JPS6138255B2 - - Google Patents

Info

Publication number
JPS6138255B2
JPS6138255B2 JP16635181A JP16635181A JPS6138255B2 JP S6138255 B2 JPS6138255 B2 JP S6138255B2 JP 16635181 A JP16635181 A JP 16635181A JP 16635181 A JP16635181 A JP 16635181A JP S6138255 B2 JPS6138255 B2 JP S6138255B2
Authority
JP
Japan
Prior art keywords
alloy
alloys
strength
present
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16635181A
Other languages
Japanese (ja)
Other versions
JPS57140850A (en
Inventor
Takuo Kusano
Noboru Sugyama
Yoshihiro Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKEI GIKEN KK
Original Assignee
NITSUKEI GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKEI GIKEN KK filed Critical NITSUKEI GIKEN KK
Priority to JP16635181A priority Critical patent/JPS57140850A/en
Publication of JPS57140850A publication Critical patent/JPS57140850A/en
Publication of JPS6138255B2 publication Critical patent/JPS6138255B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、軸受用アルミニウム合金に関するも
のである。 近年、アルミニウム合金製の軸受は、自動車、
船舶、航空機などに広く使用されている。これら
アルミニウム合金軸受は種々の形態で用いられて
いるが、就中鋼材裏金にバイメタルとし、必要に
応じてその表面にさらに鉛基合金を鍍金法などに
よつてオーバーレイしたものが使用されている。 このような目的に使用される軸受用のアルミニ
ウム合金の代表的なものとして、Al−Sn系合
金、Al−Si−Cd合金があるが、上記Al−Sn系合
金は、耐焼付性、耐摩耗性などの軸受性能はすぐ
れているのであるが、常温および高温における強
度が低く、このために高温荷重の使用に耐えられ
ない欠点があり、また、Al−Si−Cd系合金は、
Al−Sn系合金にみられる強度上の欠点は、可成
り改善されているが、有害なCdを含むためにそ
の製造上の問題があつた。 本発明者らは、この種軸受用アルミニウム合金
における上記の問題点の解決を図るべく種々研究
を重ねた結果、重量%にして3〜10%のZn、2
〜6%のSi、0.5〜1.0%のCuを含有するAl基合金
に、0.05〜0.6%のMn、0.05〜0.3%のCr、0.05〜
0.25のZrから選ばれた1種または2種以上の元素
を添加し含有させることによつて、常温および高
温における機械的強度高く、かつ、すぐれた耐摩
耗性を有する軸受用アルミニウム合金を得られる
ことを見出した。 すなわち、本発明は、重量%にてZn3〜10%、
Si2〜6%、Cu0.5〜1.0%を必須成分とし、さら
にMn0.05〜0.6%、Cr0.05〜0.3%、Zr0.05〜0.25
%から選ばれた1種または2種以上の成分を含
み、残部実質的にAlからなる軸受用アルミニウ
ム合金である。 以下、本発明の合金について、さらに具体的に
説明する。 本発明における各合金成分元素の添加理由につ
いて以下に述べる。 (1) Zn3〜10% Znは合金に軸受材として必要な強度と耐摩
耗性を与えるものであつて、含有量3%以下で
は強度付与の効果が少なく、また10%以上では
合金が応力腐食を起し易くなる。 (2) Si2〜6% Siは合金基質中に共晶として細かく均一に分
散し、耐摩耗性および強度を向上する。2%以
下ではその効果が少く、また6%以上では軸受
材としての合金が脆硬に過ぎ、また加工性を低
下させる。 (3) Cu0.5〜1.0% Cuは基質アルミニウム中に固溶して合金の
強度を高める。また耐摩耗性の向上にも寄与す
る。下限値0.5%以下では添加効果が少なく、
上限値1.0%以上となると耐食性が著しく劣化
する。 (4) Mn0.05〜0.6% Cr0.05〜0.3% Zr0.05〜0.25% Mn、Cr、Zrはいずれも上記Zn、Si、Cuを配
合したアルミニウム合金の再結晶防止効果を有
し、これによつて合金の高温強度が向上する。
各下限値以下の添加では、その効果が十分でな
く、また上限値以上過大に添加するときは、造
塊時に粗大な初晶を生じ易く、合金の脆化の原
因となるので好ましくない。 以上、本発明合金における各合金成分につい
て、その添加理由を述べたが、本発明合金におい
ては、上記各成分の組成範囲内で適宜その配合を
選ぶことによつて、軸受用途に応じた合金を得る
ことができる。 なお、本発明合金の鋳造に際して、この種の
Al合金の鋳造組織の微細化剤として広く用いら
れている0.01〜0.2%程度のTiを単独に、または
0.001〜0.05%程度のBと併用して添加すること
は、合金の常温強度の向上と加工性の改善に効果
があるので好ましいことである。 次に、本発明合金の実施例について述べる。 第1表は、本実施例に使用した合金の化学組成
である。
The present invention relates to an aluminum alloy for bearings. In recent years, aluminum alloy bearings have been used in automobiles,
Widely used in ships, aircraft, etc. These aluminum alloy bearings are used in various forms, but among them are bimetallic steel backing metals, and if necessary, a lead-based alloy is overlaid on the surface by plating or the like. Representative aluminum alloys for bearings used for such purposes include Al-Sn alloys and Al-Si-Cd alloys, but the Al-Sn alloys have excellent seizure resistance and wear resistance. Al-Si-Cd alloys have excellent bearing performance such as durability, but they have low strength at room and high temperatures, which makes them unable to withstand high-temperature loads.Al-Si-Cd alloys have
Although the strength defects seen in Al-Sn alloys have been considerably improved, there are problems in manufacturing them because they contain harmful Cd. The present inventors have conducted various studies to solve the above-mentioned problems with this type of aluminum alloy for bearings.
Al-based alloy containing ~6% Si, 0.5~1.0% Cu, 0.05~0.6% Mn, 0.05~0.3% Cr, 0.05~
By adding and containing one or more elements selected from 0.25 Zr, it is possible to obtain an aluminum alloy for bearings that has high mechanical strength at room and high temperatures and excellent wear resistance. I discovered that. That is, the present invention contains Zn3 to 10% by weight,
Essential components are Si2~6%, Cu0.5~1.0%, and additionally Mn0.05~0.6%, Cr0.05~0.3%, and Zr0.05~0.25.
This is an aluminum alloy for bearings, which contains one or more components selected from %, and the remainder substantially consists of Al. The alloy of the present invention will be explained in more detail below. The reason for adding each alloy component element in the present invention will be described below. (1) Zn3-10% Zn gives the alloy the strength and wear resistance necessary for bearing materials. If the content is less than 3%, the strength imparting effect is small, and if the content is more than 10%, the alloy will undergo stress corrosion. It becomes easier to wake up. (2) Si2~6% Si is finely and uniformly dispersed as a eutectic in the alloy matrix, improving wear resistance and strength. If it is less than 2%, the effect will be small, and if it is more than 6%, the alloy used as a bearing material will be too brittle and the workability will be reduced. (3) Cu0.5-1.0% Cu is dissolved in the aluminum substrate to increase the strength of the alloy. It also contributes to improving wear resistance. Below the lower limit of 0.5%, the effect of addition is small;
If the upper limit exceeds 1.0%, corrosion resistance will deteriorate significantly. (4) Mn0.05~0.6% Cr0.05~0.3% Zr0.05~0.25% Mn, Cr, and Zr all have the effect of preventing recrystallization of aluminum alloys containing the above Zn, Si, and Cu. This improves the high temperature strength of the alloy.
If added below each lower limit, the effect will not be sufficient, and if added in excess of the upper limit, coarse primary crystals will likely occur during agglomeration, which will cause embrittlement of the alloy, which is not preferable. The reason for the addition of each alloy component in the alloy of the present invention has been described above, but in the alloy of the present invention, by appropriately selecting the composition within the composition range of each component above, it is possible to create an alloy suitable for bearing applications. Obtainable. In addition, when casting the alloy of the present invention, this type of
Approximately 0.01 to 0.2% of Ti, which is widely used as a refiner for the casting structure of Al alloys, is used alone or
It is preferable to add B in combination with about 0.001 to 0.05% of B, since this is effective in improving the room-temperature strength and workability of the alloy. Next, examples of the alloy of the present invention will be described. Table 1 shows the chemical composition of the alloy used in this example.

