13, 14, and 15 by two crystal grain boundaries 11 and 12. Ohmic electrode 1 in each crystal region
6, 17, and 18 were attached, and the characteristics of an element using two of these three electrodes as two terminals were experimentally investigated. Figure 2 shows the results of examining the current-voltage characteristics of these elements with and without light irradiation.
It is shown in FIGS. 3 and 4. Figure 2 shows electrodes 16 and 18.
In the figure, 21 is a tungsten lamp with an input energy of about 80m.
Characteristics when irradiated with light of W/ cm2 , 22 are characteristics when not irradiated with light, and these two characteristics are n-p-
This matches the characteristics of an n-junction (or P-n-P junction) diode. On the other hand, FIG. 3 shows the characteristics of an element having two terminals, electrodes 16 and 17, in which current and voltage are in a proportional relationship, and the resistance between the two terminals is 1Ω, which is extremely small compared to the case of FIG. Figure 4 shows electrodes 17 and 1.
8 is the characteristic of the element with two terminals, 41 is the characteristic when irradiated with light from a tungsten lamp with an input energy of approximately 80 mV/cm 2 , and 42 is the characteristic when no light is irradiated, which is almost the same as in Figure 2. It is a characteristic of
On the other hand, as determined by thermoelectric power, it was found that crystal regions 13, 14, and 15 in FIG. 1 were of n-type. Therefore, from the characteristics shown in FIGS. 2, 3, and 4, the vicinity of the grain boundary 12 of n-type polycrystalline silicon has p
It can be said that the area around the grain boundary 11 is not inverted to p-type. Note that near the grain boundaries P
The reason why some types are inverted and some are not is not yet clear at this point. Based on this crystal, in the case of a P-n junction solar cell fabricated using polycrystalline silicon as a substrate, if a grain boundary of the same type as the crystal grain boundary 12 runs from the front surface to the back surface, the P-type layer on the surface As a result, electrical conduction occurs from the surface to the ohmic electrode on the back surface without a potential barrier through this P-type inverted grain boundary, and even if it does not run from the front surface to the back surface, the P-n junction at the grain boundary Since the crystallinity is poor and incomplete, current leaks between the solar cell surface layer and the substrate side, and this provides a consistent explanation of the phenomenon that crystal grain boundaries act as paths for current leakage in solar cells.

次に第1図の結晶の結晶粒界12付近がP型に
なつていることを利用して当結晶粒界付近を次の
ようにして選択酸化した。
Next, taking advantage of the fact that the vicinity of the grain boundary 12 of the crystal shown in FIG. 1 is of P type, the vicinity of the grain boundary was selectively oxidized as follows.

第5図において、ポリエチレン容器51に50%
の沸化水素酸水溶液52を入れ、その中に第1図
の多結晶シリコン53を陽極、白金54を陰極と
して、直流電源55を用いて電解エツチングを行
なつた。直流電源を1Vとして、電解エツチング
を行なうと、P型である結晶粒界付近は他のn型
領域に比べエツチング速度が大きく、多孔質シリ
コン層が形成された。
In Fig. 5, 50% is applied to the polyethylene container 51.
A hydrofluoric acid aqueous solution 52 was placed therein, and electrolytic etching was carried out using a DC power source 55, with the polycrystalline silicon 53 of FIG. When electrolytic etching was performed using a DC power source of 1 V, the etching rate near the P-type grain boundaries was higher than in other n-type regions, and a porous silicon layer was formed.

多結晶シリコンに対する上記電解エツチング時
間を10分間としたところ、結晶粒界部分12の多
孔質化層の深さは10〜20ミクロンに達した。一方
結晶粒界部分11には多孔質化層の形成は認めら
れなかつた。
When the electrolytic etching time for polycrystalline silicon was set to 10 minutes, the depth of the porous layer at the grain boundary portion 12 reached 10 to 20 microns. On the other hand, no porous layer was observed in the grain boundary portion 11.

