JPS6138824B2 - - Google Patents

Info

Publication number
JPS6138824B2
JPS6138824B2 JP13343480A JP13343480A JPS6138824B2 JP S6138824 B2 JPS6138824 B2 JP S6138824B2 JP 13343480 A JP13343480 A JP 13343480A JP 13343480 A JP13343480 A JP 13343480A JP S6138824 B2 JPS6138824 B2 JP S6138824B2
Authority
JP
Japan
Prior art keywords
light
velocity
trajectory
particles
trail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13343480A
Other languages
Japanese (ja)
Other versions
JPS5757265A (en
Inventor
Shohei Noda
Masayoshi Murata
Yasuhiko Sato
Hisao Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13343480A priority Critical patent/JPS5757265A/en
Publication of JPS5757265A publication Critical patent/JPS5757265A/en
Publication of JPS6138824B2 publication Critical patent/JPS6138824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【発明の詳細な説明】 本発明は流跡による速度測定方法における、微
粒子流跡写真撮影の方法の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method of photographing a particle trajectory in a velocity measurement method using a trajectory.

模型実験等における流れ場を観察する場合微粒
子(例えば雲母、カイロ灰、ベビーパウダ)を浮
遊させ光源(白熱電球、水銀灯、あるいはレーザ
等)からの光で微粒子を照射し、露出時間Tを適
当に定め、微粒子の軌跡を写真撮影し各微粒子の
軌跡長Lから各微粒子の速度V(=L/T)を測
定する方法がとられる。
When observing a flow field in a model experiment, etc., fine particles (e.g. mica, body warmer ash, baby powder) are suspended and irradiated with light from a light source (incandescent bulb, mercury lamp, laser, etc.), and the exposure time T is set appropriately. A method is used in which the velocity V (=L/T) of each particle is measured from the trajectory length L of each particle by photographing the trajectory of each particle.

第1図に従来の測定法のうち照明光としてレー
ザを用いた測定装置の配置を示す。
FIG. 1 shows the arrangement of a measuring device that uses a laser as illumination light in a conventional measuring method.

すなわちレーザ光源01から照明光02を発光
させレンズ03によつて光を平面状に拡大し、測
定断面の流れ場04にレーザ光を照射し、カメラ
05によつて微粒子の軌跡を撮影する。
That is, illumination light 02 is emitted from a laser light source 01, the light is expanded into a planar shape by a lens 03, the flow field 04 of the measurement cross section is irradiated with the laser light, and the trajectory of the particles is photographed by a camera 05.

この方法では写真撮影の露出時間内で照明光の
光強度はほぼ一定であるため、撮影された微粒子
軌跡の始点と終点の区別がつかない。従つて速度
は測定できるが流れの方向の正負は判定できない
ことになる。
In this method, the light intensity of the illumination light is almost constant within the exposure time of photography, so it is impossible to distinguish between the starting point and the ending point of the photographed particle trajectory. Therefore, although the velocity can be measured, it is not possible to determine whether the flow direction is positive or negative.

特に乱れた流れ場では流れの方向の変化が不規
則であるため理論又は経験による推定すら難かし
い。
In particular, in a turbulent flow field, changes in the flow direction are irregular, making it difficult to estimate by theory or experience.

本発明はこの欠点を排除するものであつて、流
体流れ場の中に微粒子を浮遊せしめ、これに光を
当て写真撮影することによつて流跡の速度計測を
行なうものにおいて、写真撮影の露出時間内で、
光源の光の強度を変化させることにより微粒子の
流跡の始点と終点を区別し、流体の速度および方
向を測定できるようにしたことを特徴とする流跡
速度計測方法を提供するものである。
The present invention eliminates this drawback, and the present invention measures the velocity of a trail by suspending fine particles in a fluid flow field and photographing them by shining light on them. within the time,
The present invention provides a trail velocity measuring method characterized in that the starting point and ending point of a trail of particles can be distinguished by changing the intensity of light from a light source, and the velocity and direction of a fluid can be measured.