【表】 第1表中実施番号1〜6は本発明合金、実施番
号7は比較合金、実施番号8および9は従来合金
である。 これら合金は金型鋳造によつてスラブに鋳造
し、この鋳塊を530℃×4hrの均質化処理を施して
450℃の温度で板厚6mmまで熱間圧延した後、さ
らに板厚1mmに冷間圧延し、300℃で熱処理して
o材としたものを常温および高温(100℃、150
℃、200℃および250℃)における機械的性質を測
定した。 また、合金の耐摩耗性および耐焼付性を調べる
ため鋼環・試験片線接触式のテイムケン試験を行
つた。それらの結果を以下に示す。 (1) 常温機械的性質
[Table] In Table 1, execution numbers 1 to 6 are alloys of the present invention, execution number 7 is a comparative alloy, and execution numbers 8 and 9 are conventional alloys. These alloys are cast into slabs by die casting, and the ingots are homogenized at 530°C for 4 hours.
After hot rolling to a plate thickness of 6 mm at a temperature of 450℃, the plate was further cold rolled to a plate thickness of 1 mm and heat treated at 300℃ to form an O material.
℃, 200℃ and 250℃). Additionally, in order to examine the wear resistance and seizure resistance of the alloy, a Teimken test using a steel ring/test piece wire contact method was conducted. The results are shown below. (1) Mechanical properties at room temperature