このようにして、多孔質層を形成した多結晶シ
リコンを1100℃で30分間湿潤酸素中に置き、酸化
させると多孔質層は深さ4ミクロン程度にまで酸
化されたのに対し、その他の部分では0.2〜0.3ミ
クロン程度の厚さしか酸化されず、多孔質層にお
ける酸化速度は他と比べて10〜20倍程度速かつ
た。このようにして酸化させた多結晶シリコンを
沸化水素水溶液中に短時間入れ、上記、その他の
部分に形成された0.2〜0.3ミクロンの酸化物層を
エツチングすることにより、本発明による太陽電
池作製用の基板とした。第6図はこの基板の断面
を結晶粒界12付近について模式的に示したもの
で61にn型多結晶シリコン、62は結晶粒界、
63は多孔質シリコン層、64は多孔質シリコン
層の酸化された領域である。
When the polycrystalline silicon with the porous layer formed in this way was placed in humid oxygen at 1100°C for 30 minutes and oxidized, the porous layer was oxidized to a depth of about 4 microns, while other parts were oxidized. In this case, only a thickness of about 0.2 to 0.3 microns was oxidized, and the oxidation rate in the porous layer was about 10 to 20 times faster than in other layers. The polycrystalline silicon thus oxidized is placed in a hydrogen fluoride aqueous solution for a short time, and the 0.2 to 0.3 micron oxide layer formed on the above and other parts is etched, thereby producing a solar cell according to the present invention. It was used as a substrate for FIG. 6 schematically shows a cross section of this substrate near the grain boundary 12, where 61 is n-type polycrystalline silicon, 62 is the grain boundary,
63 is a porous silicon layer, and 64 is an oxidized region of the porous silicon layer.

この基板を用いて、P−n接合型太陽電池を作
製する工程は通常の製造工程をそのまま用いた。
すなわち、この基板上にボロンをドープしたガラ
ス膜を沈着させ、これを用いて窒素雰囲気中でボ
ロンを基板中へ熱拡散することにより、基板表面
に厚さ1ミクロン程度のP型層を形成する。この
あと、n型側、P型側にそれぞれオーミツク電極
を形成し、太陽電池を作製した。第7図はこのよ
うにして完成した本発明による多結晶シリコン太
陽電池の断面を結晶粒界12付近について模式化
して示す。71は基板のn型多結晶シリコン、7
2は結晶粒界、73−1,73−2は多孔質化し
たシリコン層、74−1,74−2は多孔質化し
たシリコンを酸化させた層、75はP型層、76
はP型層に対するオーミツク電極、77はn型基
板に対するオーミツク電極である。
Using this substrate, a normal manufacturing process was used as it was for producing a P-n junction solar cell.
That is, a glass film doped with boron is deposited on this substrate, and this is used to thermally diffuse boron into the substrate in a nitrogen atmosphere, thereby forming a P-type layer with a thickness of about 1 micron on the substrate surface. . Thereafter, ohmic electrodes were formed on the n-type side and the p-type side, respectively, to produce a solar cell. FIG. 7 schematically shows a cross section of the polycrystalline silicon solar cell according to the present invention completed in this way, with respect to the vicinity of the grain boundary 12. 71 is n-type polycrystalline silicon of the substrate, 7
2 is a crystal grain boundary, 73-1, 73-2 are porous silicon layers, 74-1, 74-2 are porous silicon oxidized layers, 75 is a P-type layer, 76
77 is an ohmic electrode for the P-type layer, and 77 is an ohmic electrode for the n-type substrate.

この図からわかるように、酸化物層74−1の
深さx1をP型層75の深さx2より大きくすれば、
結晶粒界付近を通じてのP型層とn型基板との間
の電流リークは酸化物層74−1が絶縁物質
SiO2であるので起こらない。このように、本発
明による多結晶シリコン太陽電池は、結晶粒界に
よる電流リークを起こさないため、光電変換効率
(以下「効率」と略す)が向上する。結晶粒界周
辺のシリコンの酸化される領域が結晶表面に露出
している面積は、多結晶シリコン中の結晶粒界の
存在密度に依存するが、大部分の多結晶シリコン
では大きい場合でも、太陽電池全表面積の10パー
セント未満であり、これによる有効受光面積の低
下すなわち効率の低下は10パーセント未満といえ
るので、結晶粒界における電流リークによる効率
低下が50パーセント以上になることが多い事実を
考えると、本発明が多結晶シリコン太陽電池の高
効率化に果たす役割は極めて大きい。
As can be seen from this figure, if the depth x 1 of the oxide layer 74-1 is made larger than the depth x 2 of the P-type layer 75,
Current leakage between the P-type layer and the N-type substrate through the vicinity of the grain boundaries is caused by the fact that the oxide layer 74-1 is an insulating material.
This does not happen because it is SiO 2 . In this manner, the polycrystalline silicon solar cell according to the present invention does not cause current leakage due to grain boundaries, and therefore has improved photoelectric conversion efficiency (hereinafter abbreviated as "efficiency"). The exposed area of the silicon oxidized region around grain boundaries on the crystal surface depends on the density of grain boundaries in polycrystalline silicon, but even if it is large for most polycrystalline silicon, It is less than 10% of the total surface area of the battery, and the reduction in effective light-receiving area or efficiency can be said to be less than 10%, so consider the fact that the efficiency reduction due to current leakage at grain boundaries is often 50% or more. Therefore, the present invention plays an extremely important role in improving the efficiency of polycrystalline silicon solar cells.

