JPS6138369A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6138369A
JPS6138369A JP15870884A JP15870884A JPS6138369A JP S6138369 A JPS6138369 A JP S6138369A JP 15870884 A JP15870884 A JP 15870884A JP 15870884 A JP15870884 A JP 15870884A JP S6138369 A JPS6138369 A JP S6138369A
Authority
JP
Japan
Prior art keywords
opening area
valve
lift
valve opening
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15870884A
Other languages
Japanese (ja)
Inventor
研作 小国
晃 渥美
政克 林
浅井 節郎
五月女 要
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15870884A priority Critical patent/JPS6138369A/en
Publication of JPS6138369A publication Critical patent/JPS6138369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野) 本発明は、冷凍機や空調機の冷凍装置の冷媒制御に係り
、冷凍サイクルの安定性、連応性向上に好適な冷媒制御
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to refrigerant control in a refrigeration device of a refrigerator or an air conditioner, and more particularly, to refrigerant control suitable for improving the stability and coordination of a refrigeration cycle.

〔発明の背景〕[Background of the invention]

第5図に、従来の電動式膨脹弁を用いた冷凍サイクルを
示す。第5図において、1は圧縮機、2は凝縮器、3は
蒸発器、4は電動式膨脹弁、5は電動式膨脹弁の制御回
路、6は田縮機吸入冷媒湛度センサ、7は蒸発温度セン
サである。また第6図は弁リフトと電動式膨脹弁の開口
面積の関係を表わし、開口面積特性■が従来の電動式膨
脹弁の特性である。従来の電動式膨脹弁は、冷凍サイク
ルの定常状態における最大冷媒流量によって最大弁開口
面積が決定されていた。第5図を参照して従来の冷凍サ
イクルについて説明する。冷凍サイクルの定常状態では
、吸入冷媒温度センサ6及び蒸発温度センサ7によって
検出される温度をもとに塊算される冷媒過熱度が設定し
た冷媒過熱度になるよう制御回路5によって電動式膨脹
弁4の弁開度を制御する。
FIG. 5 shows a refrigeration cycle using a conventional electric expansion valve. In FIG. 5, 1 is a compressor, 2 is a condenser, 3 is an evaporator, 4 is an electric expansion valve, 5 is a control circuit for the electric expansion valve, 6 is a compressor suction refrigerant filling sensor, and 7 is an electric expansion valve. It is an evaporation temperature sensor. Further, FIG. 6 shows the relationship between the valve lift and the opening area of the electric expansion valve, and the opening area characteristic (2) is the characteristic of the conventional electric expansion valve. In conventional electric expansion valves, the maximum valve opening area was determined by the maximum refrigerant flow rate in the steady state of the refrigeration cycle. A conventional refrigeration cycle will be explained with reference to FIG. In the steady state of the refrigeration cycle, the electric expansion valve is operated by the control circuit 5 so that the refrigerant superheat degree calculated based on the temperatures detected by the suction refrigerant temperature sensor 6 and the evaporation temperature sensor 7 becomes the set refrigerant superheat degree. Controls the valve opening degree of 4.

さらに、圧縮機の始動後の過渡状態では、弁リフトを最
大、すなわち弁開口面積を最大とするように制(財)す
る。この過渡状態で弁開口面積を最大とするのは、始動
後に吸入圧力が異常に低下するのを防止するためである
Furthermore, in a transient state after the compressor is started, the valve lift is controlled to be maximum, that is, the valve opening area is maximized. The reason why the valve opening area is maximized in this transient state is to prevent the suction pressure from decreasing abnormally after startup.

第7図は、始動後の弁開口面積のパターンと吸入圧力の
時間的変化を表わし、破線が弁開口面積特性■を用いた
場合の特性を示す。
FIG. 7 shows the pattern of the valve opening area and the temporal change in suction pressure after startup, and the broken line shows the characteristic when the valve opening area characteristic (2) is used.

