JPS613900A - Method for dissolving metallic zinc shot - Google Patents
Method for dissolving metallic zinc shotInfo
- Publication number
- JPS613900A JPS613900A JP12450684A JP12450684A JPS613900A JP S613900 A JPS613900 A JP S613900A JP 12450684 A JP12450684 A JP 12450684A JP 12450684 A JP12450684 A JP 12450684A JP S613900 A JPS613900 A JP S613900A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- tank
- shot
- dissolution
- dissolving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、電%M鉛メツキー用の亜鉛ショットの溶解方
法に関するものであり、特には金属亜鉛シロツシの溶解
速度を高める為電気メッキ槽と流通下に置かれる溶解槽
において必要溶解量の2倍以上の亜鉛ショットを存在さ
せると共に、溶解槽における循環メッキ液中の鉄イオン
濃度をα5〜2.0グ/lに維持することにより、亜鉛
シ目ツシ表面に鉄を析出させながら亜鉛ショットの溶解
を行う方法仁関係する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dissolving zinc shot for electrolytic lead metki, and particularly to a dissolving tank placed in communication with an electroplating tank in order to increase the dissolution rate of metal zinc shot. By providing more than twice the required dissolution amount of zinc shot in the melting tank and maintaining the iron ion concentration in the circulating plating solution in the dissolution tank at α5 to 2.0 g/l, iron can be deposited on the surface of the zinc grains. The method of dissolving zinc shot while precipitating it is related.
鉄鋼材料の防食目的でIE気亜鉛メッキが広〈実施され
ている。近時、自動車、家電製品、建築材料、プラント
材料等の分野での亜鉛メッキ鋼板の需要増は著しく、特
に自動車用途では厚亜鉛メッキ鋼板が求められている。IE galvanizing is widely used to prevent corrosion of steel materials. Recently, the demand for galvanized steel sheets in the fields of automobiles, home appliances, building materials, plant materials, etc. has increased significantly, and thick galvanized steel sheets are particularly required for automobile applications.
こうした需要増や厚メッキに対処するべく、従来の可溶
性陽極を用いる電気亜鉛メッキ法よりも、不溶性陽極を
用いて高電流密度下でメッキを行う高速電気亜鉛メッキ
法が現在では脚光を浴びている。不溶性1lIIiiを
用いての高速メッキ法では、メッキ槽での亜鉛消費に伴
いメッキ液に亜鉛を補給することが必要とされる。一般
に、メッキ槽とは別に溶解槽を設置し、メツ、キ槽から
のメッキ後液を溶解槽にそして童鉛を補給溶解したメッ
キ液を溶解槽からメッキ槽に循環する方式が採られてい
る。溶解槽での亜鉛補給に当っては、亜鉛の溶解速度は
メッキ槽における所定の亜鉛濃度を連続的に維持するに
充分速いものでなければならない。補給亜鉛として炭酸
亜鉛を用いる場合には、迅速な溶解が保証されるが、コ
スト増につき、現在では金属亜鉛ショットを直接メッキ
洛中に溶解する方式が考慮されている。In order to cope with this increase in demand and thicker plating, high-speed electrogalvanizing methods that use insoluble anodes and perform plating under high current density are currently attracting attention rather than conventional electrogalvanizing methods that use soluble anodes. . In the high-speed plating method using insoluble 1lIII, it is necessary to replenish the plating solution with zinc as the zinc is consumed in the plating bath. In general, a method is adopted in which a dissolving tank is installed separately from the plating tank, and the post-plating solution from the metal and metal tanks is transferred to the dissolving tank, and the plating solution in which lead is replenished and dissolved is circulated from the dissolving tank to the plating tank. . When replenishing zinc in the dissolving tank, the rate of zinc dissolution must be fast enough to continuously maintain a predetermined zinc concentration in the plating tank. When zinc carbonate is used as supplementary zinc, rapid dissolution is guaranteed, but due to the increased cost, a method of dissolving metallic zinc shot directly into the plating plate is currently being considered.
