JPS6138584A - Detector for light projection signal - Google Patents

Detector for light projection signal

Info

Publication number
JPS6138584A
JPS6138584A JP16105084A JP16105084A JPS6138584A JP S6138584 A JPS6138584 A JP S6138584A JP 16105084 A JP16105084 A JP 16105084A JP 16105084 A JP16105084 A JP 16105084A JP S6138584 A JPS6138584 A JP S6138584A
Authority
JP
Japan
Prior art keywords
light
projection
time
signal
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16105084A
Other languages
Japanese (ja)
Inventor
Tokuichi Tsunekawa
恒川 十九一
Takashi Kawabata
隆 川端
Yuichi Sato
雄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16105084A priority Critical patent/JPS6138584A/en
Priority to US06/757,137 priority patent/US4678323A/en
Publication of JPS6138584A publication Critical patent/JPS6138584A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To detect a reflected light from an object with a high precision even if a quantity of ambient light is varied, by alternating a projection-nonprojection cycle and the nonprojection-projection cycle of a light projecting means by a light projection control means. CONSTITUTION:A control pulse CF2 controls a projected luminous flux, and the high level indicates the light projection state, and the low level indicates the nonprojection state. An ambient light quantity PA2 changing with time indicates that the quantity of ambient light is constant with respect to time, and period from a time t20 to a time t21 is a projection section, and the period from the time t21 to a time t22 is a nonprojection section, and the period from the time t22 to a time t23 is a nonprojection section, and the period from the time t23 to a time t24 is a projection section. Since the projection-nonprojection cycle, and the nonprojection-projection cycle are alternated in this manner, a true light projection signal as the difference between an integral signal for projection and that for nonprojection is detected with a high precision when the quantity of ambient light is not only constant but also varied as shown by PD2. Thus, the drift of an output signal ID2 at times t22 and t24-t27 is reduced.

Description

【発明の詳細な説明】 本発明は投光信号検出装【@に関し、特に投光手段から
の光束を物体側へ投光し物体からの反射光を精度良く検
出することのできる投光信号検出装置K関するものであ
る。そし、て更に本発明は写真用カメラ、ビデオカメラ
等のカメラにおいてカメラ側の投光手段から物体側へ投
光し、物体からの反射光を利用して焦点検出を行う焦点
検出装置に用いるときに好適な投光信号検出装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light projection signal detection device [@], and in particular to a light projection signal detection device that can project a luminous flux from a light projecting means toward an object and detect the reflected light from the object with high precision. This relates to device K. Furthermore, the present invention is applicable to a focus detection device in a camera such as a photographic camera or a video camera, which projects light from a light projecting means on the camera side toward an object side and performs focus detection using reflected light from the object. The present invention relates to a light projection signal detection device suitable for.

従来から物体1RIIへ投光し物体からの反射光を検出
するには141えば投光する光を変調すると共に受光手
段の光電変換素子の出力t AC増幅した後に該出力を
一定時間の間債分してVN比の向上を図ってい比。しか
しながらこの方法は信号処理回路が複雑になると共にA
C増幅時に雑音が入るので反射光が微弱のときは精度の
良い検出が困難でらつ几。
Conventionally, in order to project light onto an object 1RII and detect the reflected light from the object, for example, the projecting light is modulated and the output of the photoelectric conversion element of the light receiving means is amplified by AC, and then the output is converted into a signal for a certain period of time. We are trying to improve the VN ratio. However, this method requires complicated signal processing circuits and
Since noise is introduced during C amplification, accurate detection is difficult when the reflected light is weak.

本出願人は先に物体からのi+tt光を41’j li
良く検出する為に光電変換素子に生じる光”L’J i
/lt+を直接積分するこぶを可能とじに投光信号検出
装置を特願昭59−16362号で提案した。この装置
は投光手段の投光時と非投光時における受光手段からの
出力信号を逆極性に積分(7、この積分結果に基づいて
周囲光による雑音(i″i号を除去し、投光手段からの
光束のみによる信号、所jl’l真の投光信号を検出す
るようにしたものである。
The applicant first converted i+tt light from an object into 41'j li
For good detection, the light generated in the photoelectric conversion element ``L'J i
A light projection signal detection device was proposed in Japanese Patent Application No. 16362/1983, which allows for the direct integration of /lt+. This device integrates the output signal from the light receiving means with opposite polarity when the light emitting means emits light and when it does not emit light (7). Based on this integration result, noise due to ambient light (i" A signal based only on the luminous flux from the optical means, i.e., a true light projection signal, is detected.

