JPS6145187B2 - - Google Patents

Info

Publication number
JPS6145187B2
JPS6145187B2 JP55161572A JP16157280A JPS6145187B2 JP S6145187 B2 JPS6145187 B2 JP S6145187B2 JP 55161572 A JP55161572 A JP 55161572A JP 16157280 A JP16157280 A JP 16157280A JP S6145187 B2 JPS6145187 B2 JP S6145187B2
Authority
JP
Japan
Prior art keywords
light
light source
laser
flow field
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55161572A
Other languages
Japanese (ja)
Other versions
JPS5786059A (en
Inventor
Masayoshi Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP55161572A priority Critical patent/JPS5786059A/en
Publication of JPS5786059A publication Critical patent/JPS5786059A/en
Publication of JPS6145187B2 publication Critical patent/JPS6145187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation

Description

【発明の詳細な説明】 本発明は流跡による速度測定方法における、微
粒子の流跡を写真撮影する為の装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a device for photographing a trajectory of fine particles in a velocity measurement method using a trajectory.

模型実験等における流れ場を観察する場合微粒
子(例えば雲母、カイロ灰、ベビーパウダ)を浮
遊させ光源(白熱電球、水銀灯、あるいはレーザ
等)からの光で微粒子を照明し、露出時間Tを適
当に定め、微粒子の軌跡を写真撮影し各微粒子の
軌跡長Lから各微粒子の速度V(=L/T)を測
定する方法がとられる。
When observing a flow field in a model experiment, etc., fine particles (e.g. mica, Cairo ash, baby powder) are suspended and illuminated with light from a light source (incandescent bulb, mercury lamp, laser, etc.), and the exposure time T is set appropriately. A method is used in which the velocity V (=L/T) of each particle is measured from the trajectory length L of each particle by photographing the trajectory of each particle.

第1図には、この測定法を実験する為の装置の
うち照明光としてレーザを用いた測定装置の配置
を示す。
FIG. 1 shows the arrangement of a measuring device that uses a laser as illumination light among the devices for experimenting with this measuring method.

すなわちレーザ光線01から照明光02を発光
させレンズ03によつて光を平面状に拡大し測定
断面の流れ場04にレーザ光を照射し、カメラ0
5によつて模型06後流の微粒子の軌跡を撮影す
る。
That is, the illumination light 02 is emitted from the laser beam 01, the light is expanded into a planar shape by the lens 03, the flow field 04 of the measurement cross section is irradiated with the laser light, and the camera 0
5 to photograph the trajectory of particles downstream from model 06.

この装置では写真撮影の露出時間内で照射光の
光強度はほぼ一定であるため、撮影された微粒子
軌跡の始点と終点の区別がつかない。従つて速度
は測定できるが流れの方向の正負は判定できない
ことになる。
In this device, the light intensity of the irradiated light is almost constant within the exposure time for photographing, so it is impossible to distinguish between the starting point and the ending point of the photographed particle trajectory. Therefore, although the velocity can be measured, it is not possible to determine whether the flow direction is positive or negative.

特に乱れた流れ場では流れの方向の変化が不規
則であるため理論又は経験による推定すら難かし
い。
In particular, in a turbulent flow field, changes in the flow direction are irregular, making it difficult to estimate by theory or experience.

本発明は上記欠点を排除するものであつて、光
源とカメラを有し、流体流れ場の中に微粒子を浮
遊せしめ、これに光を当てて写真撮影することに
よつて流跡の速度計測を行なう流跡計測装置にお
いて、上記光源から発生する光を波長の異なる2
つの光とし、同光源と流体の流れ場との中間に位
置する上記2つの光を夫々時間をずらせて流体の
流れ場に当てる一対のシヤツタを具備したことを
特徴とし、その目的とするところは、微粒子に当
てる光の波長を変え、カメラの撮影している途中
で波長を変更するようにし、微粒子の流れの始点
と終点が区別できるようにした流跡測定装置を提
供するものである。
The present invention eliminates the above-mentioned drawbacks, and uses a light source and a camera to suspend particles in a fluid flow field, illuminate them with light, and photograph them to measure the velocity of a trail. In the trajectory measuring device that performs
The invention is characterized in that it is equipped with a pair of shutters that apply the two lights located between the same light source and the fluid flow field to the fluid flow field at different times. To provide a trajectory measuring device that changes the wavelength of light applied to particles and changes the wavelength while the camera is taking pictures, thereby making it possible to distinguish between the starting point and the ending point of the flow of particles.