しかしながら、金属亜鉛ショットの溶解性は左程に良好
ではない。従って、不溶性陽極を用いての高速メッキ法
を好適に実施する為には、金属亜鉛シ1ットの溶解性向
上のための対策を確立する、必要がある。その対策のた
め、かなりのコスト増を招くことは、安価な亜鉛ショッ
トを用いることの意義を失わしめる。However, the solubility of metallic zinc shot is not as good. Therefore, in order to suitably implement a high-speed plating method using an insoluble anode, it is necessary to establish measures to improve the solubility of metallic zinc sheets. As a countermeasure for this, a considerable increase in cost is caused, which makes using inexpensive zinc shot useless.
こうした状況において、本発明は、電気亜鉛メッキ用の
溶解槽において金属亜鉛シミツトを迅速に溶解するため
の安価な方法の確立を目的とする。Under these circumstances, the present invention aims at establishing an inexpensive method for rapidly dissolving metallic zinc stain in a dissolving bath for electrogalvanizing.
亜鉛ショットのメッキ液中への溶解と係る現象4につい
てはいまだ未解明の部分が多い。金属が酸性溶液中に溶
解する場合、その陰極反応として次式の反応による水素
の発生が不可欠である。Phenomenon 4, which is related to the dissolution of zinc shot into the plating solution, still has many unresolved aspects. When a metal is dissolved in an acidic solution, it is essential that hydrogen be generated by the following reaction as a cathodic reaction.
H++ @−= ’/2 Hz
この反応が起こる電位は、反応が起る電極面により大き
く影響を受ける。このため、水素過電圧の大きい金属程
溶解し難い。亜鉛の水素過電圧はかなり大きい方に属し
ており、これが亜鉛ショットのメッキ液への溶解速度が
小さいことの要因になっているものと考えられる。ちな
みに、陰極電流密度= 10−” A/cW?、I N
−HC1及び室温の条件の下での亜鉛の過電圧はα85
Vという高い水準にある。H++ @-= '/2 Hz The potential at which this reaction occurs is greatly influenced by the electrode surface where the reaction occurs. Therefore, metals with larger hydrogen overvoltages are more difficult to dissolve. The hydrogen overvoltage of zinc is quite large, and this is thought to be the reason why the rate of dissolution of zinc shot into the plating solution is low. By the way, cathode current density = 10-” A/cW?, I N
-The overpotential of zinc under the conditions of HC1 and room temperature is α85
It is at a high level of V.
本発明音は、亜鉛ショットのみかけ過電圧を下げる為、
亜鉛ショットの表面に薄い鉄を析出させることを想到し
、検討を重ねた。その結果、溶解槽において少量のF・
イオンを共存させ、亜鉛との置換反応によって鉄を亜鉛
ショット表面に析出させること゛により亜鉛シミツトの
溶解を促進させることに成功した。鉄の水素過電圧が亜
鉛の約50%であるところから、亜鉛の溶解が促進され
るものと思われる。金属亜鉛ショットの必要溶解量の約
2倍以上の亜鉛シミツトを常時溶解槽に維持することに
より、析出と溶解が同時的に起って連続的に補給亜鉛量
が確保され、メッキ槽に所定亜鉛濃度のメッキ液が補給
される。必要鉄イオン濃度はα5〜2. Oq/ l
であや。電気メッキ後液中には被メツキ鋼材から鉄が
溶出しており、一般に上記濃度を越える。ところが、従
来は、メッキ槽から抜出したメッキ液を浄化した後溶解
槽に送っていたため、溶解槽での鉄イオン濃度は上記範
囲に不足していた。従って、実際の操作としては、溶解
槽での鉄イオンの共存は、鉄イオンを浄化設備において
除去し過ぎないようにすることによってもたらされうる
。The sound of the present invention is to reduce the apparent overvoltage of zinc shots.