しかしながら、周囲光景が時1jlと共に変動したりす
ると投光時と非投光時の周1〕」」光t;:の差は真の
投光信号の検出に対して誤差となってくる。
However, if the surrounding scene changes with the time 1jl, the difference in the light t;: when the light is emitted and when the light is not emitted becomes an error in detecting the true light emitting signal.

従って前述の方法は周囲光量の変動が多い場合や9に物
体からの反射光量が少ない場合には真の投光信号Jk棺
度良く検出するのが困難で6つ几0 本発明は周囲光域が変動しても物体からの反射光を硝度
良く検出することのできる投光IJ号検出装置の提供を
目的とする。そして本発明の更なる目的は、物体からの
反射光が微弱であってもイr1反良く具の投光信号全検
出することのできるカメラ等の焦点検出装置I′1に好
適な投光1:1号検出装置の提供にある。本発明の目的
を達成する為投光信号検出装置の王たる特徴は物体側へ
投光する為の投光手段と前記投光手段の投光と非投光を
周期的に繰り返して行なわしめる投光制御手段と物体側
からの反射光を受光し投光1g号と非投光信号を発生さ
せる受光手段とiJQ記投光投光制御手段期して前口己
受光手段で発生し次設光、非投光信号を積分する積分手
段とを有する投光信号検出装置において前記投光制御手
段により前記投光手段の投光−非投光周期と非投光−投
光周期を交互に動作させたことである。
Therefore, with the above method, it is difficult to detect the true light emitting signal with good accuracy when there are many fluctuations in the amount of ambient light or when the amount of reflected light from an object is small. It is an object of the present invention to provide a light projection IJ number detection device capable of detecting reflected light from an object with good viscosity even if the viscosity varies. A further object of the present invention is to provide a light emitting unit suitable for a focus detection device I'1 of a camera, etc., which can detect the entire light emitting signal of an object even if the reflected light from an object is weak. :Providing the No. 1 detection device. In order to achieve the object of the present invention, the main features of the light projection signal detection device include a light projection means for projecting light toward an object, and a projection device that periodically repeats light projection and non-projection of light by the light projection means. A light control means, a light receiving means for receiving the reflected light from the object side and generating a light emitter signal and a non-emitter signal, and an iJQ light emitter and a light emitter control means, which are generated by the front self-receiving means; In a light projection signal detection device having an integrating means for integrating a non-light projection signal, the light projection control means alternately operates a light projection-non-light projection period and a non-light projection-light projection period of the light projection means. That's true.

このように本発明は周囲光量が変動しても精度良く真の
投光信号を検出することを可能としている。そして本発
明の目的をより良好に速成する為には前記積分手段は投
光信号と非投光信号を逆極性に積分し、前記積分手段か
らの出力に基づいて真の投光信号の検出を行うようにす
るのが好ましい。
In this way, the present invention makes it possible to accurately detect a true light projection signal even if the amount of ambient light changes. In order to better achieve the object of the present invention, the integrating means integrates the light emitting signal and the non-light emitting signal with opposite polarities, and detects the true light emitting signal based on the output from the integrating means. It is preferable to do so.

次に本発明の一実施f+′1Jを各図と共に説明する。Next, one embodiment f+'1J of the present invention will be explained with reference to each drawing.

まず第1図に従来の投光信号検出装置における投光信号
検出の際の概略図を示す。  −同図においてCFIは
投光手段からの投光光束’x 1iilJ御する為の1
制御パルスでら9高レベルの時が投光状Jフ、低レベル
の時が非投光状態を示す。
First, FIG. 1 shows a schematic diagram of a conventional light projection signal detection device when detecting a light projection signal. - In the figure, CFI is 1 for controlling the projected light flux 'x 1iilJ from the projecting means.
When the control pulse is at a high level, it indicates a light emitting state, and when it is at a low level, it indicates a non-light emitting state.

PALは周囲光が時間的に一定の場合の光量を示す。次
に投フf、状態と非投光状態における周囲光の影響につ
いて述べる。時刻t10 ””” 1□0間ハ投光状悪
に対応する区間でらり、列えば下方に@四元に基づく積
分信号IAIが生ずる。時刻、□  、2の間は非投光
状態に対応する区間で89、列えは上方に周囲プtに基
づく積分信号IAIが生ずる。即ち、時刻11゜−10
2の間で周囲光量が一定であれば、投光区間と非投光区
間の4λ分信号が同じになり、囲えば投光時と非投光時
における周囲光による積分(i74+を逆極性に6j分
丁ルば、時刻t工2において周囲光の影響は除去するこ
とができる。従って時刻11o−102のr=1の投光
時と非投光時の差信号を求めれは真Ou ”I’を1g
号が得られることになる。
PAL indicates the amount of light when the ambient light is constant over time. Next, the influence of ambient light in the projection state and the non-projection state will be described. Time t10 ``'''' 1 □ 0 The period corresponding to the illumination condition is reached, and if it is lined up, an integral signal IAI based on the @quaternary is generated below. In the corresponding interval 89, an integral signal IAI based on the surrounding pt is generated above the sequence, that is, at time 11°-10
If the amount of ambient light is constant between 2 and 2, the 4λ signal in the light emission section and the non-light emission section will be the same, and if it is enclosed, the integral due to the ambient light during light emission and non-light emission (i74+ with opposite polarity) 6j, the influence of ambient light can be removed at time t-2. Therefore, to find the difference signal between light emission and non-light emission when r=1 at time 11o-102, it is true. 1g of '
You will get the number.

