JPS6140032B2 - - Google Patents

Info

Publication number
JPS6140032B2
JPS6140032B2 JP8430779A JP8430779A JPS6140032B2 JP S6140032 B2 JPS6140032 B2 JP S6140032B2 JP 8430779 A JP8430779 A JP 8430779A JP 8430779 A JP8430779 A JP 8430779A JP S6140032 B2 JPS6140032 B2 JP S6140032B2
Authority
JP
Japan
Prior art keywords
strength
toughness
less
steel
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8430779A
Other languages
Japanese (ja)
Other versions
JPS569358A (en
Inventor
Hirobumi Morikawa
Koichi Yamamoto
Yasushi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8430779A priority Critical patent/JPS569358A/en
Publication of JPS569358A publication Critical patent/JPS569358A/en
Publication of JPS6140032B2 publication Critical patent/JPS6140032B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低炭素にして100Kg/mm2以上の高い降伏
点をもち、かつ溶接性、靭性に優れた高強度高靭
性の深海調査船用の鋼に関するものであるが、深
海用に限らず同様の性能が要求される目的に適用
されるものである。 近年海用開発の発展にともなつてそれに適した
鋼が開発されているが深海になるほど鋼材に要求
される性質は厳しくなり、高強度と共に優れた靭
性が必要となり、また溶接構造物としては当然溶
接性が良好なことが必要条件となる。降伏点100
Kg/mm2を有するこのような鋼としては10Ni―80Co
鋼などがあるが、Coを8%も含むため非常にコ
ストが高いのが難点である。これに対しNi―Cr
―Mo鋼やVの析出硬化を利用して強度を上げる
通常の低合金鋼はコストは安いが、強度はせいぜ
い100Kg/mm2が限度である。Vの量を通常の0.05%
添加より多くすれば強度は上るが靭性が著しく低
下する。 本発明者らはこれらの難点を克服すべく種々研
究した結果、Mo,V,CrおよびNiの組合わせを
以下に示す特別の条件を満すようにすることによ
り、低炭素で十分に強度が高く、かつ靭性が強度
が高いにもかゝわらず非常に良い鋼が得られるこ
とを見出した。 通常降伏強さσy≧100Kg/mm2の高強度材は焼入
れ焼戻で製造される。溶接性の点からC含有量を
0.15%以下と低くして強度上昇を図る場合従来は
Cr,Mo,V等の添加量を増す方法がとられてい
る。しかしながらσyが100Kg/mm2を越すには焼戻
の温度を550°〜600℃と低くとらないと容易に達
成できない。 ところでこの温度域はCr,Mo,Vなどの析出
硬化が著しい領域ではあるが、最も析出硬化の大
きくなる温度が元素により一致していないことは
良く知られた事実である。従つて単にこれらの元
素を組合わせたのみでは所望の強度を得られな
い。更に、Moの強化を最大限に活用するにはCr
の共存は重畳効果がないばかりか、逆に有害であ
ることを見出した。第1図に1例を示す。図から
明らかなように1%以上のCrを添加すると強度
はかえつて低下することがわかる。一方、板厚50
mm以上の鋼板を焼入れ焼戻しする場合焼入れ時に
十分焼きが入らないと焼戻後強度も上らないしま
た靭性も低下する。従つて焼入性確保のためある
程度のCr量は必要である。このためのMoの強化
機能を害さないで添加できるCr量はCr≦
0.8Mo、好ましくはCr≦0.5Moであればよいこと
を経験的に見出した。 一方、Vの方はMoとほゞ同じ温度域で析出強
化するので、MoやCr量とは独立に必要なだけ添
加できる。ところで強化に有効でない合金元素の
添加は強化に無効であるばかりでなく大きな析出
物を作つて靭性を害する。特にσy=100Kg/mm2
上の高強度材では有害析出物による靭性低下が激
しいので、Cr,Mo,Vの量はある特定の範囲に
入るようにすることが不可欠であり、従来の成分
範囲ではとうてい達成できない。 上記の事実をもとに各種の試験をした結果、σ
y≧100Kg/mm2で2mmVノツチシヤルピーの破面遷
移温度が−80℃以下、−80℃でのvEが15Kg−m以
上になるためにはC+Mo/8+V≧0.26で、か
つ0..2≦Cr≦0.8Mo、5≦Ni≦9.5S≦0.005、P≦
0.02、O≦0.0030%の条件を満す必要のあること
を見出した。 σy≧100Kg/mm2で高いvEをうるには特に酸素
含有量が低いことが必要である。MoとVの必要
量はC含有量によつて変わり、C量を低くすれば
強度低下を招くのでその分Mo,Vを増さねばな
らぬ。溶接性の点からCの最大は0.15%とした。
また、0.06%以下では、Mo1.0%の場合Mo2C析出
に必要なC量が不足し、Moをそれ以上添加して
も必要な強度がえられない。従つてCは0.06%以
上は必要である。更に550〜600℃の焼戻でσyが
100Kg/mm2以上になるには最低Moは0.7%は必要
で、これ以下ではVをいくら増しても必要な強度
は得られない。広い焼戻温度に対して安定に強度
をうるためには0.95%以上のMo添加が好まし
い。Ni含有量は焼戻時のオーステナイトの析出
とのかね合できまる。Niが9.5%以上では、不安
定なオーステナイトの析出が600℃以下で生ずる
ようになり、好ましくない。またσy100Kg/mm2
上の高強度で十分な靭性をもつためには最低5%
のNi量は必要である。600℃以下の低い温度で焼
戻す場合は焼戻脆性が問題になるのでP含有量は
極力下げねばならなぬが0.02%以下ならよい。但
し、製造後400℃以上に加熱される部分もあるの
で、0.01%以下が特に好ましい。同様にSiは0.35
%以下、好ましくは0.20%にするとよい。 高強度で高靭性をうるにはオーステナイト結晶
粒を微細にすることは必須である。また多すぎる
と靭性を劣化するので上限は0.08%とした。溶接
熱影響部の粒粗大化防止のためにはTi添加が好
ましい。但し必要以上に添加すると靭性を著しく
低下させるので、上限を0.02%とした。0.03%以
下のNb,Taの添加も結晶粒微細化に有効であ
る。 本発明の対象は深海用であるので、当然海水中
での腐食が問題になる。そのためには適当に塗装
をすればよい。Cu,W,Co添加をすれば更に好
ましいがCu0.5%以上、W0.1%以上は効果が少な
い。Coも効果はあるが、コストが高いのでせい
ぜい1%までの添加に限られる。 更に本発明の対象とする鋼は熱間割れが問題に
なる。熱間割れ感受性を改善するためにはS含有
量を下げるほかに、La,Ce,Ca等の添加が有効
である。これらの元素の0.003%までの添加は強
度に対しては何らの影響を及ぼさないが、靭性も
向上させる。過剰な添加は靭性を低下する。 実施例 第1表は試験に用いた鋼材の化学成分を示す。
熱間圧延した12mmの鋼板を850℃から焼入れ、
560,580,600℃で焼戻したときの機械的性質を
第2表に示す。 本発明鋼の成分C,Dでは、いずれの焼戻温度
においてもσy≧110Kg/mm2の高強度を有し、かつ
vTrs<−150℃ vE−20=25〜29Kg−mと非常
にすぐれた特性を示す。また、0.7%Mo材Aも、
0.5Crでは十分な値を示す。一方、1.0Cr材Eにな
ると、600℃焼戻でかろうじてσy=100Kg/mm2
あり、ばらつきを考えると十分な値といえない。
一方Niが4.5o/oGでは強度は十分であるが靭性
が悪い。同様に高Si材Hは強度はやゝ高いが低温
で焼戻たときの靭性が悪い。本発明鋼成分のI,
J,K材に示されるように0.3%のCu,0.1%の
W、1%のCo添加はいずれもσy≧100Kg/mm2
vTrs<−120℃と優れた特性を示す。また本発明
鋼の成分L,M,N材に示すように0.03%の
Ta、Nb、0.03%のCe,La,0.0035%のCa添加材
も強度および靭性ともに十分な値を有する。