We came up with the idea of depositing a thin layer of iron on the surface of zinc shot, and conducted repeated studies. As a result, a small amount of F・
We succeeded in accelerating the dissolution of zinc shot by allowing ions to coexist and depositing iron on the surface of the zinc shot through a substitution reaction with zinc. Since the hydrogen overvoltage of iron is about 50% that of zinc, it is thought that the dissolution of zinc is promoted. By constantly maintaining zinc stain in the dissolution tank at least twice the required dissolution amount of metal zinc shot, precipitation and dissolution occur simultaneously and a continuous supply of zinc is ensured, allowing the specified amount of zinc to be maintained in the plating tank. Concentrated plating solution is replenished. The required iron ion concentration is α5~2. Oq/l
Deaya. Iron is eluted from the steel material to be plated into the solution after electroplating, and the concentration generally exceeds the above concentration. However, in the past, the plating solution extracted from the plating tank was purified and then sent to the dissolving tank, so that the iron ion concentration in the dissolving tank was insufficient to fall within the above range. Therefore, in practical operation, the coexistence of iron ions in the dissolution tank can be brought about by not removing too much iron ions in the purification equipment.
斯くして、本発明は、電気亜鉛メッキ槽から抜出された
5メツキ後液に不足分の亜鉛を溶解しそして該電気亜鉛
メッキ槽に循環させる溶解槽において金属亜鉛ショット
を溶解する方法であって、該溶解槽に金属亜鉛ショット
を必要溶解量の2倍以上存在させ、そして該溶解槽に流
入するメッキ後液中の鉄イオン濃度をαs 9/l −
2,0g7ノ とすることを特徴とする金属亜鉛ショッ
トの溶解方法を提供する。Thus, the present invention is a method for dissolving metallic zinc shot in a dissolving tank in which the missing zinc is dissolved in the post-plating solution extracted from the electrogalvanizing tank and circulated to the electrogalvanizing tank. Then, metal zinc shot is present in the dissolution tank at least twice the required dissolution amount, and the iron ion concentration in the post-plating solution flowing into the dissolution tank is set to αs 9/l −
Provided is a method for melting metallic zinc shot, characterized in that the amount is 2.0 g7.
以下、本発明を実験例に基いて具体的に説明する。The present invention will be specifically explained below based on experimental examples.
不溶性陽極を用いA高速電気亜鉛メッキ法は現在のとこ
ろ、
ZnSO4・7H,O: 4509/l (Zn:1
02ルク)NalSO4(無水) : 3ag/i
fr@e−H1SO4: 4.9g/lを基本的浴組
成として用いている。液中のpHはα8〜&5程度そし
て浴温は50〜60”Cが代表的である。不溶性陽極と
しては、鉛合金、白金族金属及び合金等が使用されてい
る。メッキ液は、メッキ槽から一部連続的に抜出され、
浄化設備3経て溶解槽に導入されそしてそこでメッキに
よる消費分に対応する亜鉛が補給溶解される。所定亜鉛
濃度のメ゛ツキ液が電気メツキ槽に循環される。At present, the A high-speed electrogalvanizing method using an insoluble anode is ZnSO4.7H,O: 4509/l (Zn:1
02 luc) NalSO4 (anhydrous): 3ag/i
fr@e-H1SO4: 4.9 g/l is used as the basic bath composition. The pH of the solution is typically α8~&5, and the bath temperature is typically 50~60''C. Lead alloys, platinum group metals, alloys, etc. are used as the insoluble anode. Some parts were continuously extracted from
The zinc is introduced into a dissolution tank via a purification facility 3, and there, zinc corresponding to the amount consumed by plating is replenished and dissolved. A plating solution with a predetermined zinc concentration is circulated through the electroplating bath.
メッキ槽から抜出されるメッキ後液中にはスト″リップ
等から溶出した鉄が一般に溶出しているが、これまでは
それら鉄イオンの実質上すべてが浄化設備において除去
されていた。従って、溶解槽においては、亜鉛ショット
の溶解は、鉄イオンのあったとしてもごく低い水準の濃
度の下で実施されていた。The post-plating solution taken out from the plating tank generally contains iron leached from the strip, etc., but until now, virtually all of these iron ions have been removed in purification equipment. In the bath, the dissolution of zinc shot was carried out at very low, if any, concentrations of iron ions.
亜鉛ショットの溶解試験を行うため、上記実際例と同じ
組成のメッキ液及びそれにF s 804・7H105
、0g/l (F e当量:taq7t)添加したメ
ッキ液1ノを調製した。供試亜鉛ショットとしては粒径
2〜4mmの最純亜鉛ショット(品位Fe:2 ppm
、 Pb : 15 ppm5Cd : 8 ppm、
Ni(10ppm ) 100りを用いた。In order to conduct a zinc shot dissolution test, a plating solution with the same composition as the above actual example and F s 804/7H105 were used.