従来は電動式膨脹弁の容量すなわち最大弁開口面積が定
常状態を基準にして選定されていたために、始動後弁開
口面積を最大にしても吸入圧力低下防止には効果的では
なかった。たソ、定常状態では安定したサイクルを得る
ことができる。
Conventionally, the capacity of the electric expansion valve, that is, the maximum valve opening area, was selected based on a steady state, so even if the valve opening area was maximized after startup, it was not effective in preventing a drop in suction pressure. However, a stable cycle can be obtained in steady state.

この始動後の吸入圧力の低下を防止するには、第6図の
■特性の如く最大リフト時の弁開口面積が大きい電動式
膨脹弁を用いればよい。しかし、第6図に示される■特
性をもつ電動式膨脹弁では、弁リフト変化に対する弁開
口面積の変化割合が大きく、したがって、わずかな弁リ
フトの変化に対しても冷媒itが大きく変化する。
In order to prevent this drop in suction pressure after startup, an electrically operated expansion valve having a large valve opening area at maximum lift, as shown in characteristic (2) in FIG. 6, may be used. However, in the electric expansion valve having the characteristic (2) shown in FIG. 6, the rate of change in the valve opening area with respect to a change in valve lift is large, and therefore, the refrigerant it changes significantly even with a slight change in valve lift.

第7図には弁開口面積%性■の電動式膨脹弁を用いた場
合の弁開口面積の制御の例と、始動後の吸入圧力の時間
的変化が一点鎖線で示されている。第7図に示される如
く、弁開口面積特性■の電動式膨脹弁を用いると、始動
後の吸入圧力の低下が防止される。しかし、定常状態で
は、弁開口面積変化/弁リフト変化が大きいため、冷凍
サイクルが不安定になりやすい。
FIG. 7 shows an example of control of the valve opening area when using an electric expansion valve with a valve opening area % ratio of (2), and the temporal change in suction pressure after startup is shown by a dashed-dotted line. As shown in FIG. 7, when an electric expansion valve having a valve opening area characteristic (3) is used, a drop in suction pressure after startup is prevented. However, in a steady state, the change in valve opening area/change in valve lift is large, so the refrigeration cycle tends to become unstable.

即ち、冷凍サイクルの過渡状態における連応性を改善す
る(では、電動膨脹弁の容t’を大きくすれば良いが、
定常状態では冷凍サイクルの圧力、渦度がハンチングす
るという問題点があった。
In other words, the coordination in the transient state of the refrigeration cycle is improved (the capacity t' of the electric expansion valve may be increased, but
In a steady state, there was a problem in that the pressure and vorticity of the refrigeration cycle were hunting.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みて発明されたもので、定常状
態で安定した冷凍サイクルとする冷媒制御が可能であり
、始動や除霜などの冷凍サイクルの過渡状態での冷凍サ
イクルの連応性が改善できる冷媒制御法を提供すること
を目的とする。
The present invention was invented in view of the above-mentioned problems, and it is possible to control the refrigerant to make the refrigeration cycle stable in a steady state, and to improve the continuity of the refrigeration cycle during transient states of the refrigeration cycle such as startup and defrosting. The purpose is to provide an improved refrigerant control method.

〔発明の概要) 上記目的を達成するため、本発明は、圧縮機、凝縮器、
電動式膨脹弁、蒸発器を順次配管接続して冷媒回路を形
成すると共に、上記膨脹弁は、設定リフトまでは、弁開
口面積変化/リフト変化、が小びく、上記設定リフト以
上では、弁開口面積変化/リフト変化、が大きく形成し
、冷媒回路の蓋常状態では、上記弁開口面積変化が小さ
い範囲で膨脹弁の開口面積を制御し、時動時及び除霜時
には、上記弁開口面積変化が大きい範囲で膨脹弁の開口
面積を制御する膨脹弁を備えたことを特徴を有する。
[Summary of the Invention] In order to achieve the above object, the present invention provides a compressor, a condenser,
An electric expansion valve and an evaporator are sequentially connected via piping to form a refrigerant circuit, and the above expansion valve has a small valve opening area change/lift change up to a set lift, and above the above set lift, the valve opening changes. The area change/lift change is large, and in the normal state of the refrigerant circuit, the opening area of the expansion valve is controlled within a range where the above valve opening area change is small, and during operation and defrosting, the above valve opening area change is The invention is characterized in that it includes an expansion valve that controls the opening area of the expansion valve over a large range.