The present invention relates to a steel for deep-sea research vessels that is low in carbon, has a high yield point of 100 kg/mm 2 or more, and has excellent weldability and toughness, and has high strength and toughness. It is applied to purposes that require performance. In recent years, with the development of marine applications, steels suitable for this purpose have been developed, but the deeper the sea goes, the more severe the properties required of steel materials become, requiring both high strength and excellent toughness, and of course, welded structures are not suitable for welded structures. Good weldability is a necessary condition. Yield point 100
Such steels with Kg/mm 2 include 10Ni-80Co
There are steels, but the drawback is that they contain 8% Co, making them extremely expensive. On the other hand, Ni-Cr
- Mo steel and ordinary low-alloy steels that use precipitation hardening of V to increase their strength are cheap, but their strength is limited to 100 kg/mm 2 at best. Reduce the amount of V to 0.05% of the normal amount
If it is added in a larger amount, the strength will increase, but the toughness will drop significantly. The inventors of the present invention have conducted various studies to overcome these difficulties, and have found that by making the combination of Mo, V, Cr, and Ni satisfy the special conditions shown below, sufficient strength can be achieved with low carbon. It has been found that a steel with very high toughness and strength can be obtained. Usually, high-strength materials with yield strength σy≧100Kg/mm 2 are manufactured by quenching and tempering. The C content is determined from the viewpoint of weldability.
Conventionally, when trying to increase strength by lowering it to 0.15% or less,
A method is being used to increase the amount of Cr, Mo, V, etc. added. However, in order for σy to exceed 100 Kg/mm 2 , it cannot be easily achieved unless the tempering temperature is kept as low as 550° to 600°C. Incidentally, although this temperature range is a region where precipitation hardening of Cr, Mo, V, etc. is remarkable, it is a well-known fact that the temperature at which precipitation hardening is greatest does not match depending on the element. Therefore, the desired strength cannot be obtained simply by combining these elements. Additionally, to take full advantage of Mo's enhancement, Cr
We found that the coexistence of these two types not only has no superimposed effect, but is actually harmful. An example is shown in FIG. As is clear from the figure, when 1% or more of Cr is added, the strength actually decreases. On the other hand, the plate thickness is 50
When quenching and tempering a steel plate with a diameter of mm or more, if the steel plate is not sufficiently quenched during quenching, the strength will not increase after tempering and the toughness will also decrease. Therefore, a certain amount of Cr is necessary to ensure hardenability. For this purpose, the amount of Cr that can be added without impairing the strengthening function of Mo is Cr≦
It has been empirically found that 0.8Mo, preferably Cr≦0.5Mo, is sufficient. On the other hand, since V undergoes precipitation strengthening in approximately the same temperature range as Mo, it can be added in the required amount independently of the amounts of Mo and Cr. By the way, the addition of alloying elements that are not effective for strengthening is not only ineffective for strengthening, but also creates large precipitates that impair toughness. Particularly in high-strength materials with σy = 100Kg/mm2 or more , the toughness is severely reduced due to harmful precipitates, so it is essential to keep the amounts of Cr, Mo, and V within a certain range, and the conventional component ranges That's not really achievable. As a result of various tests based on the above facts, σ
For y≧100Kg/ mm2, the fracture surface transition temperature of a 2mmV notched rupee is -80℃ or lower, and vE at -80℃ is 15Kg-m or higher, C+Mo/8+V≧0.26 and 0..2≦Cr ≦0.8Mo, 5≦Ni≦9.5S≦0.005, P≦
It was found that it is necessary to satisfy the conditions of 0.02% and O≦0.0030%. In order to obtain a high vE when σy≧100Kg/mm 2 , it is necessary that the oxygen content is particularly low. The required amounts of Mo and V vary depending on the C content, and lowering the C content causes a decrease in strength, so Mo and V must be increased accordingly. From the viewpoint of weldability, the maximum C content was set to 0.15%.