第8図は、従来法により作製された多結晶シリ
コン太陽電池の光照射下の電流−電圧特性を示す
が結晶粒界における電流リークのため逆方向特性
が所謂ソフトで効率も4%と低い。
FIG. 8 shows the current-voltage characteristics under light irradiation of a polycrystalline silicon solar cell manufactured by the conventional method, but due to current leakage at the grain boundaries, the reverse direction characteristics are so-called soft and the efficiency is as low as 4%.

第9図は、本発明による多結晶シリコン太陽電
池の光照射下の電流−電圧特性を示す。第8図に
示す太陽電池との比較のため、同じ程度の結晶粒
界の存在密度の基板を用いて作製されたものであ
る。逆方向特性も第8図のようにソフトではなく
電流リークも減少し、効率も9%と高くなつてお
り、本発明の効果が現われている。
FIG. 9 shows the current-voltage characteristics of the polycrystalline silicon solar cell according to the present invention under light irradiation. For comparison with the solar cell shown in FIG. 8, this solar cell was manufactured using a substrate having the same density of grain boundaries. The reverse characteristics are not soft as shown in FIG. 8, and current leakage is also reduced, and the efficiency is as high as 9%, demonstrating the effects of the present invention.

また上記実施例はP−n接合型太陽電池につい
て述べてあるが、シヨツトキー接触型さらにはヘ
テロ接合型太陽電池の場合も、第6図のような多
結晶シリコンを基板に用いることにより、結晶粒
界における電流リークを抑制し高効率化を促進す
ることができるのは言うまでもない。
Furthermore, although the above embodiment describes a P-n junction type solar cell, in the case of a Schottky contact type or even a heterojunction type solar cell, by using polycrystalline silicon as a substrate as shown in Fig. 6, crystal grains can be Needless to say, current leakage in the field can be suppressed and high efficiency can be promoted.

以上のように、本発明によれば、多結晶シリコ
ン太陽電池の結晶粒界における電流リークを抑制
することができ、高効率化への効果は絶大であ
る。
As described above, according to the present invention, current leakage at the grain boundaries of a polycrystalline silicon solar cell can be suppressed, and the effect of increasing efficiency is tremendous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、シリコン結晶の結晶粒界の特性を調
べるための素子構造の模式図、第2図、第3図、
第4図は第1図に示す素子の電流−電圧特性を示
す図、第5図は、本発明一実施例における太陽電
池用基板の結晶粒界の選択的多孔質化を行なうた
めの方法を示す図、第6図は本発明一実施例にお
ける太陽電池用基板の断面図、第7図は本発明一
実施例における太陽電池の断面図、第8図は従来
法によつて作製した多結晶太陽電池の電流−電圧
特性の一例を示す図、第9図は本発明一実施例に
おける多結晶太陽電池の電流−電圧特性の一例を
示す図である。 61:n型多結晶シリコン、62:結晶粒界、
63:多孔質シリコン層、64:多孔質シリコン
層の酸化された領域。
Figure 1 is a schematic diagram of an element structure for investigating the characteristics of grain boundaries in silicon crystals, Figures 2, 3,
FIG. 4 is a diagram showing the current-voltage characteristics of the device shown in FIG. 1, and FIG. 5 is a diagram showing a method for selectively making the grain boundaries of a solar cell substrate in an embodiment of the present invention porous. 6 is a cross-sectional view of a solar cell substrate according to an embodiment of the present invention, FIG. 7 is a cross-sectional view of a solar cell according to an embodiment of the present invention, and FIG. 8 is a cross-sectional view of a solar cell substrate produced by a conventional method. A diagram showing an example of current-voltage characteristics of a solar cell. FIG. 9 is a diagram showing an example of current-voltage characteristics of a polycrystalline solar cell in an embodiment of the present invention. 61: n-type polycrystalline silicon, 62: grain boundary,
63: porous silicon layer, 64: oxidized region of porous silicon layer.