すなわち本発明では、光源から発生する光を波
長の異なる2つの光としたので、夫々の光を当て
られた場合の微粒子の色が変化することになる。
従つて一対のシヤツタを光源と流体の流れ場の中
間の位置に配設し、2つの光を夫々時間をずらせ
て当てるようにしたので、カメラにより撮影され
た微粒子の色が変化し、その色の変化から撮影時
間内で動いた微粒子の始点と終点が判定でき、流
れの速さのみならずその方向をも測定できる。
That is, in the present invention, since the light emitted from the light source is two lights with different wavelengths, the color of the fine particles changes when irradiated with each light.
Therefore, a pair of shutters was placed between the light source and the fluid flow field, and the two lights were applied at different times, so that the color of the particles photographed by the camera changed, and the color The starting and ending points of particles that moved within the imaging time can be determined from changes in the flow rate, and not only the speed of the flow but also its direction can be measured.

以下本発明を第2図に示す一実施例の装置につ
いて説明する。
The present invention will now be described with reference to an embodiment of the apparatus shown in FIG.

1および2は光源であつて、光源1は赤色光を
出すヘリウム・ネオン・レーザ、光源2は緑色光
を出すアルゴン・レーザである。3および4は上
記光源1の前方であつて流れ場10との間に配置
されるシヤツタであつて、ポツケルス効果を利用
したポツケルスセルを使用する。5は上記シヤツ
タ3,4を作動させる単一の短形パルス電圧を発
生するパルス発振器で、上記矩形の長さは可変と
することが出きる。上記発振器5から発振された
パルスは、シヤツタ3に直接入るものと、遅延回
路6を介して矩形の位相がずれてシヤツタ4に入
り、その矩形パルスによりシヤツタ3,4は開
き、そして閉じる。
Reference numerals 1 and 2 are light sources, where light source 1 is a helium neon laser that emits red light, and light source 2 is an argon laser that emits green light. Shutters 3 and 4 are arranged in front of the light source 1 and between the flow field 10, and use Pockels cells that utilize the Pockels effect. Reference numeral 5 denotes a pulse oscillator that generates a single rectangular pulse voltage for operating the shutters 3 and 4, and the length of the rectangle can be made variable. The pulses oscillated from the oscillator 5 directly enter the shutter 3, and the pulses enter the shutter 4 through a delay circuit 6 with a rectangular phase shift, and the rectangular pulses cause the shutters 3 and 4 to open and close.

7はハーフミラー、8は平面鏡であつて、シヤ
ツタ3を通つた光源1の光はハーフミラー7を通
過し、またシヤツタ4を通つた光源2の光は平面
鏡8、ハーフミラー7で反射され、夫々シリンド
リカルレンズ9で平面状に拡大され流れ場10に
照射される。なお、12は撮影用のカメラであ
る。
7 is a half mirror, 8 is a plane mirror, the light from the light source 1 that has passed through the shutter 3 passes through the half mirror 7, and the light from the light source 2 that has passed through the shutter 4 is reflected by the plane mirror 8 and the half mirror 7; Each of the beams is expanded into a planar shape by a cylindrical lens 9 and irradiated onto a flow field 10 . Note that 12 is a camera for photographing.