このように周囲光量が時間的に一定でめれば周囲光によ
る積分16号IAIのドリフトは零となる。このことは
以後の時刻jx3 + L工4.t工、・・・において
も同様である。従って真の投光信号は正しく検出される
If the amount of ambient light is kept constant over time in this way, the drift of integral No. 16 IAI due to ambient light will be zero. This means that the subsequent time jx3 + L4. The same applies to t-work, . . . . Therefore, the true light projection signal is correctly detected.

次に周囲光量が同図のPBI 、 PCIに示す如く時
間と共に変動する場合は、投光区間と非投光区間での周
囲光量の積分直が異ってくる。従って積分信号IBI 
、 ICIは前述の如く逆極性で積分しても時刻t工2
では積分直v工2、時刻t□4では積分値v工、に相・
当する量だけ誤差が生ずる。
Next, when the amount of ambient light changes over time as shown by PBI and PCI in the figure, the integral of the amount of ambient light in the light projection section and the non-light projection section will be different. Therefore, the integral signal IBI
, ICI is integrated at time t and 2 even if it is integrated with opposite polarity as mentioned above.
Then, at time t□4, the integral value v, the phase
An error will occur by the amount that corresponds.

本発明の投光信号検出装置は投光手段の投光−非投光周
期と非投光−投光周期を交互に動作させることによって
、周囲光域の変動による真の投光信号の検出誤差を極力
少なくするものである。
The light emitting signal detection device of the present invention alternately operates the light emitting-non-emitting cycle and the non-emitting-light emitting cycle of the light projecting means, thereby detecting the true light emitting signal due to fluctuations in the ambient light area. This is to minimize the amount of

第2図に本発明の投光信号検出装置の原理を説明する為
の説明図を示す。同図において、CF2は投光手段の投
光光束をa;す御する為の制御パルスであり、第1図と
同様に高レベルの時が投光状態、低レベルの時が非投光
状態を示す。
FIG. 2 shows an explanatory diagram for explaining the principle of the light projection signal detection device of the present invention. In the figure, CF2 is a control pulse for controlling the emitted light flux of the light emitting means, and as in Fig. 1, when it is at a high level, it is in the light emitting state, and when it is at a low level, it is in the non-emitting state. shows.

PA2は周囲光が時間的に一定の状態金示し、時刻t2
0 ”” t2□が投光区間、時刻t2□〜t2□が非
投光区間、時刻t2□〜t23が非投光区間、時刻t2
3〜t24が投光区間である。このように、本発明によ
れは、第2図に示すように投光−非投光周期と非投光−
投光周期を交互に動作させることにより、周囲光量が一
定のときは熱論のこと、周囲光量がV!+1えばPD2
の如く変動しても投光時の積分信号と非投光時の積分信
号の差である真の投光信号を精度良く検出することがで
きるO このように本発明では時刻t2□” 24 ” 251
t26 、t27において出力信号ID2のドリア)k
第1図のIBI 、 ICIに比べて著しく小さくする
ことができる。
PA2 indicates a state in which the ambient light is constant over time, and at time t2
0 "" t2□ is a light projection section, time t2□ to t2□ is a non-light projection section, time t2□ to t23 is a non-light projection section, time t2
3 to t24 is the light projection section. As described above, according to the present invention, as shown in FIG.
By alternating the light projection period, when the amount of ambient light is constant, the amount of ambient light can be reduced to V! +1 is PD2
Even if the signal changes as shown in FIG. 251
Doria)k of output signal ID2 at t26 and t27
IBI and ICI shown in FIG. 1 can be significantly smaller than IBI and ICI.

次に本発明をカメラ等の焦点検出装置に適用したときの
一実施例を各図と共に説明する。
Next, an embodiment in which the present invention is applied to a focus detection device such as a camera will be described with reference to each drawing.