, 0 g/l (Fe equivalent: taq 7t) was prepared. The sample zinc shot was the purest zinc shot with a particle size of 2 to 4 mm (grade Fe: 2 ppm).
, Pb: 15 ppm5Cd: 8 ppm,
Ni (10ppm) 100ml was used.
メッキ液1ノをビー力に入れ、これをホットプレートニ
より55〜60℃に保持しながら、ここに亜鉛ショク)
1009を投入し、攪拌翼にて45 Orpmで攪拌を
行い、試験時間3時間として亜鉛ショット溶解量を調べ
た。結果を第1図に示す。図中水平点線は化学ffi論
から計算される最大1鉛溶解量である。曲lIAはFe
イオンの添加のない亜鉛シ貰ット単味の試験結果であり
、他方白駒結果である(5回の平均)。亜鉛単味での溶
解速度0.56り/ 5 h r・! に対し、本発明
の5@の繰返し試験の平均値はα5〜15 hrの時間
でt 96 q/hr・!と非常に大きくなっているこ
とがわかる。試験終了後の亜鉛ショットのFe品位は3
0〜40 ppm程度であるが、ショット粒子表面では
Fe濃度が非常に大きくなっており、Feの水素過電圧
がcL40vと低いことから溶解反応が促進されたもの
と考えられる。Pour 1 liter of plating solution into a microwave oven, hold it at 55-60°C on a hot plate, and add zinc to it)
1009 was added and stirred with a stirring blade at 45 Orpm, and the amount of zinc shot dissolved was examined for a test time of 3 hours. The results are shown in Figure 1. The horizontal dotted line in the figure is the maximum amount of dissolved lead calculated from chemical ffi theory. Song lIA is Fe
These are the test results for single zinc supplement without the addition of ions, and the other are the results for Shirakoma (average of 5 tests). Dissolution rate of zinc alone: 0.56 ri/5 hr・! On the other hand, the average value of the 5@ repeated test of the present invention is t 96 q/hr・! in the time period α5 to 15 hr. It can be seen that it has become very large. The Fe grade of the zinc shot after the test was 3.
Although it is about 0 to 40 ppm, the Fe concentration is very high on the surface of the shot particles, and the hydrogen overvoltage of Fe is as low as cL40v, so it is thought that the dissolution reaction was promoted.
1十
ライン液中にはF@ の存在も予想されるところから、
基本液組成のF 02%に変えてFax(SO2)mを
添加して試験を行なった。試験開始直前のF・イオンは
全てFem+であることを確認した。wt果を第2図に
示す。Since the presence of F@ is also expected in the 10-line liquid,
A test was conducted by adding Fax(SO2)m instead of F02% in the basic liquid composition. It was confirmed that all F ions immediately before the start of the test were Fem+. Figure 2 shows the wt results.
初期の亜鉛溶解量は基本試験に比較してやや大きくなっ
ている。このことはH1気泡の発生が通常(開始20分
後から多くなる)より10分はど速くなったことからも
分る。ただし終了後のショットの重量減少量は4.12
gで、free−H1SO4濃度からの計算値より大
きくなっているが、これは次式による反応の寄与が大部
分をしめているものと考えられる。The initial amount of zinc dissolved is slightly larger than that in the basic test. This can be seen from the fact that the generation of H1 bubbles was faster for 10 minutes than usual (which increases 20 minutes after the start). However, the weight reduction of the shot after the end is 4.12
g is larger than the value calculated from the free-H1SO4 concentration, but this is considered to be largely due to the contribution of the reaction according to the following equation.