Furthermore, if Mo is less than 0.06%, the amount of C necessary for Mo 2 C precipitation is insufficient in the case of Mo 1.0%, and even if more Mo is added, the necessary strength cannot be obtained. Therefore, C is required to be at least 0.06%. Furthermore, by tempering at 550 to 600℃, σy increases.
To achieve 100Kg/mm 2 or more, a minimum Mo content of 0.7% is required; below this, the required strength cannot be obtained no matter how much V is increased. In order to stably obtain strength over a wide range of tempering temperatures, it is preferable to add Mo in an amount of 0.95% or more. The Ni content is determined by considering the precipitation of austenite during tempering. If Ni is 9.5% or more, unstable austenite precipitation will occur at temperatures below 600°C, which is not preferable. In addition, in order to have high strength and sufficient toughness of σy100Kg/mm 2 or more, a minimum of 5%
The amount of Ni is required. When tempering at a low temperature of 600°C or lower, tempering brittleness becomes a problem, so the P content must be reduced as much as possible, but 0.02% or less is sufficient. However, since some parts are heated to 400°C or higher after production, the content is particularly preferably 0.01% or less. Similarly, Si is 0.35
% or less, preferably 0.20%. In order to obtain high strength and high toughness, it is essential to make the austenite crystal grains fine. Moreover, since too much content deteriorates toughness, the upper limit was set at 0.08%. Addition of Ti is preferable to prevent grain coarsening in the weld heat affected zone. However, since adding more than necessary will significantly reduce toughness, the upper limit was set at 0.02%. Addition of 0.03% or less of Nb and Ta is also effective for grain refinement. Since the object of the present invention is for deep sea use, corrosion in seawater naturally becomes a problem. To do this, you just need to paint it properly. It is more preferable to add Cu, W, and Co, but if Cu is 0.5% or more and W is 0.1% or more, the effect is small. Co is also effective, but due to its high cost, its addition is limited to 1% at most. Furthermore, the steel targeted by the present invention has a problem of hot cracking. In order to improve hot cracking susceptibility, in addition to lowering the S content, it is effective to add La, Ce, Ca, etc. Addition of these elements up to 0.003% has no effect on strength, but also improves toughness. Excessive addition will reduce toughness. Examples Table 1 shows the chemical composition of the steel used in the test.
A hot-rolled 12mm steel plate is quenched at 850℃,
Table 2 shows the mechanical properties when tempered at 560, 580, and 600°C. Components C and D of the steel of the present invention have high strength of σy≧110Kg/mm 2 at any tempering temperature, and
vTrs<−150°C vE−20=25 to 29 Kg−m, showing very excellent characteristics. In addition, 0.7% Mo material A is also
0.5Cr shows a sufficient value. On the other hand, for 1.0Cr material E, when tempered at 600°C, σy is barely 100Kg/mm 2 , which cannot be said to be a sufficient value considering the variation.
On the other hand, when Ni is 4.5o/oG, the strength is sufficient but the toughness is poor. Similarly, high-Si material H has somewhat high strength but poor toughness when tempered at low temperatures. I of the steel composition of the present invention,
As shown in materials J and K, the addition of 0.3% Cu, 0.1% W, and 1% Co all results in σy≧100Kg/mm 2
Shows excellent characteristics with vTrs<-120℃. In addition, as shown in the composition L, M, and N materials of the steel of the present invention, 0.03%
Ta, Nb, 0.03% Ce, La, and 0.0035% Ca additives also have sufficient strength and toughness.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼戻温度と硬度の関係に対するCr,
Mo及びCrとMoの複合添加の効果を示す。
Figure 1 shows the relationship between tempering temperature and hardness of Cr,
The effect of Mo and the combined addition of Cr and Mo is shown.