第3図(&) 、 (b) 、 (e)は本発明をカメ
ラ等の焦点検出装置に適用したときの検出原理の説明図
で、この図において、SA  、 SRは物体からの反
射光を検出するための受光手段を構成する充電変換素子
、SPは不図示の投光手段が物体側へ光束を投射した際
に形成される反射光スポットで、反射光スポットSPは
不図示の対物レンズ(例えば、カメラでは撮影レンズ)
の焦点状態に応じて同図上左右方向に移動する。なお、
このように反射光スポット5Pを移動させるための構成
は、ダlえば特開昭54−151829号公報や特開昭
54−155832号公報等により周知なので、ここで
は説明を省略する。を元、光電変換素子SA 、 SB
 i1対物レンズが@−然状態にある時の反射光スポラ
) SPの中心を境界にして設けられている。第3図(
a)は対物レンズが合焦状態にある時の光電変換素子S
A 、 8Bと反射光スポットSPの関係を示している
Figures 3 (&), (b), and (e) are explanatory diagrams of the detection principle when the present invention is applied to a focus detection device such as a camera. In this figure, SA and SR represent light reflected from an object. The charging conversion element SP constituting the light receiving means for detection is a reflected light spot formed when a light projecting means (not shown) projects a luminous flux toward the object, and the reflected light spot SP is reflected by an objective lens (not shown). For example, in a camera, the photographing lens)
It moves left and right in the figure depending on the focal state of the image. In addition,
The configuration for moving the reflected light spot 5P in this manner is well known from, for example, Japanese Patent Laid-Open Nos. 54-151829 and 1982-155832, and therefore the description thereof will be omitted here. Based on photoelectric conversion elements SA and SB
Reflected light spora when the i1 objective lens is in the normal state) It is provided with the center of SP as the boundary. Figure 3 (
a) is the photoelectric conversion element S when the objective lens is in focus
The relationship between A, 8B and the reflected light spot SP is shown.

A、Bは反射光スポラ) SP Kより2つの光電変換
素子SA  、 SBのそれぞれに生じる真の投光信号
の出力量、ま几、A、B  は周囲光OO Kより2つの光電変換素子SA 、 8Bのそれぞれに
生じる出力Jlを概念的に示したもので、各光電変換素
子SA 、  SBからは、投光時には出力量(A十A
0)、(B+B0)が得られ非投光時には出力量A、B
0が得られる。本発明で社、不図示の第1並びに第2積
分手段のそれぞれに保持された出力量(A+A0)、(
B十80)から直接に差動回路0を介して出力量A0.
  Bo’i−差し引くことにより、第3図(b)に示
すような出力量A、Bを求めている。従って、投光と非
投光を周期的に繰り返した際の出力量A、Bの総和ΣA
、ΣBも第1並びに第2積分手段のそれぞれに保持され
る。
A, B are reflected light spora) SP K is the output amount of the true light emitting signal generated in each of the two photoelectric conversion elements SA, SB, A, B are the ambient light OO. , 8B conceptually shows the output Jl generated in each of the photoelectric conversion elements SA and SB.
0), (B+B0) are obtained, and the output amounts A and B are obtained when the light is not emitted.
0 is obtained. In the present invention, the output amount (A+A0) held in each of the first and second integrating means (not shown), (
B180) directly through differential circuit 0 to output amount A0.
By subtracting Bo'i, the output quantities A and B as shown in FIG. 3(b) are obtained. Therefore, the sum of the output amounts A and B when light emission and non-light emission are repeated periodically ΣA
, ΣB are also held in each of the first and second integrating means.

本発明ではこの総和ΣA 、ΣBを用いて対物レンズの
焦点状態を判別する。即ち、第3図(c)K示す如く、
Σ人−ΣBの時に合焦、SA〉ΣBの時に前ビン、SA
くΣBの時に後ビンと判別する。
In the present invention, the focal state of the objective lens is determined using the sums ΣA and ΣB. That is, as shown in FIG. 3(c)K,
Focus when Σperson-ΣB, front focus when SA>ΣB, SA
When ΣB, it is determined that it is the rear bin.

なお、この時、Σλ+ΣBを一定1直に保っよ5にする
と、ΣA−ΣBの合焦位置付近での傾きを略一定にでき
るので、合焦精度を常に一定とすることができ好ましい
At this time, it is preferable to keep Σλ+ΣB at a constant value of 1 because the inclination of ΣA-ΣB near the in-focus position can be made substantially constant, and the focusing accuracy can always be kept constant.