以下第2図に流れの速度及び方向を測定できる
ようにした流跡速度測定方法を実施した概略図を
示す。
FIG. 2 below shows a schematic diagram of a method for measuring trail velocity that enables the velocity and direction of flow to be measured.

光源11から出た光12は、ポツケルスセル1
7と偏光子18とで構成された透過光強度変調器
16を透過した後、レンズ13によつて平面状に
拡大され、測定したい流れ場14を照明する。流
れ場には微粒子が浮遊されており、その微粒子流
跡をカメラ15で撮影する。
The light 12 emitted from the light source 11 is transmitted through the Pockels cell 1.
After passing through a transmitted light intensity modulator 16 composed of a light beam 7 and a polarizer 18, the light is magnified into a plane by a lens 13 and illuminates a flow field 14 to be measured. Particles are suspended in the flow field, and a camera 15 photographs the trajectory of the particles.

第3図aにはポツケルスセルに印加する印加電
圧Vを第3図bには、そのとき透過光強度変調器
を透過した光強度Iを横軸に時間tをとつて示し
てある。
FIG. 3a shows the applied voltage V applied to the Pockels cell, and FIG. 3b shows the light intensity I transmitted through the transmitted light intensity modulator at that time, with time t plotted on the horizontal axis.

従つて第3図bに示すように、照明光の光強度
を変調することにより、撮影された微粒子流跡は
第4図に拡大して示すように、流跡31の始点3
2より終点33の方が明るくうつる。
Therefore, as shown in FIG. 3b, by modulating the light intensity of the illumination light, the photographed particulate trajectory can be adjusted to the starting point 3 of the trajectory 31, as shown in FIG.
The final point 33 appears brighter than 2.

従つて、本発明を具現化することにより、 (i) 照明光に光強度の変調を与えることによつて
微粒子の流跡の終点が明るく撮影されるので速
度及び流れの方向が同時に測定できる。
Therefore, by embodying the present invention, (i) By modulating the light intensity of the illumination light, the end point of the trajectory of the particles can be photographed brightly, so that the speed and direction of the flow can be measured at the same time.

(ii) 物体の後流などの乱れ域のように速度及び流
れの方向が著しく変動する流れ場における、速
度及び流れの方向を同時に測定することは従来
不可能であつたが、本測定方法によつて可能と
なり流動解析上効果大である。
(ii) In the past, it was impossible to simultaneously measure the velocity and direction of flow in a flow field where the velocity and direction of flow fluctuate significantly, such as in a turbulent region such as the wake of an object, but this measurement method This makes it possible and has a great effect on flow analysis.

なお光源の輝度を変調する方法としては、実施
例で示したポツケルスセルを用いる方法以外に、
レーザ光源の電流をコントロールする手段も考え
られるが、その期待される効果は同一である。
In addition to the method using the Pockels cell shown in the example, there are other methods for modulating the brightness of the light source.
A method of controlling the current of the laser light source may also be considered, but the expected effects are the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の測定方法で用いる装置の概略
図、第2図は本発明の方法を具現化する一実施例
の装置の概略図、第3図は印加電圧と光強度を示
す図、第4図は撮影された微粒子の拡大図。 11:光源、14:流れ場、15:カメラ、1
6:透過光強度変調器。
Fig. 1 is a schematic diagram of an apparatus used in a conventional measurement method, Fig. 2 is a schematic diagram of an embodiment of an apparatus embodying the method of the present invention, Fig. 3 is a diagram showing applied voltage and light intensity, and Fig. 3 is a diagram showing applied voltage and light intensity. Figure 4 is an enlarged view of the photographed particles. 11: Light source, 14: Flow field, 15: Camera, 1
6: Transmitted light intensity modulator.