Claims (1)

【特許請求の範囲】 1 C0.06〜0.15%、Si0.35%以下、Mn0.15〜1.5
%、Ni5〜9.5%、V0.05〜0.15%、Cr0.2〜0.7%、
Mo0.7〜15%、A0.01〜0.08%を含有し、C
(%)+1/8Mo(%)+V(%)〔但し重量%〕が0.26以上 で、かつCr≦0.8Moを満足し、残部が鉄及び不可
避的不純物からなることを特徴する降伏強さ100
Kg/mm2以上の高強度高靭性鋼。 2 C0.06〜0.15%、Si0.35%以下、Mn0.15〜1.5
%、Ni5〜9.5%、V0.05〜0.15%、Cr0.2〜0.7%、
Mo0.7〜1.5%、A0.01〜0.08%を含有し、C
(%)+1/8Mo(%)+V(%)〔但し重量%〕が0.26以上 でかつCr≦0.8Moを満足し、0.5%以下のCu,0.1
%以下のW;1%以下のCo;0.020%以下のTi、
0.030%以下のLa,Ce,Ca,Nb,Taの1種また
は2種以上を含有、残部が鉄及び不可避的不純物
からなることを特徴とする降伏強さ100Kg/mm2以上
の高強度高靭性鋼。
[Claims] 1 C0.06~0.15%, Si0.35% or less, Mn0.15~1.5
%, Ni5~9.5%, V0.05~0.15%, Cr0.2~0.7%,
Contains Mo0.7-15%, A0.01-0.08%, C
(%) + 1/8 Mo (%) + V (%) [however, weight %] is 0.26 or more, and Cr≦0.8Mo is satisfied, with the balance consisting of iron and inevitable impurities. Yield strength 100
High-strength, high-toughness steel of Kg/mm 2 or more. 2 C0.06~0.15%, Si0.35% or less, Mn0.15~1.5
%, Ni5~9.5%, V0.05~0.15%, Cr0.2~0.7%,
Contains Mo0.7~1.5%, A0.01~0.08%, C
(%) + 1/8 Mo (%) + V (%) [however, weight %] is 0.26 or more and satisfies Cr≦0.8Mo, Cu is 0.5% or less, 0.1
% or less W; 1% or less Co; 0.020% or less Ti;
High-strength, high-toughness with a yield strength of 100 Kg/mm 2 or more, containing 0.030% or less of one or more of La, Ce, Ca, Nb, and Ta, with the remainder consisting of iron and unavoidable impurities. steel.
JP8430779A 1979-07-03 1979-07-03 High strength high toughness steel Granted JPS569358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8430779A JPS569358A (en) 1979-07-03 1979-07-03 High strength high toughness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8430779A JPS569358A (en) 1979-07-03 1979-07-03 High strength high toughness steel