第4図は本発明を焦点検出装置に適用したときの信号処
理回路の一実施例を示すもので、図において、SA 、
 SBは前述の光電変換素子となるシリコ/フォトダイ
オード、LDは投光手段となる発光素子、CA 、 C
Bは第1並びに第2積分手段となるコンデンサー、AG
I −AC3並びにBGI〜BG4 d差動回路となる
アナログゲートである。発光素子LDは抵抗R1,を介
して不図示の電源に接続され、トランジスタTri を
介してアースされている。従って、クロックパルスφI
RKよタバツファ増幅器BAを介してトランジスタTr
iがオン、オフされることにより発光素子LDは変調発
光し、物体OBへの投光を行なう。光′1に変換素子S
A 、 SBの一端はアナログゲートAGI 、 BG
I l介してアースされると共に、アナロググー) A
C3、BO2を介して高入力インピーダンスの演算増幅
器MA 、 MBの反転入力に接続されている。また、
それぞれの他端はアナロググー) AC3、BO2を介
して演S、増幅器MA 、 MBの反転入力VC接続さ
れると共に、アナロググー) AC3、BO3を介して
アースされている。演算増幅器MA 、 MBの非反転
入力はアースされている。コンデンサーCA  、 C
Bは演算増幅器MA  、 MBの負帰還路に設けられ
ている。AC3、BO2はコンデンサー〇A 、  C
Bと並列に設けられたアナログゲートで、信号 φ。
FIG. 4 shows an embodiment of a signal processing circuit when the present invention is applied to a focus detection device.
SB is a silicon/photodiode which becomes the photoelectric conversion element mentioned above, LD is a light emitting element which becomes a light projecting means, CA, C
B is a capacitor serving as the first and second integrating means, AG
I-AC3 and BGI to BG4 d These are analog gates that form a differential circuit. The light emitting element LD is connected to a power source (not shown) via a resistor R1, and grounded via a transistor Tri. Therefore, clock pulse φI
Transistor Tr is connected to RK through Tabassa amplifier BA
By turning on and off i, the light emitting element LD emits modulated light and projects light onto the object OB. Conversion element S to light '1
One end of A, SB is an analog gate AGI, BG
A
It is connected to the inverting inputs of operational amplifiers MA, MB with high input impedance via C3 and BO2. Also,
The other end of each is connected to the inverting inputs VC of the amplifiers MA and MB via analog terminals AC3 and BO2, and is grounded via analog terminals AC3 and BO3. The non-inverting inputs of operational amplifiers MA and MB are grounded. Capacitor CA, C
B is provided in the negative feedback path of operational amplifiers MA and MB. AC3, BO2 are capacitors〇A, C
An analog gate provided in parallel with B and a signal φ.

によってオンされる。RAI 、 RBIは抵抗筒が共
にRの抵抗で、両者の接続点には+(xA +JR)が
出力される。を次、抵抗RA2 、 RA3 、 RB
2 。
is turned on by Both RAI and RBI have resistor tubes of R, and +(xA +JR) is output at the connection point between them. Next, resistors RA2, RA3, RB
2.

RB3並びに演算増幅器BPは差動増幅回路を構成し、
その出力には(Σへ−ΣB)が生じる。
RB3 and operational amplifier BP constitute a differential amplifier circuit,
(Σto-ΣB) occurs at its output.

O20はクロックパルスを発生する発振器、DIVはそ
のクロックパルスを分周する分周器、RFIは分周器D
IVの出力がT入力に接続され九R8Tフリップ7四ッ
グ、DFi ハコンパレータCP  の出力をラッチす
る几めのD型7リツプフロツプ、IN1〜IN4はイン
バータ、ONl〜ON4は入力パルスの立上りに同期し
たワンショット回路、ORはオアゲート、AN1〜AN
2はアンドゲート、RClはプルアップ抵抗であり、こ
れらの回路により制御パルスφC、φIR2φ8 。
O20 is an oscillator that generates clock pulses, DIV is a frequency divider that divides the clock pulse, and RFI is a frequency divider D.
The output of IV is connected to the T input, and DFi is a D-type 7 flip-flop that latches the output of the comparator CP.IN1 to IN4 are inverters, and ON1 to ON4 are synchronized with the rising edge of the input pulse. One-shot circuit, OR gate, AN1 to AN
2 is an AND gate, RCl is a pull-up resistor, and these circuits generate control pulses φC, φIR2φ8.

φえ及びサンプルホールド回路SHI 、 5)I2 
を制御する。撮影レンズ制御回路CKTはサンプルホー
ルド回路SHI 、 SR2の出力に基づいて撮影レン
ズを周知の方法で制御するようになっている0次にこの
原理を利用し九本実施列の動作を第5図を用いて説明す
る。第5図は各信号φIR’φ。、φ□、φ8 の関係
及び第4図の主要部のタイミングチャートである。
φE and sample hold circuit SHI, 5) I2
control. The photographic lens control circuit CKT controls the photographic lens in a well-known manner based on the outputs of the sample and hold circuits SHI and SR2.Using this principle, the operation of the nine-lens array is shown in FIG. I will explain using FIG. 5 shows each signal φIR'φ. , φ□, and φ8, and a timing chart of the main parts of FIG. 4.