Zn+2Fe”=Zn”+2Fe”
図にはあわぜて、Feイオン継度の変化を示しであるが
、開始60分後には80%以上のFes+がFe2+と
なっており、これによる亜°鉛の溶解量をfree−H
2SO46度からの計算値にプラスして図に示しである
が、初期の溶解速度が非常に大きいことが分る。ただし
、はとんどのFe”十はすぐにF@″+となってその効
果はなくなり1〜2hrの平均溶解速度は13り/ h
r・!と基本試験より小さくなっている。Zn+2Fe"=Zn"+2Fe" The figure shows the change in Fe ion degree, but 60 minutes after the start, more than 80% of Fes+ has become Fe2+, which indicates the dissolution of zinc. Free-H amount
As shown in the figure in addition to the calculated value from 2SO46 degrees, it can be seen that the initial dissolution rate is very high. However, most of the Fe"10 quickly becomes F@"+ and its effect disappears, and the average dissolution rate for 1 to 2 hours is 13/h.
r・! and is smaller than the basic test.
平衡論的には過剰の亜鉛が存在する系ではFe”は共存
できず、このイオンを含む溶液がZnと接触すると、そ
のほとんどが短時間のうちにFe”までで還元され、結
果として亜鉛の溶解速度が促進される。Equilibrium theory shows that Fe'' cannot coexist in a system where there is an excess of zinc, and when a solution containing this ion comes into contact with Zn, most of it is reduced to Fe'' in a short time, resulting in the loss of zinc. Dissolution rate is accelerated.
反応温度は溶解速度に大きく影響を与えることが知られ
ているが、この影響を見る為30″C155°C及び8
0°Cの3水準で先きと同様にして試験を行った。結果
を第3図及び下表に示す。It is known that the reaction temperature has a large effect on the dissolution rate, but in order to examine this effect, the reaction temperature was
Tests were conducted in the same manner as before at three levels of 0°C. The results are shown in Figure 3 and the table below.
表にあわせて示すように、試験終了後のショットの品位
をみると高温はどFe品位が上昇しており、反応速度定
数の温度依存性のほかに、F6の析出置場による活性反
応点の増加が溶解速度に大きく貢献していることも示し
ている。As shown in the table, when looking at the quality of the shot after the test, the Fe quality increases at high temperatures, and in addition to the temperature dependence of the reaction rate constant, the number of active reaction points increases due to the F6 precipitation site. It is also shown that the amount of water contributes significantly to the dissolution rate.
従って、液温を55℃〜80°Cに維持することも亜鉛
ショット溶解促進対策として本発明と併用するに効果的
である。Therefore, maintaining the liquid temperature at 55°C to 80°C is also effective when used in conjunction with the present invention as a measure to promote zinc shot dissolution.
次に、Fe”+: t 5り/l を含む前記と同一の
メッキ液を使用して、ショット再使用の場合の影響につ
いて調べた。Next, the effect of shot reuse was investigated using the same plating solution as above containing Fe''+: t 5 /l.
試験v−1:Fe”十濃度=15り/l 他の条件は先
と同じ
試験V−2:V−1で使用したショットそのまま投入(
再使用) Fe″十濃度−
t s g/l
試験V−3:V−2で使用したショットそのまま投入(
再々使用)Fe時濃度−
10り/l
とした。Test v-1: Fe” concentration = 15 l/l Other conditions are the same as before Test V-2: Inject the shot used in V-1 as is (
Reuse) Fe″10 concentration - t s g/l Test V-3: Inject the shot used in V-2 as is (
(repeated use) Fe concentration was set to -10 ri/l.
結果を第4図に示す。V−1での亜鉛の溶解速度は、初
期で基本試験よりかなり大きな値となっているが、その
傾きは0〜10hrで2.2 ’)/hr−1゜α5〜
t5hrで1879/hr−1と基本試験とほとんど差
がない。The results are shown in Figure 4. The dissolution rate of zinc in V-1 is initially much larger than in the basic test, but its slope is 2.2')/hr-1°α5~ from 0 to 10 hr.
The t5hr was 1879/hr-1, which was almost no difference from the basic test.
これに対してV −2、V −sでは、さらに初期反応
速度が増加し、0〜0.5hrでは、V−2で4.13
り/hr−j、■−5で6.09/hr−7と非常に大
きくなっている。この原因としては、初期の反応の停滞
(Feの析出時間)が短縮されたことによるのではない
かと考えられるが、最初の測定時間が30分後であるた
め現゛時点では不明である。On the other hand, with V-2 and V-s, the initial reaction rate increases further, and at 0 to 0.5 hr, V-2 has a 4.13
ri/hr-j, ■-5 and 6.09/hr-7, which is extremely large. The reason for this is thought to be that the initial reaction stagnation (Fe precipitation time) was shortened, but it is unclear at this point because the first measurement time was 30 minutes later.