Publications (2)

Publication Number Publication Date
JPS569358A JPS569358A (en) 1981-01-30
JPS6140032B2 true JPS6140032B2 (en) 1986-09-06

Family

ID=13826826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8430779A Granted JPS569358A (en) 1979-07-03 1979-07-03 High strength high toughness steel

Country Status (1)

Country Link
JP (1) JPS569358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107920U (en) * 1991-02-28 1992-09-17 京セラ株式会社 Surface mount crystal unit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884758A (en) * 1981-11-13 1983-05-20 川崎製鉄株式会社 High-tension clad steel having stress corrosion-cracking sensibility in seawater
JPS61130462A (en) * 1984-11-28 1986-06-18 Tech Res & Dev Inst Of Japan Def Agency High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
JPS61272316A (en) * 1985-05-27 1986-12-02 Nippon Steel Corp Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
JP2537118B2 (en) * 1992-10-07 1996-09-25 新日本製鐵株式会社 Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
US5827379A (en) * 1993-10-27 1998-10-27 Nippon Steel Corporation Process for producing extra high tensile steel having excellent stress corrosion cracking resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107920U (en) * 1991-02-28 1992-09-17 京セラ株式会社 Surface mount crystal unit

Also Published As

Publication number Publication date
JPS569358A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
US4059440A (en) Highly corrosion resistant ferritic stainless steel
US4814141A (en) High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
US3288600A (en) Low carbon, high strength alloy steel
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
JPS6140032B2 (en)
US3463677A (en) Weldable high strength steel
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
US3373015A (en) Stainless steel and product
JPS5852460A (en) High strength chromium steel with superior weathering resistance and weldability
KR102250324B1 (en) Steel material and method of manufacturing the same
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPS60243250A (en) High-hardness wear-resistant steel having superior weldability
JPH07268562A (en) Coated rod for arc welding used for high cr ferritic heat resistant steel
KR20200136788A (en) Welding method that increases tensile strength good for deformation or cracking
JPS6213523A (en) Production of steel bar for low temperature use
JPH05171343A (en) Steel for high temperature pressure vessel having high strength and high toughness
JPS6254019A (en) Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness
JPH06158160A (en) Production of high tensile strength heat treated steel excellent in cost effectiveness
JPH108193A (en) High tensile strength steel, excellent in large heat input weldability, weld cracking sensitivity, and atmospheric corrosion resistance, and its production
JPS58107476A (en) High tensile steel excellent sulfide stress corrosion cracking resistance