光源1で発生されるヘリウム・ネオン・レーザ
は、波長0.6328μmのレーザ・ビームでパルス発
振器5で発生される単一矩形パルス電圧がシヤツ
タ3に印加されると、シヤツタ3が開となり、上
記矩形パルス電圧のパルス幅T秒の間だけ通過す
る。シヤツタ3を通過したレーザビームは、シリ
ンドリカルレンズ9によつて平面照明光となり、
計測対象の流れ場10に浮遊している微粒子群を
照明する。他方、光源2で発生されるアルゴンレ
ーザは波長0.488μmのレーザビームで、上記パ
ルス発振器5で発生された単一矩形パルス電圧が
遅延回路6を介してシヤツタ4に印加されると、
シヤツタ4は開となり、上記矩形パルス電圧のパ
ルス幅T秒の間だけ通過する。シヤツタ4を通過
したレーザビームは、平面鏡8、ハーフミラー7
を経由して、シリンドリカルレンズ9に導かれ
て、平面照明光となり、計測対象の流れ場に浮遊
している微粒子群を照明する。
The helium neon laser generated by the light source 1 is a laser beam with a wavelength of 0.6328 μm, and when a single rectangular pulse voltage generated by the pulse oscillator 5 is applied to the shutter 3, the shutter 3 opens and the rectangular It passes only during the pulse width T seconds of the pulse voltage. The laser beam that has passed through the shutter 3 becomes flat illumination light by the cylindrical lens 9.
A group of particles floating in the flow field 10 to be measured is illuminated. On the other hand, the argon laser generated by the light source 2 is a laser beam with a wavelength of 0.488 μm, and when the single rectangular pulse voltage generated by the pulse oscillator 5 is applied to the shutter 4 via the delay circuit 6,
The shutter 4 is opened and the rectangular pulse voltage passes for a pulse width T seconds. The laser beam that has passed through the shutter 4 is transferred to a plane mirror 8 and a half mirror 7.
The light is guided to the cylindrical lens 9 and becomes plane illumination light, which illuminates a group of particles floating in the flow field to be measured.

なお上記遅延回路6の遅延時間を上記矩形パル
ス電圧のパルス幅T秒と同じ値に設定しておく。
Note that the delay time of the delay circuit 6 is set to the same value as the pulse width T seconds of the rectangular pulse voltage.

このようにして、カラーフイルムが装填された
カメラ12で、流れ場10の微粒子群からの反射
光すなわち上記光源1で発生されたレーザ光と上
記光源2で発生されたレーザ光とによる2色の反
射光を同一露出時間内で二重撮影する。
In this way, the camera 12 loaded with color film can detect two colors of light reflected from the particles in the flow field 10, that is, the laser light generated by the light source 1 and the laser light generated by the light source 2. Double photography of reflected light within the same exposure time.

そうすると、上記矩形パルスのパルス幅T秒の
2倍すなわち2T秒間に移動する上記微粒子群を
構成する各々の微粒子の軌跡が第3図に示すよう
に始点部と終点部が赤色と緑色の2色で色分けさ
れて撮影される。
Then, as shown in Fig. 3, the trajectory of each particle constituting the particle group moving for twice the pulse width T seconds of the rectangular pulse, that is, 2T seconds, has two colors of red and green at the starting point and ending point, as shown in Figure 3. The images are color-coded and photographed.

すなわちこの実施例では、レーザ照明光に色の
変化すなわち波長の異なるレーザビームを発する
光源を2つ設け、その照射時間をずらして写真撮
影したので、撮影された微粒子の始点部と終点部
の色が異なり識別されるので、速度及び流れの方
向が同時に測定できる。
In other words, in this example, two light sources that emit laser beams with different colors in the laser illumination light, that is, different wavelengths, were provided, and the irradiation times were staggered to take photographs, so the colors of the starting and ending points of the photographed particles were Since the flow rates are different and identified, velocity and direction of flow can be measured simultaneously.

従つてとくに、従来の技術では不可能であつた
物体の後流などの乱れ域あるいは流れの方向が著
しく変動する流れ場に対しても速度及び流ねの方
向の同時測定が可能となつたことは流動解析上極
めて効果が大きい。
Therefore, it is now possible to simultaneously measure velocity and flow direction, especially in turbulent areas such as the wake of an object or in flow fields where the direction of flow fluctuates significantly, which was impossible with conventional techniques. is extremely effective in flow analysis.