実操業において、前述した通り、電気亜鉛メッキ槽から
扶出されるメッキ後液は既に鉄イオンを含有している。In actual operation, as described above, the plating solution discharged from the electrogalvanizing tank already contains iron ions.
本発明のα5〜2−09/l の鉄イオン濃度を溶解
槽において確保する為には、メッキ後液の洗浄を従前程
完全に行わず、鉄イオンを指定範囲で残すことが有用な
方法である。もちろん、完全な洗浄後、鉄イオンを指定
範囲まで加えてもよい。メッキ液は循環使用に伴い次第
に鉄イオン濃度が累積するので配慮が必要である。In order to secure the iron ion concentration of α5~2-09/l in the dissolution tank according to the present invention, it is useful to not wash the post-plating solution as thoroughly as before, but to leave iron ions within a specified range. be. Of course, iron ions may be added to the specified range after thorough cleaning. As the plating solution is recycled, the concentration of iron ions gradually accumulates, so care must be taken.
鉄イオン濃度の下限α5g/l は、これより少ない
とライン速度に見合う溶解速度が保証されない。他方、
zOり/l の上限を越えると、亜鉛−鉄合金メッキが
生成されるので好ましくない。If the iron ion concentration is lower than the lower limit α5g/l, a dissolution rate commensurate with the line speed cannot be guaranteed. On the other hand,
If the upper limit of zO/l is exceeded, zinc-iron alloy plating will be produced, which is not preferable.
溶解槽内には、常時、亜鉛ショットが必要溶解量の2倍
以上存在せしめられる。こうすることによって、亜鉛シ
ョットへの鉄の析出と亜鉛ショットの溶解が尚詩的に起
って、連続的な亜鉛ショット溶解が保証される。Zinc shot is always present in the dissolution tank at least twice the amount required for dissolution. By doing this, the precipitation of iron onto the zinc shot and the dissolution of the zinc shot occur in a graceful manner, ensuring continuous zinc shot dissolution.
以上、本発明は、不溶性陽極を使用する高速電気亜鉛メ
ッキを工業的に円滑に実施する為に必要な亜鉛ショット
の迅速溶解化を可能ならしめたものであり、工業的意鵜
はきわめて大ぎい。As described above, the present invention enables rapid dissolution of zinc shot, which is necessary for industrially performing high-speed electrogalvanizing using an insoluble anode, and has extremely great industrial significance. .
第1図はFe”+イオン添加、による亜鉛溶解量増加の
効果を示すグラフであり、第2図は亜鉛溶解速度に及ぼ
すFe”+イオン濃度の影響を示すグラフであり、第3
図は亜鉛溶解速度に及ぼず温度の影響を示すグラフであ
り、そして第4図はショット再使用の効果を示す同様の
グラフである。
第1図
溶解時開(hr)
第2図Figure 1 is a graph showing the effect of increasing the amount of zinc dissolution due to the addition of Fe''+ ions, Figure 2 is a graph showing the effect of Fe''+ ion concentration on the zinc dissolution rate, and Figure 3 is a graph showing the effect of Fe''+ ion concentration on the zinc dissolution rate.