Claims (1)

【特許請求の範囲】 1 一部の結晶粒界付近がP型に反転しているn
型多結晶シリコン基板中の前記P型反転領域を表
面からPn接合が形成される位置より深い位置ま
で電界蝕刻により多孔質シリコン領域に変換する
工程と、該多孔質シリコン領域の少なくとも一部
を酸化して酸化シリコン膜を形成する工程と、該
工程で前記多孔質シリコン領域以外に形成された
薄い酸化膜を除去する工程とを含むことを特徴と
する半導体光電変換装置の製造方法。 2 前記多結晶シリコン基板中に存在するP型反
転領域を表面からPn接合が形成される位置より
深い位置まで電界蝕刻により多孔質シリコン領域
に変換する際に、前記多結晶シリコン基板を陽
極、沸化水素水溶液に腐蝕されない物質を陰極と
し、陽極−陰極間に電圧を印加することを特徴と
する特許請求の範囲第1項記載の半導体光電変換
装置の製造方法。
[Claims] 1 n in which a part of the vicinity of the grain boundary is inverted to P type
converting the P-type inversion region in the type polycrystalline silicon substrate into a porous silicon region by electric field etching from the surface to a position deeper than the position where the Pn junction is formed; and oxidizing at least a part of the porous silicon region. 1. A method for manufacturing a semiconductor photoelectric conversion device, comprising the steps of: forming a silicon oxide film in the porous silicon region; and removing a thin oxide film formed in areas other than the porous silicon region in the step. 2. When converting the P-type inversion region present in the polycrystalline silicon substrate into a porous silicon region by electric field etching from the surface to a position deeper than the position where the Pn junction is formed, the polycrystalline silicon substrate is 2. The method of manufacturing a semiconductor photoelectric conversion device according to claim 1, wherein a material that is not corroded by an aqueous hydrogen chloride solution is used as a cathode, and a voltage is applied between an anode and a cathode.
JP13665078A 1978-11-08 1978-11-08 Manufacturing method of photoelectric semiconductor converter Granted JPS5563883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13665078A JPS5563883A (en) 1978-11-08 1978-11-08 Manufacturing method of photoelectric semiconductor converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13665078A JPS5563883A (en) 1978-11-08 1978-11-08 Manufacturing method of photoelectric semiconductor converter

Publications (2)

Publication Number Publication Date
JPS5563883A JPS5563883A (en) 1980-05-14
JPS6140149B2 true JPS6140149B2 (en) 1986-09-08

Family

ID=15180279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13665078A Granted JPS5563883A (en) 1978-11-08 1978-11-08 Manufacturing method of photoelectric semiconductor converter

Country Status (1)

Country Link
JP (1) JPS5563883A (en)

Also Published As

Publication number Publication date
JPS5563883A (en) 1980-05-14

Similar Documents

Publication Publication Date Title
US5053083A (en) Bilevel contact solar cells
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
US4227941A (en) Shallow-homojunction solar cells
US4090213A (en) Induced junction solar cell and method of fabrication
CN109713065B (en) Passivation solar cell with printed metal electrode and preparation method thereof
KR19990063990A (en) Self-Regulating (SALDE) Solar Cells with Partially Deeply Dispersed Emitters and Methods of Manufacturing the Same
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
EP0175567B1 (en) Semiconductor solar cells
JPS6215864A (en) Manufacture of solar cell
US4248675A (en) Method of forming electrical contact and antireflection layer on solar cells
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
CN112054068A (en) Silicon heterojunction solar cell and manufacturing method thereof
JPH0147025B2 (en)
CN111106188B (en) N-type battery, preparation method of selective emitter of N-type battery and N-type battery
JPS5846074B2 (en) Method of manufacturing photovoltaic device
JP2661676B2 (en) Solar cell
JPS5910593B2 (en) Method of manufacturing photovoltaic device
JPS6140149B2 (en)
US4483063A (en) Oxide charge induced high low junction emitter solar cell
KR20110047828A (en) Silicon heterojunction solar cell and method for fabricating the same
JP2875382B2 (en) Solar cell element
Cogan et al. 7.2% efficient polycrystalline silicon photoelectrode
JP4185246B2 (en) Laminated solar cell and method for manufacturing the same
Hayashi et al. P-Si/n-CdS heterojunction solar cells
JP3312506B2 (en) Compound semiconductor wafer and semiconductor device