以下、本発明の一実施例を説明する。第1図に本発明に
よる電動膨脹弁の弁リフトと弁開口面積の関係を示す。
An embodiment of the present invention will be described below. FIG. 1 shows the relationship between the valve lift and the valve opening area of the electric expansion valve according to the present invention.

第1図に示されるように本発明による電動膨脹弁は弁リ
フトがQ−LMまでは、弁リフト変化に対する弁開口面
積変化が小さく、弁リフトがLMから1.0の間は、弁
リフト変化に対する弁開口面積変化が大きい特性を有す
るっ第2図は、第1図の@件を得六今めめ朧賜弁のニー
ドル形状の一例を表わす。第2図において、11はニー
ドル、12はオリフィスである。ニードル11は先端部
でその径が急激に小さくなるような形状に形成されてい
る。またニードル11は図示を省略されているパルスモ
ータあるいは電磁石などの駆動装置により上下に動かさ
れる。第2図において、実線で示されるニードル位置は
全閉状態を示し、破線が第1図の弁リフト−の状態を示
す。第2図で破線で示される状態までは、ニードル11
が上方に動くとともに弁開口面積は、第1図の如く徐々
に大きくなり、破線位置より上方では、ニードル11の
上昇とともに、弁開口面績は急激に大きくなる。
As shown in FIG. 1, the electric expansion valve according to the present invention has a small change in valve opening area with respect to a change in valve lift when the valve lift is up to Q-LM, and when the valve lift is from LM to 1.0, the change in valve opening area is small. FIG. 2 shows an example of the needle shape of the Rokuma Meme Oboro valve, which has the characteristic of having a large change in the valve opening area with respect to the valve opening area. In FIG. 2, 11 is a needle and 12 is an orifice. The needle 11 is formed in such a shape that its diameter rapidly decreases at the tip. Further, the needle 11 is moved up and down by a drive device such as a pulse motor or an electromagnet (not shown). In FIG. 2, the needle position indicated by a solid line indicates the fully closed state, and the broken line indicates the valve lift state shown in FIG. Until the state shown by the broken line in FIG. 2, the needle 11
As the needle 11 moves upward, the valve opening area gradually increases as shown in FIG. 1, and above the broken line position, as the needle 11 rises, the valve opening area increases rapidly.

一例として第2図の如く形状を説明したが、第1図の特
性を得るニードル形状は第2図の形状以外にも可能であ
る。
Although the shape shown in FIG. 2 has been described as an example, the shape of the needle other than the shape shown in FIG. 2 is also possible to obtain the characteristics shown in FIG.

以下、本発明の膨脹弁制御方式を説明する。The expansion valve control method of the present invention will be explained below.

第1図に示す特性を有する膨脹弁を使用することにより
、始動時には、弁リフ)LM〜1.0の範囲で弁り7ト
の制御を行うことにより、吸入圧力の低下を防止するこ
とができ、また、定常状態では、弁開口面積変化/弁リ
フトが小さいために冷凍サイクルを安定にすることが可
能である。
By using an expansion valve having the characteristics shown in Fig. 1, it is possible to prevent a drop in suction pressure by controlling the valve lift in the range of LM to 1.0 at startup. Furthermore, in a steady state, the change in valve opening area/valve lift is small, making it possible to stabilize the refrigeration cycle.