Figure 4 is a graph showing the effect of temperature on zinc dissolution rate, and Figure 4 is a similar graph showing the effect of shot reuse. Figure 1 Dissolution time (hr) Figure 2
Claims (1)
分の亜鉛を溶解しそして該電気亜鉛メッキ槽に循環させ
る溶解槽において金属亜鉛ショットを溶解する方法であ
って、該溶解槽に金属亜鉛ショットを必要溶解量の2倍
以上存在させ、そして該溶解槽に流入するメッキ後液中
の鉄イオン濃度を0.5g/l〜2.0g/lとするこ
とを特徴とする金属亜鉛ショットの溶解方法。 2)溶解槽の液温が55〜80℃に維持される特許請求
の範囲第1項記載の方法。[Scope of Claims] 1) A method of dissolving metallic zinc shot in a dissolving tank in which the missing amount of zinc is dissolved in a post-plating solution extracted from an electrogalvanizing tank and circulated to the electrogalvanizing tank, comprising: , the metal zinc shot is present in the dissolution tank at least twice the required dissolution amount, and the iron ion concentration in the post-plating solution flowing into the dissolution tank is 0.5 g/l to 2.0 g/l. Dissolving method for metallic zinc shot. 2) The method according to claim 1, wherein the liquid temperature in the dissolution tank is maintained at 55 to 80°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12450684A JPS613900A (en) | 1984-06-19 | 1984-06-19 | Method for dissolving metallic zinc shot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12450684A JPS613900A (en) | 1984-06-19 | 1984-06-19 | Method for dissolving metallic zinc shot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS613900A true JPS613900A (en) | 1986-01-09 |
Family
ID=14887171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12450684A Pending JPS613900A (en) | 1984-06-19 | 1984-06-19 | Method for dissolving metallic zinc shot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS613900A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004038650A1 (en) * | 2004-08-09 | 2006-02-23 | Coutelle, Rainer, Dr. | Process for the dissolution of zinc in alkalis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54155131A (en) * | 1978-05-29 | 1979-12-06 | Nippon Kinzoku Co Ltd | Preparing zinc electroplating bath |
JPS59112827A (en) * | 1982-12-21 | 1984-06-29 | Sumitomo Metal Ind Ltd | Promotion of metal dissolution |
-
1984
- 1984-06-19 JP JP12450684A patent/JPS613900A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54155131A (en) * | 1978-05-29 | 1979-12-06 | Nippon Kinzoku Co Ltd | Preparing zinc electroplating bath |
JPS59112827A (en) * | 1982-12-21 | 1984-06-29 | Sumitomo Metal Ind Ltd | Promotion of metal dissolution |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004038650A1 (en) * | 2004-08-09 | 2006-02-23 | Coutelle, Rainer, Dr. | Process for the dissolution of zinc in alkalis |
DE102004038650B4 (en) * | 2004-08-09 | 2006-10-26 | Coutelle, Rainer, Dr. | Process for the dissolution of zinc in alkalis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4264419A (en) | Electrochemical detinning of copper base alloys | |
JPS613900A (en) | Method for dissolving metallic zinc shot | |
JP2011111633A (en) | Method for producing zinc based composite electroplated steel sheet | |
US4923573A (en) | Method for the electro-deposition of a zinc-nickel alloy coating on a steel band | |
US1155317A (en) | Method of applying protective coatings to metallic articles. | |
JPH1060683A (en) | Electroplating with ternary system zinc alloy, and its method | |
FR2519656A1 (en) | PROCESS FOR THE ELECTROLYTIC COATING OF TRIVALENT CHROMIUM WITHOUT HEXAVALENT CHROMIUM ION FORMATION, USING A FERRITE ANODE | |
US2847373A (en) | Electroplating zinc on basis metal | |
JPS586792B2 (en) | Aenion no Metsukiyokuhenokiyoukiyuhouhou | |
KR100322034B1 (en) | Plating solution suitable for the manufacture of electro galvanized steel sheet with excellent surface appearance | |
US1435875A (en) | Electroplating with alkaline bath | |
US1133628A (en) | Galvanizing wire, hoops, sheets, and the like. | |
US1515712A (en) | Mercury zinc anode for sulphate solutions | |
US6022467A (en) | Electrolytic tin plating process with reduced sludge production | |
KR100397296B1 (en) | Manufacturing method of electro galvanized steel sheet with excellent surface appearance | |
JPH05311484A (en) | Reflow tin or tin alloy plating bath | |
JPH09111492A (en) | Method for continuously and electroplating metallic sheet | |
Bell | A Laboratory Technique for the Electrodeposition of Manganese on Other Metals | |
JPS62243798A (en) | Method for feeding zn ion during galvanizing | |
Osseo-asare et al. | Electrodeposition of iron in aqueous ferrous sulfate solution: Role of ammonium ion | |
JPS627900A (en) | Method for supplying zinc ion to galvanizing bath | |
JP3316606B2 (en) | Tin plating apparatus and tin plating method | |
JPH036240B2 (en) | ||
JPS6358235B2 (en) | ||
JPH0532478B2 (en) |