Claims (1)

【特許請求の範囲】[Claims] 1 流体流れ場の中に微粒子を浮遊せしめ、これ
に光を当て写真撮影することによつて流跡の速度
計測を行なうものにおいて、写真撮影の露出時間
内で、光源の光の強度を変化させることにより、
微粒子の軌跡の始点と終点を区別し、流体の速度
及び方向を測定できるようにしたことを特徴とす
る流跡速度計測方法。
1 In a device that measures the speed of a trail by suspending particles in a fluid flow field and photographing them by shining light on them, the intensity of the light from the light source is changed within the exposure time for photography. By this,
A trail velocity measuring method characterized by distinguishing the starting point and ending point of a trajectory of particles and making it possible to measure the velocity and direction of a fluid.
JP13343480A 1980-09-25 1980-09-25 Method for measuring flow trace speed Granted JPS5757265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13343480A JPS5757265A (en) 1980-09-25 1980-09-25 Method for measuring flow trace speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13343480A JPS5757265A (en) 1980-09-25 1980-09-25 Method for measuring flow trace speed

Publications (2)

Publication Number Publication Date
JPS5757265A JPS5757265A (en) 1982-04-06
JPS6138824B2 true JPS6138824B2 (en) 1986-09-01

Family

ID=15104678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13343480A Granted JPS5757265A (en) 1980-09-25 1980-09-25 Method for measuring flow trace speed

Country Status (1)

Country Link
JP (1) JPS5757265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009354A (en) * 2015-06-18 2017-01-12 株式会社ジェイテクト High-speed imaging system and high-speed imaging method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988191A (en) * 1987-03-09 1991-01-29 University Of Illinois Electro-optical method and system for determining the direction of motion in double-exposure velocimetry by shifting an optical image field
DE4321876C1 (en) * 1993-07-01 1994-10-06 Bodo Dr Ing Ruck Method and device for generating a graphical real-time item of directional information for detected object tracks
US20200162653A1 (en) * 2017-04-20 2020-05-21 Sony Corporation Signal processing system, signal processing device, and signal processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009354A (en) * 2015-06-18 2017-01-12 株式会社ジェイテクト High-speed imaging system and high-speed imaging method

Also Published As

Publication number Publication date
JPS5757265A (en) 1982-04-06

Similar Documents

Publication Publication Date Title
Holmes et al. Velocity profiles in ducts with rectangular cross sections
WO2017104662A1 (en) Particle analysis device and particle analysis method
JPS6138824B2 (en)
JPH01121735A (en) Measuring apparatus for amount of fiber in air
DE3873230D1 (en) METHOD AND DEVICE FOR MEASURING THE FLOW RATE IN WIND CHANNELS.
McCreath et al. A technique for measurement of velocities and size of particles in flames
JPS63298065A (en) Speed measuring instrument for body
GB1370811A (en) Apparatus for detecting suspended particulate matter within a chamber
USRE16733E (en) Blectbolttic beflectob
JPS6126939Y2 (en)
JPS6145187B2 (en)
DE68902877D1 (en) METHOD AND DEVICE FOR MEASURING THE VISIBILITY THROUGH A MEDIA VARIABLE DENSITY.
JP2962119B2 (en) Liquid field visualization method for gas-liquid multiphase flow field
JPH0532692B2 (en)
JPS6126937Y2 (en)
ATE19189T1 (en) APPARATUS FOR ENDOSCOPIC PHOTOGRAPHY.
JPS54160232A (en) Photographic apparatus
JP2962118B2 (en) Liquid field visualization method for gas-liquid multiphase flow field
Blight A Photographic Determination of the Emergent Velocity of Dust Particles
Fraser et al. The Selection of a Photographic Technique for the Study of Movement
JPS556324A (en) Photographing method
SU838583A1 (en) Device for measuring flow rate parameters of fluid medium
CHAN Optical measurements of smoke particle size generated by electric arcs[Final Report]
MIKHOVICH et al. Photographic recording of trajectories of aerosol particles by method of multiple exposure(Abstract Only)
Strons et al. Flow visualization methods for field test verification of CFD analysis of an open gloveport