第3図は、第1図に示す弁開口面積%性を有する電動膨
脹弁を用いた場合の弁開口面積の制御パターンと吸入圧
力の時間的変化を示したもので、始動後予め定められた
時間内では、弁リフトを第1図のLM〜1.0の範囲で
一定とし、ある時間経過後は、定常状態の制御、例えば
、従来例で述べた過熱度制御に移行される。従って始動
後の吸入圧力の低下を防止でき、冷凍サイクルの連応性
が大幅に改善され、また定常状態で過熱度制御を行う場
合は安定した冷凍サイクルを得ることができる次に、第
1図において、最大弁開口面積AMAxと定常状態で必
要とする弁開口面積Aθとの比率は、2〜4倍とすれば
、過渡状態の連応性改善に効果的であることが実証され
ている。
Figure 3 shows the control pattern of the valve opening area and the temporal change in suction pressure when an electric expansion valve having the valve opening area percentage shown in Figure 1 is used. During this period, the valve lift is kept constant within the range of LM to 1.0 in FIG. 1, and after a certain period of time, control is shifted to steady state control, for example, superheat degree control as described in the conventional example. Therefore, it is possible to prevent the suction pressure from decreasing after startup, greatly improving the compatibility of the refrigeration cycle, and when controlling the degree of superheating in a steady state, a stable refrigeration cycle can be obtained.Next, in Fig. 1, It has been proven that setting the ratio of the maximum valve opening area AMAx to the valve opening area Aθ required in the steady state by 2 to 4 times is effective in improving the coordination in the transient state.

次に第4図は、弁開口面積の制御パターンに関する他の
実施例である。第4図は、始動後弁全開の状態から、弁
リフ)LMから1.0の範囲で、時間的に予め定められ
たパターンにより弁開口面積を変化させるもので、定常
状態の制御に移行する場合に弁開口面積の変化が少なく
、冷凍サイクルを速やかに定常状態とすることができる
Next, FIG. 4 shows another embodiment regarding the control pattern of the valve opening area. Figure 4 shows a system in which the valve opening area is changed according to a temporally predetermined pattern in the range of 1.0 from the valve lift (valve lift) LM from the state where the valve is fully open after startup, and the control is shifted to a steady state. In this case, there is little change in the valve opening area, and the refrigeration cycle can be quickly brought to a steady state.

以上始動時の制御方式を説明したが、暖房期間の除霜運
転でも、弁リフ)LM−1,0の範囲で弁開度制御を行
うことにより、除霜開始直後の吸入圧力低下を防止でき
、この膨脹弁制御方式は除霜時間の短縮に特に有効であ
る。
The control method at startup has been explained above, but even in defrosting operation during the heating period, by controlling the valve opening in the range of LM-1,0 (valve lift), it is possible to prevent a drop in suction pressure immediately after the start of defrosting. , this expansion valve control method is particularly effective in shortening defrosting time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、始動時や除霜時
の冷凍サイクルの連応性を改善することができ、省電力
化が可能であわ、また冷暖房可能なヒートポンプに通用
することにより、冷房、暖房の始動時の快適性が大幅に
改善される。
As explained above, according to the present invention, it is possible to improve the coordination of the refrigeration cycle at the time of startup and defrosting, it is possible to save power, and by being applicable to heat pumps capable of cooling and heating, Comfort when starting air conditioning or heating is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電動式膨脹弁の弁リフ
トと弁開口面積の関係を示す線図、第2図は膨脹弁のニ
ードルの形状を示す説明図、第8図及び第4図は夫々本
発明の実施例の電動膨脹弁を用いた冷凍サイクルの始動
特性線図を示す。第5図は従来の電動式膨脹弁を用いた
一般的な冷凍サイクルの構成図、第6図は従来の電動式
膨脹弁の弁リフトと弁開口面積との関係を示す線図、第
7図は、従来の電動式膨脹弁を用いたサイクルの始動後
の特性を示す線図である。 l・・・圧縮機 2.・・・凝縮器 8・・・蒸発器 
4・・・電動式膨脹弁 11・・・ニードル 12・・
・オリフィス代献 弁理士 高 橋 明 夫
FIG. 1 is a diagram showing the relationship between valve lift and valve opening area of an electric expansion valve according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the shape of the needle of the expansion valve, and FIGS. FIG. 4 shows starting characteristic diagrams of refrigeration cycles using electric expansion valves according to embodiments of the present invention. Figure 5 is a configuration diagram of a general refrigeration cycle using a conventional electric expansion valve, Figure 6 is a diagram showing the relationship between valve lift and valve opening area of a conventional electric expansion valve, and Figure 7. 1 is a diagram showing the characteristics after the start of a cycle using a conventional electric expansion valve. l...Compressor 2. ...Condenser 8...Evaporator
4...Electric expansion valve 11...Needle 12...
・Orifice Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、圧縮機、凝縮器、電動式膨脹弁、蒸発器を順次配管
接続して冷凍サイクルを形成すると共に、上記膨脹弁は
、設定リフトまでは、弁開口面積変化/リフト変化、が
小さく、上記設定リフト以上では、弁開口面積変化/リ
フト変化、を大きく形成し、冷凍サイクルの定常状態で
は、上記弁開口面積変化が小さい範囲で膨脹弁の開口面
積を制御し、始動時及び除霜時には、上記弁開口面積変
化が大きい範囲で膨脹弁の開口面積を制御することを特
徴とする冷凍装置。 2、始動時及び除霜には、予め時間に対して設定された
制御パターンにより弁リフトを制御する特許請求の範囲
第1項記載の冷凍装置。 3、電動式膨脹弁の最大弁開口面積を、弁リフトと弁開
口面積の関係が変化する弁リフト時の弁開口面積の2〜
4倍とした特許請求の範囲第1項記載の冷凍装置。
[Claims] 1. A compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected via piping to form a refrigeration cycle, and the expansion valve has a valve opening area change/lift up to a set lift. The change is small, and above the above set lift, the valve opening area change/lift change is large, and in the steady state of the refrigeration cycle, the opening area of the expansion valve is controlled within the range where the above valve opening area change is small, and the start A refrigeration system characterized in that the opening area of the expansion valve is controlled within a range in which the change in the valve opening area is large during cooling and defrosting. 2. The refrigeration system according to claim 1, wherein the valve lift is controlled according to a control pattern set in advance for time during startup and defrosting. 3. The maximum valve opening area of the electric expansion valve is set to 2 to 2 of the valve opening area at the time of valve lift, where the relationship between valve lift and valve opening area changes.
The refrigeration device according to claim 1, which is quadrupled.
JP15870884A 1984-07-31 1984-07-31 Refrigerator Pending JPS6138369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15870884A JPS6138369A (en) 1984-07-31 1984-07-31 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15870884A JPS6138369A (en) 1984-07-31 1984-07-31 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6138369A true JPS6138369A (en) 1986-02-24