同図より明らかのように、φ8は有効積分区間ではクロ
ックパルスφIRと同一波形であり、φA はそれを反
転し友ものとなっている。即ち、φAがハイレベルでl
ればφBはロウレベル、φA がロウレベルであればφ
Bはハイレベルである。
As is clear from the figure, φ8 has the same waveform as the clock pulse φIR in the effective integration period, and φA has the same waveform as the clock pulse φIR. That is, when φA is at a high level, l
If φB is low level, and if φA is low level, φ
B is a high level.

第5図において時刻t。で第4図に示す常開型の焦点検
出スイッチSWIがオンすると、時刻tエ で分周器D
Ivの立上りパ、ルスに同期して、R8Tフリップ7q
ツブRFIがセットされるので、ワンシヲツ) 回m 
ONIからワンショットパルスが発生し、コンデンサー
CA  、 CBがアナログゲートAG5 、 BO2
を介してリセットされる。この後、時刻t0 とI3の
中間でらる時刻t2でONlの低レベル側への反転と同
時にφCがロクレベル側に反転すると、アナログゲート
AGE。
In FIG. 5, time t. When the normally open focus detection switch SWI shown in FIG. 4 is turned on, the frequency divider D is turned on at time t.
In synchronization with the rising edge of Iv, R8T flip 7q
The Tsubu RFI is set, so it's one-shot) times m
A one-shot pulse is generated from ONI, and capacitors CA and CB are connected to analog gates AG5 and BO2.
is reset via . After that, at time t2, which is between time t0 and I3, when φC is inverted to the low level side at the same time as ON1 is inverted to the low level side, the analog gate AGE is activated.

BO2がオフするので、コンデンサーCA 、  CB
は光電変換素子SA 、 SBで生ずる光電流の積分を
開始する。
Since BO2 is turned off, capacitors CA and CB
starts integrating the photocurrent generated in the photoelectric conversion elements SA and SB.

R刻tz〜t3の間はφIRがハイレペルニ反転してい
るので、発光素子LDは点灯し、光電変換素子SA 、
 SRには投光による物体からの反射光と周囲光が入射
する。この時には、 φ。
Between R time tz and t3, φIR is inverted, so the light emitting element LD lights up and the photoelectric conversion element SA,
Reflected light from an object due to light projection and ambient light enter the SR. At this time, φ.

がハイレベルとなり AC3、AC4、BO2、BO2
がオンして対応する光電流i(A+A0)、(B+B、
 )  がコンデンサーCA  、  CB K、積分
される。
becomes high level AC3, AC4, BO2, BO2
turns on and the corresponding photocurrents i(A+A0), (B+B,
) is integrated by capacitors CA and CB K.

時刻t  −I4の間はφIRがロウレベルでろるので
、発光素子LD a消灯しておシ、周辺光のみが光電変
換素子SA 、  SRK入射している。
During time t-I4, φIR remains at a low level, so the light emitting element LDa is turned off and only ambient light enters the photoelectric conversion elements SA and SRK.

まtlこの間はφAがハイレベルであるので、アナログ
ゲー) AGI 、 AC2、BGI 、 13G2が
オンして、対応する光電流ta A、  l  Boが
コンデンサーCA  、 CBに4六分される。
During this time, since φA is at a high level, the analog games AGI, AC2, BGI, and 13G2 are turned on, and the corresponding photocurrents taA and lBo are divided into four and six parts by the capacitors CA and CB.

従って、時刻t4では、t2〜t3の間に積分され次光
電流量(A+A0)、(B+B0)と1 −1  ノ間
に積分サレ九光′rtlj’ls iIA、Bo   
、34                      
       。
Therefore, at time t4, the following photocurrents are integrated between t2 and t3 and are integrated between the photocurrent amounts (A+A0) and (B+B0) and 1 -1.
, 34
.

の差、即ち、投光によって生じ九反射光が光電変換素子
SA 、 8Bに入射した割合に応じ尺光!流量A、B
がコンデンサーCA 、 CBにそれぞれ保持される。
That is, the difference in light intensity depends on the ratio of reflected light generated by light projection and incident on the photoelectric conversion elements SA and 8B. Flow rate A, B
are held in capacitors CA and CB, respectively.