【表】 第2表は、常温における各合金の機械的性質
を測定した結果を示したものである。 第2表より本発明合金(実施番号1〜6)
は、従来合金(実施番号8および9)に較べて
常温における抗張力、耐力、硬度において、は
るかにすぐれ高荷重軸受材としてすぐれた性能
を有することが判る。 (2) 高温機械的性質
[Table] Table 2 shows the results of measuring the mechanical properties of each alloy at room temperature. From Table 2, the invention alloys (execution numbers 1 to 6)
It can be seen that these alloys are far superior in tensile strength, yield strength, and hardness at room temperature compared to the conventional alloys (Example Nos. 8 and 9), and have excellent performance as high-load bearing materials. (2) High temperature mechanical properties

【表】 第3表は、本発明合金(実施番号1〜6)と
比較合金(実施番号7)と従来合金(実施番号
8および9)について、100℃、150℃、200℃
の各温度における抗張力(σB)と伸び(δ)
について測定した結果である。 第3表より、本発明合金は比較合金に較べて
高温における機械的性質が改善されており、ま
た従来合金に較べて高温における抗張力、伸び
共にはるかにすぐれており、本発明合金が十分
高速高荷重運転に耐えるものであることが判
る。 (3) 耐摩耗耐焼付性
[Table] Table 3 shows the results of the present invention alloys (execution numbers 1 to 6), comparative alloys (execution numbers 7), and conventional alloys (execution numbers 8 and 9) at 100°C, 150°C, and 200°C.
Tensile strength (σB) and elongation (δ) at each temperature of
These are the results of measurements. Table 3 shows that the inventive alloy has improved mechanical properties at high temperatures compared to comparative alloys, and is far superior in both tensile strength and elongation at high temperatures compared to conventional alloys. It can be seen that it can withstand load operation. (3) Wear resistance and seizure resistance

【表】 第4表は、鋼環・試験片線接触方式のテイム
ケン試験機による耐摩耗性、耐焼付性試験結果
を示したものである。試験条件は、鋼環荷重
4.54Kgで試験片上に設置し、回転速度800r.p.m
(周速2.04m/min)で10分間廻転させ、そのと
きの試験片上に生じた摩耗度の面積を測定し
た。 第4表より本発明合金(実施番号1〜6)
は、従来合金(実施番号8および9)より摩耗
痕面積が少なく、耐摩耗性においても良好であ
ることが判る。 なお、同試験における瞬間最高温度は450℃に
達したが、いずれの試験片においても焼付を生ず
ることはなかつた。 以上に述べたように、本発明合金は、従来合金
に較べて常温高温いずれも機械強度においてまさ
り、また耐摩耗性、耐焼付性も良好であつて高速
高荷重軸受用アルミニウム合金としてすぐれた性
能を有することが判る。
[Table] Table 4 shows the results of wear resistance and seizure resistance tests using a Teimken tester of the steel ring/test piece line contact method. Test conditions are steel ring load
4.54Kg installed on the test piece, rotation speed 800r.pm
The specimen was rotated for 10 minutes at a circumferential speed of 2.04 m/min, and the area of the degree of wear produced on the specimen at that time was measured. From Table 4, the invention alloys (execution numbers 1 to 6)
It can be seen that these alloys have a smaller wear scar area and better wear resistance than the conventional alloys (Example Nos. 8 and 9). Although the instantaneous maximum temperature in this test reached 450°C, no seizure occurred in any of the test pieces. As mentioned above, the alloy of the present invention has superior mechanical strength at both room temperature and high temperature compared to conventional alloys, and also has good wear resistance and seizure resistance, and has excellent performance as an aluminum alloy for high-speed, high-load bearings. It turns out that it has.