Family

ID=15677615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15870884A Pending JPS6138369A (en) 1984-07-31 1984-07-31 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6138369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234842A (en) * 2013-06-28 2013-11-21 Mitsubishi Electric Corp Electronic expansion valve and air conditioner with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234842A (en) * 2013-06-28 2013-11-21 Mitsubishi Electric Corp Electronic expansion valve and air conditioner with the same

Similar Documents

Publication Publication Date Title
JPS60140075A (en) Method of controlling refrigeration cycle
JPS60245962A (en) Method of operating refrigeration system and control system of refrigeration system
JPS60245963A (en) Method of operating refrigeration system and control system of refrigeration system
JP3622817B2 (en) Control method of air conditioner
JPS6138369A (en) Refrigerator
JPH0333992B2 (en)
JPH0259377B2 (en)
JPH04174B2 (en)
JPS61101736A (en) Defrosting control device of air conditioner
JPS61276660A (en) Controller for capacity of air conditioner
JPS59191853A (en) Method of controlling refrigeration cycle
JPS62131158A (en) Method of controlling refrigeration cycle
JPS60114669A (en) Air conditioner
JPS61291868A (en) Control system of operation of refrigerator
JPH0518618A (en) Method of controlling operation of air conditioner
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
JPS611963A (en) Method of controlling refrigerant for heat pump type air conditioner
JP3303303B2 (en) Annual cooling control device for air conditioner
JPS61128068A (en) Defrostation control system of heat pump
JPS6192375A (en) Control device of electrically driven expansion valve in air conditioning machine
JPS59191854A (en) Method of controlling refrigeration cycle
JPS61262570A (en) Controller for refrigeration cycle
JPH0145029Y2 (en)
JPS60207858A (en) Method of controlling capacity of turbo-refrigerator
JPS63153376A (en) Air conditioner