次に時刻t  ”” tsの間には非投光時の光電変換
素子から生ずる信号を積分し、時刻t5〜t6  の間
に投光時の光電変換素子からの信号を逆方向に積分する
事により周囲光の変動による誤差を極力抑える事が出来
る。
Next, during time t "" ts, the signal generated from the photoelectric conversion element when not emitting light is integrated, and between time t5 and t6, the signal from the photoelectric conversion element when emitting light is integrated in the opposite direction. This makes it possible to minimize errors caused by fluctuations in ambient light.

φIRに応じて発光素子LDの消灯、点灯を周期的に繰
シ返せば、真の投光信号即ち、光電流ff1AtBo)
総和jA  、 AB yyhtciHす7 A/ j
イムで演算増幅器MA  、 MBのそれぞれの出力端
に生じる。− 真の投光信号の総和ΣA 、ΣBの和(ΣA十ΣB) 
が、例えば、時刻t8で基準レベルニ達し九とすると、
コンパレータCPが高レベル儒に反転するので、フリッ
プフロップDPIのQ端子が高レベル側に反転し、ワン
ショットON2 。
If the light-emitting element LD is periodically turned off and on in accordance with φIR, a true light emitting signal, that is, a photocurrent ff1AtBo)
Total jA, AB yyhtciHsu7 A/j
is generated at the respective output terminals of operational amplifiers MA and MB. − The sum of the true light emission signals ΣA and ΣB (ΣA + ΣB)
For example, if it reaches the reference level at time t8 and is 9, then
Since the comparator CP is inverted to the high level, the Q terminal of the flip-flop DPI is inverted to the high level side, and the one-shot ON2 is activated.

OH2がワンショットパルスを発生し、インバーターN
2 、 IN3 、アントゲ−) ANI 、 ANZ
を介してφ 、φAを低レベルにし、新比な信号の取り 込みを停止する。
OH2 generates a one-shot pulse and inverter N
2, IN3, Antogame) ANI, ANZ
φ and φA are set to a low level via the input signal, and the acquisition of new signals is stopped.

時刻1 −19の間で演算増幅器BPからの差出力匝(
ΣA−ΣB)f:用いて対物レンズの焦点状態を判別し
て対物レンズを合焦方向に移動する。なお、このような
制御、即ち、出力和(ΣA+ΣB)が一定となつ几時の
出力差(ΣA−ΣB)から焦点状態を検出する制御は、
例えば、特開昭57−175904号公報で周知表ので
、その詳細な説明は省略する。
Between times 1 and 19, the differential output from the operational amplifier BP (
ΣA-ΣB) f: is used to determine the focal state of the objective lens and move the objective lens in the focusing direction. Note that such control, that is, control that detects the focus state from the output difference (ΣA - ΣB) when the output sum (ΣA + ΣB) is constant, is as follows:
For example, it is well known in Japanese Patent Application Laid-Open No. 57-175904, so a detailed explanation thereof will be omitted.

時刻1 −16の間ワンショット回路ON4がワンショ
ットパルスを発生するのでφcをハイレベルに反転させ
、アナロググー) AC3、BGSをオンしてコンデン
サーCA  、  CBをクリアし几後、時刻t6から
次の焦点検出を開始する。
Since the one-shot circuit ON4 generates a one-shot pulse between times 1 and 16, φc is inverted to high level and the analog signal is turned on (AC3 and BGS are turned on to clear the capacitors CA and CB. After that, the next pulse starts from time t6. Starts focus detection.

なお時刻t。−1工。の総和の和(Σλ+ΣB)と総和
の差(Σへ−ΣB)に基づいて、判別情報は、次の焦点
判別情報が得られるまでサンプルホールド回路SHI 
、 SB2で保持される。
Note that time t. -1 construction. Based on the sum of the sums (Σλ + ΣB) and the difference between the sums (Σ - ΣB), the discrimination information is stored in the sample and hold circuit SHI until the next focus discrimination information is obtained.
, held in SB2.

以上のように本発明によれば周囲光量が時間と共に変動
しても物体からの反射光による投光信号を精度良く検出
することのできる投光信号検出装置を達成することがで
きる。
As described above, according to the present invention, it is possible to achieve a light projection signal detection device that can accurately detect a light projection signal based on reflected light from an object even if the amount of ambient light changes over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の投光信号検出装置における投光信号検出
の概略図、第2図は本発明の投光信号検出装置の原理を
示す説明図、第3、第4、第5図は本発明をカメラ等の
焦点検出装置に適用した場合の一実施例の説明図である
。 図中CFI 、 CF2は制御パルス、PAN 、 P
A2 。 PBi 、 PCI 、 PD2は各々時間と共に変動
する周囲光量、SA 、 SBは光電変換素子、SPは
反射光のスポラ)、A、Bは各々投光時の光電変換素子
SA  、  SRからの出力量、A  、B  はO
O 各々非投光時の光電変換素子SA 、 SBからの出力
量である。 第1図 箋 3 図(C) ZバーΣB 位置
Fig. 1 is a schematic diagram of light emitting signal detection in a conventional light emitting signal detecting device, Fig. 2 is an explanatory diagram showing the principle of the light emitting signal detecting device of the present invention, and Figs. FIG. 2 is an explanatory diagram of an embodiment in which the invention is applied to a focus detection device such as a camera. In the figure, CFI and CF2 are control pulses, PAN and P
A2. PBi, PCI, PD2 are the amount of ambient light that changes with time, SA, SB are the photoelectric conversion elements, SP is the spora of reflected light), A, B are the output amounts from the photoelectric conversion elements SA, SR, respectively, when emitting light, A and B are O
O is the output amount from the photoelectric conversion elements SA and SB when no light is emitted. 1st note 3 Figure (C) Z bar ΣB position