次に本発明の別の実施例を第4図に示す。この
実施例では1つの光源から出る光をプリズムで分
光し、波長の異なる2つの光としている。
Next, another embodiment of the present invention is shown in FIG. In this embodiment, the light emitted from one light source is separated into two lights with different wavelengths using a prism.

30は光源であつて、波長に0.6764,0.6471,
0.5309,0.4762μmなどの複数個の発振線を有す
るクリプトン・レーザを用いる。
30 is a light source with wavelengths of 0.6764, 0.6471,
A krypton laser with multiple oscillation lines such as 0.5309 and 0.4762 μm is used.

31は、プリズムで、上記光源30で発生され
るレーザ光をスペクトルとして分光するすなわち
単色光成分に分解して波長の順に並べる作用をも
つ。なお、第4図には簡単のために2個のスペク
トルを示している。分光されたレーザ光は平面鏡
32ないし35で夫々反射され、分光された光の
みを通す穴のあいたアパーチヤ38,39に入
り、シヤツタ3,4に到る。
A prism 31 has the function of separating the laser light generated by the light source 30 as a spectrum, that is, separating it into monochromatic light components and arranging them in order of wavelength. Note that two spectra are shown in FIG. 4 for simplicity. The separated laser beams are reflected by plane mirrors 32 to 35, respectively, and enter apertures 38 and 39 having holes through which only the separated light passes, and reach shutters 3 and 4.

なお、符号3ないし10及び12を付したもの
は、第2図に示したものと同一の構造・作用を有
するものであり、説明を省く。
It should be noted that those designated by reference numerals 3 to 10 and 12 have the same structure and function as those shown in FIG. 2, and the explanation thereof will be omitted.

第4図において、光源30で発生されるレーザ
光は、波長0.6764,0.6471,0.5309,0.4762μm
などの単色レーザ光の合成光であるが、そのレー
ザ光はプリズム31に導かれ、プリズム31の分
光作用により、波長の長い順に分離される。上記
プリズム31で単色レーザ光に分離されたレーザ
光のうち、例えば波長0.5309μm(緑色)の光と
波長0.4762μm(青色)の光について、それぞれ
平面鏡32と33、平面鏡34と35で夫々反射
し、アパーチヤ38,39を経てシヤツタ3,4
に入れる。以降の作用は上記第1の実施例と同一
である。
In FIG. 4, the laser beams generated by the light source 30 have wavelengths of 0.6764, 0.6471, 0.5309, and 0.4762 μm.
The laser light is a composite light of monochromatic laser light such as, and the laser light is guided to a prism 31, and is separated in descending order of wavelength by the spectroscopic action of the prism 31. Among the laser beams separated into monochromatic laser beams by the prism 31, for example, light with a wavelength of 0.5309 μm (green) and light with a wavelength of 0.4762 μm (blue) are reflected by plane mirrors 32 and 33 and plane mirrors 34 and 35, respectively. , shutters 3 and 4 via apertures 38 and 39
Put it in. The subsequent operations are the same as in the first embodiment.

なお、カメラ12のカラーフイルムに写された
微粒子は緑色と青色に色別される点のみが、第一
の実施例と異なるが、その効果については同一の
ものが得られる。
The only difference from the first embodiment is that the particles captured on the color film of the camera 12 are separated into green and blue, but the same effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の流跡計測装置の説明図、第2図
は本発明の一実施例を示す装置の説明図、第3図
は撮影された微粒子を示す図、第4図は本発明の
別の実施例を示す説明図である。 1,2:光源、3,4:シヤツタ、5:パルス
発振器、6:遅延回路、10:流れ場、12:カ
メラ。
Fig. 1 is an explanatory diagram of a conventional trajectory measuring device, Fig. 2 is an explanatory diagram of an apparatus showing an embodiment of the present invention, Fig. 3 is a diagram showing photographed particles, and Fig. 4 is an explanatory diagram of a device showing an embodiment of the present invention. It is an explanatory view showing another example. 1, 2: light source, 3, 4: shutter, 5: pulse oscillator, 6: delay circuit, 10: flow field, 12: camera.