Claims (1)

【特許請求の範囲】 1 重量%にてZn3〜10%、Si2〜6%、Cu0.5〜
1.0%を必須成分とし、さらにMn0.05〜0.6%、
Cr0.05〜0.3%、Zr0.05〜0.25%から選ばれた1種
または2種以上の成分を含み、残部実質的にAl
からなる軸受用アルミニウム合金。 2 重量%にてZn3〜10%、Si2〜6%、Cu0.5〜
1.0%、Ti0.01〜0.2%およびB0.001〜0.05%を必
須成分とし、さらにMn0.05〜0.6%、Cr0.05〜0.3
%、Zr0.05〜0.25%から選ばれた1種または2種
以上の成分を含み、残部実質的にAlからなる軸
受用アルミニウム合金。
[Claims] 1 Weight%: Zn3~10%, Si2~6%, Cu0.5~
1.0% is an essential component, and further Mn0.05-0.6%,
Contains one or more components selected from 0.05 to 0.3% Cr and 0.05 to 0.25% Zr, and the remainder is substantially Al.
An aluminum alloy for bearings made of 2 Weight% Zn3~10%, Si2~6%, Cu0.5~
1.0%, Ti0.01~0.2% and B0.001~0.05% as essential components, and further Mn0.05~0.6%, Cr0.05~0.3
%, Zr, 0.05 to 0.25%, and the remainder substantially consists of Al.
JP16635181A 1981-10-20 1981-10-20 Aluminum alloy for bearing Granted JPS57140850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16635181A JPS57140850A (en) 1981-10-20 1981-10-20 Aluminum alloy for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16635181A JPS57140850A (en) 1981-10-20 1981-10-20 Aluminum alloy for bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52147254A Division JPS6041142B2 (en) 1977-12-09 1977-12-09 Aluminum alloy for bearings

Publications (2)

Publication Number Publication Date
JPS57140850A JPS57140850A (en) 1982-08-31
JPS6138255B2 true JPS6138255B2 (en) 1986-08-28

Family

ID=15829762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16635181A Granted JPS57140850A (en) 1981-10-20 1981-10-20 Aluminum alloy for bearing

Country Status (1)

Country Link
JP (1) JPS57140850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261762U (en) * 1988-10-31 1990-05-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261762U (en) * 1988-10-31 1990-05-08

Also Published As

Publication number Publication date
JPS57140850A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
KR100600075B1 (en) Friction bearing having intermediate layer, notably binding layer, made of an alloy on aluminium basis
JPH0694037A (en) Multilayer slide bearing and bearing assembly
KR930011673B1 (en) Aluminium based bearing alloy with excellent fatigue resistance and anti-seizure property
JPS6320903B2 (en)
US3732083A (en) Composite article
KR940002689B1 (en) Bearing materials
JPS6263637A (en) Aluminum bearing alloy
US4153756A (en) Aluminum-base bearing alloy and composite
JP2761181B2 (en) Tin-based white metal bearing alloy with excellent heat and fatigue resistance
Seah et al. Corrosion characteristics of ZA-27-graphite particulate composites
JPS6041142B2 (en) Aluminum alloy for bearings
CA2398667C (en) Non-age-hardening aluminum alloy as a semifinished material for structures
JPS6031894B2 (en) High strength aluminum alloy for bearings
JPS6138255B2 (en)
JP5017521B2 (en) Bearing material
US5424138A (en) Copper-alloy slide bearing for low-rigidity housing and method for producing same
JPS5844140B2 (en) Composite sliding material
JPS6151620B2 (en)
US3031298A (en) Bearing alloys
US2375224A (en) Silver-thallium bearing
US3950164A (en) Aluminium-based alloy
JPS6143421B2 (en)
JPS58113342A (en) Bearing aluminum alloy
JPS6199648A (en) Plated alloy for overlaying
US5051316A (en) Overlay alloy or plain bearing