Claims (2)

【特許請求の範囲】[Claims] (1)物体側へ投光する為の投光手段と前記投光手段の
投光と非投光を周期的に繰り返して行なわしめる投光制
御手段と物体側からの反射光を受光し投光信号と非投光
信号を発生させる受光手段と前記投光制御手段に同期し
て前記受光手段で発生した投光、非投光信号を積分する
積分手段とを有する投光信号検出装置において前記投光
制御手段により前記投光手段の投光−非投光周期と非投
光−投光周期を交互に動作させたことを特徴とする投光
信号検出装置。
(1) A light projection means for projecting light to the object side; a light projection control means for periodically repeatedly emitting and non-emitting light from the light projection means; and a light projection control means for receiving reflected light from the object side and projecting light. In the light emitting signal detection device, the light emitting signal detection device includes a light receiving means for generating a light emitting signal and a light emitting non-emitting signal, and an integrating means for integrating the light emitting and light emitting signals generated by the light receiving means in synchronization with the light emitting control means. A light projection signal detection device characterized in that a light control means alternately operates a light projection-non-light projection period and a non-light projection-light projection period of the light projection means.
(2)前記積分手段は投光信号と非投光信号を逆極性に
積分し、前記積分手段からの出力に基づいて真の投光信
号の検出を行つたことを特徴とする特許請求の範囲第1
項記載の投光信号検出装置。
(2) The scope of the claim characterized in that the integrating means integrates the light emitting signal and the non-light emitting signal with opposite polarities, and detects the true light emitting signal based on the output from the integrating means. 1st
The light emitting signal detection device described in .
JP16105084A 1984-07-20 1984-07-31 Detector for light projection signal Pending JPS6138584A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16105084A JPS6138584A (en) 1984-07-31 1984-07-31 Detector for light projection signal
US06/757,137 US4678323A (en) 1984-07-20 1985-07-19 Distance measuring devices and light integrators therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16105084A JPS6138584A (en) 1984-07-31 1984-07-31 Detector for light projection signal

Publications (1)

Publication Number Publication Date
JPS6138584A true JPS6138584A (en) 1986-02-24

Family

ID=15727650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16105084A Pending JPS6138584A (en) 1984-07-20 1984-07-31 Detector for light projection signal

Country Status (1)

Country Link
JP (1) JPS6138584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435518A (en) * 1987-07-31 1989-02-06 Fuji Photo Optical Co Ltd Rangefinding device for camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435518A (en) * 1987-07-31 1989-02-06 Fuji Photo Optical Co Ltd Rangefinding device for camera

Similar Documents

Publication Publication Date Title
US4534636A (en) Automatic focusing device for camera
US4621292A (en) Automatic focusing device for a video camera
JPH027A (en) Range-finding device for camera
JPH0140292B2 (en)
JPH0380290B2 (en)
US4697904A (en) Automatic focusing system
JPS6138584A (en) Detector for light projection signal
US4723073A (en) Light emission quantity control device for focus detection
JPH0313565B2 (en)
JPH0320730B2 (en)
JPS6251442B2 (en)
JPS60176009A (en) Autofocusing camera
JPS5990012A (en) Distance measuring device
JPS5834411A (en) Range finder for camera
JPS60105270A (en) Method of controlling differential type sensor
JP3238499B2 (en) Distance measuring device
US4586806A (en) Camera range finder
JPS61240109A (en) Range finding device
RU2010228C1 (en) Optoelectronic meter of speed of object movement
JPS60259907A (en) Distance detector with deviation detecting function
JPS59193308A (en) Distance detection system using differential type sensor
JPH06347262A (en) Distance-measuring device of camera
JPH0467606B2 (en)
JPH0778573B2 (en) Signal forming device
JPS61140909A (en) Automatic focus detector