Claims (1)

【特許請求の範囲】[Claims] 1 光源とカメラを有し、流体流れ場の中に微粒
子を浮遊せしめ、これに光を当てて写真撮影する
ことによつて流跡の速度計測を行なう流跡計測装
置において、上記光源から発生する光を波長の異
なる2つの光とし、同光源と流体の流れ場との中
間に位置する上記2つの光を夫々時間をずらせて
流体の流れ場に当てる一対のシヤツタを具備した
ことを特徴とする流跡計測装置。
1. In a trajectory measurement device that has a light source and a camera and measures the velocity of a trajectory by suspending particles in a fluid flow field and photographing them by shining light on them, It is characterized by comprising a pair of shutters in which the light is two lights of different wavelengths, and the two lights located between the same light source and the fluid flow field are applied to the fluid flow field at different times. Path measurement device.
JP55161572A 1980-11-17 1980-11-17 Measuring device for flow trail Granted JPS5786059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55161572A JPS5786059A (en) 1980-11-17 1980-11-17 Measuring device for flow trail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55161572A JPS5786059A (en) 1980-11-17 1980-11-17 Measuring device for flow trail

Publications (2)

Publication Number Publication Date
JPS5786059A JPS5786059A (en) 1982-05-28
JPS6145187B2 true JPS6145187B2 (en) 1986-10-07

Family

ID=15737654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55161572A Granted JPS5786059A (en) 1980-11-17 1980-11-17 Measuring device for flow trail

Country Status (1)

Country Link
JP (1) JPS5786059A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263863A (en) * 1984-06-12 1985-12-27 Asia Kosoku Kk Monitoring method of surface flow velocity distribution by stereoscopic image
JPH01145571A (en) * 1987-12-02 1989-06-07 Takashi Kamemoto Measuring method of flow velocity of fluid utilizing pulse laser sheet light and apparatus therefor
DE19926494C2 (en) * 1999-06-10 2001-07-26 Max Planck Gesellschaft Method and device for imaging microscopic particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509855A (en) * 1973-05-18 1975-01-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509855A (en) * 1973-05-18 1975-01-31

Also Published As

Publication number Publication date
JPS5786059A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
JP3102935B2 (en) Imaging flow cytometer
JPS54111832A (en) Exposure device
JPS5451823A (en) Stroboscopic device for camera
JPS6145187B2 (en)
US1784171A (en) Artificial lighting having a daylight effect
McCreath et al. A technique for measurement of velocities and size of particles in flames
JPS58154666A (en) Method for measuring flow trace and camera for photographing flow trace
JPS6138824B2 (en)
JPS6126939Y2 (en)
Fraser et al. The Selection of a Photographic Technique for the Study of Movement
JPH08201413A (en) Two-dimensional flow velocity measuring instrument
US2372890A (en) Filter controlled photographic recording equipment
SU838583A1 (en) Device for measuring flow rate parameters of fluid medium
Blight A Photographic Determination of the Emergent Velocity of Dust Particles
RU2078364C1 (en) Device for photo detection of very-fast processes
Hiers et al. Analysis of Nonequilibrium Air Streams in the Ames 1-Foot Shock Tunnel
JPS556324A (en) Photographing method
JPS6126937Y2 (en)
Courtney-Pratt et al. Picosecond Photography and Time-Resolved Spectrography
Bouyoucos et al. Oscillations of the Jet in a Jet‐Edge System. II
SU824113A2 (en) Method of producing photographic pictures with spatial carrier frequency
SU717682A1 (en) Method of lighting and photographic charged particle tracks in track chambers
JPS6126938Y2 (en)
De Ponte et al. Novel measurement system for particle image velocimetry based on three-color pulsed lamps and image processing
Abrosova et al. Effect of CO 2 laser illumination of an artificial fog