JPS6138204B2 - - Google Patents

Info

Publication number
JPS6138204B2
JPS6138204B2 JP10382878A JP10382878A JPS6138204B2 JP S6138204 B2 JPS6138204 B2 JP S6138204B2 JP 10382878 A JP10382878 A JP 10382878A JP 10382878 A JP10382878 A JP 10382878A JP S6138204 B2 JPS6138204 B2 JP S6138204B2
Authority
JP
Japan
Prior art keywords
cyclopentadiene
unsaturated
fraction
hydrocarbon
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10382878A
Other languages
Japanese (ja)
Other versions
JPS5531827A (en
Inventor
Shigeru Katayama
Mutsuhiro Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP10382878A priority Critical patent/JPS5531827A/en
Priority to GB7849855A priority patent/GB2012287B/en
Priority to NL7812514A priority patent/NL7812514A/en
Priority to US05/973,445 priority patent/US4230840A/en
Priority to FR7836306A priority patent/FR2412573A1/en
Priority to DE2856335A priority patent/DE2856335C2/en
Priority to CA000318616A priority patent/CA1134994A/en
Priority to IT31333/78A priority patent/IT1101749B/en
Publication of JPS5531827A publication Critical patent/JPS5531827A/en
Publication of JPS6138204B2 publication Critical patent/JPS6138204B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、色相ならびに耐熱安定性の改善され
た炭化水素樹脂の製造方法に関する。さらに詳し
くは、石油類の熱分解の際に得られる沸点範囲が
140ないし280℃の留分をα・β−不飽和カルボン
酸と接触処理した後に重合する方法に関する。 石油類の熱分解の際に得られる不飽和炭化水素
含有留分をフリーデルクラフツ型触媒で重合し、
炭化水素樹脂を製造する方法はよく知られてい
る。炭化水素樹脂には、主として沸点範囲が−20
ないし+100℃の不飽和炭化水素含有留分を重合
して得られる脂肪族系炭化水素樹脂と、主として
沸点範囲が140ないし280℃の不飽和炭化水素含有
留分を重合して得られる芳香族系炭化水素樹脂の
二種類がある。これらの炭化水素樹脂のうち、芳
香族系炭化水素樹脂は脂肪族系炭化水素樹脂にく
らべてとくに色相ならびに耐熱安定性が悪く、臭
気の面でも劣つている。そのためにホツトメルト
接着剤、感圧接着剤あるいは熱溶融型トラフイツ
クペイントなどのように、優れた色相、耐熱安定
性もしくは臭気の要求される用途には使用し難
い。 従来、炭化水素樹脂の製造方法において、石油
類の熱分解によつて得られるC5留分を含む不飽
和炭化水素含有留分から炭化水素樹脂の色相を悪
化させる成分として知られているシクロペンタジ
エンあるいはメチルシクロペンタジエンなどのよ
うなシクロペンタジエン類成分を重合前の前処理
によつて除去する方法として、特公昭34−5422号
公報には予備加熱処理でシクロペンタジエン類成
分を二量化することによつて除去する方法、およ
び特公昭43−21737号公報には常温で無水マレイ
ン酸と付加生成物を形成させて除去する方法がそ
れぞれ提案され、炭化水素樹脂の色相を向上させ
る方法として公知である。これらの方法のうち
で、前者の方法は、処理操作が煩雑であることの
他に、重合原料の不飽和炭化水素含有留分中の不
飽和炭化水素成分がシクロペンタジエン類成分と
の付加生成物として除去されるためにシクロペン
タジエン類成分以外の不飽和炭化水素成分の消失
が大きいこと、ならびにこの方法を脂肪族系不飽
和炭化水素含有留分の重合に適用した場合には、
ある程度の色相向上効果は認められるが、本発明
の方法で原料として用いるシクロペンタジエン類
をかなりの割合で含有する沸点範囲が140ないし
280℃の芳香族系不飽和炭化水素含有留分の重合
に、この方法を適用しても、色相、耐熱安定性な
らびに臭気の点で優れた炭化水素樹脂は得られな
い。また、後者の方法では、同公報に記載されて
いるように、原料の不飽和炭化水素含有留分とし
てシクロペンタジエン類成分を多量に含有する不
飽和炭化水素含有留分を使用するので、このシク
ロペンタジエン類成分と付加生成物を形成させる
ためには、無水マレイン酸を多量に使用しなけれ
ばならないこと、その結果多量の付加生成物を蒸
留除去しなければならないなどの煩雑な操作が必
要であることの他に、この方法では多量の無水マ
レイン酸を使用するために装置の腐食が起こり易
いことの他に、経済性にも劣つているという欠点
がある。また、後者の方法では、同公報の実施例
からも明らかなように、沸点範囲が20ないし100
℃の不飽和炭化水素含有留分から得られた脂肪族
系炭化水素樹脂および沸点範囲が100ないし200℃
の不飽和炭化水素含有留分から得られた芳香族系
炭化水素樹脂の色相(ガードナー)は、いずれも
それぞれ9ないし12および14ないし18と良好でな
く、とくに芳香族系不飽和炭化水素含有留分の重
合にこの方法を適用しても色相、とりわけ耐熱安
定性および臭気の点で優れた炭化水素樹脂は得ら
れないという欠点がある。さらに、後者の方法に
おいて、シクロペンタジエン類成分を多量に含む
原料の不飽和炭化水素含有留分を無水マレイン酸
で処理することによつて生成したシクロペンタジ
エン類と無水マレイン酸との付加生成物を蒸留等
により分離除去することなくそのまま重合して
も、色相、耐熱安定性ならびに臭気の点で優れた
炭化水素樹脂が得られない。 また、特公昭36−19287号公報には、石油類の
熱分解の際に得られる沸点範囲が20ないし280℃
の不飽和炭化水素含有留分と不飽和カルボン酸も
しくはその無水物を共重合することにより酸価お
よびケン価の高い炭化水素樹脂を製造する方法が
提案されており、その際得られる炭化水素樹脂の
色相が淡色であることが記載されている。しか
し、この方法のように、石油類の熱分解の際に得
られる沸点範囲が20ないし280℃の不飽和炭化水
素含有留分中のシクロペンタジエン類成分の含有
率を調整することなくそのままα・β−不飽和カ
ルボン酸もしくはその無水物の共存下に重合して
も、同公報の実施例の記載からも明らかなよう
に、得られた炭化水素樹脂は色相の点で充分に良
好であるとは言い難く、耐熱安定性ならびに臭気
の点でも優れた炭化水素樹脂を製造することはで
きない。 一般に、芳香族系炭化水素樹脂を製造する方法
において重合原料である不飽和炭化水素含有留分
しては、石油類の熱分解の際に生成する沸点範囲
が−20ないし+280℃の不飽和炭化水素含有留分
を蒸留することによつて得られる沸点範囲が140
ないし280℃の任意の不飽和炭化水素含有留分が
使用される。石油類の熱分解の際に生成する不飽
和炭化水素含有留分中には、シクロペンタジエ
ン、メチルシクロペンタジエン、フルベン、メチ
ルフルベン、ジメチルフルベンなどのシクロペン
タジエン類成分およびジシクロペンタジエン、メ
チルジシクロペンタジエン、ジメチルジシクロペ
ンタジエンなどのジシクロペンタジエン類成分が
他の不飽和炭化水素成分とともに含まれている。
この不飽和炭化水素含有留分を蒸留することによ
り、沸点範囲が140ないし280℃の任意の範囲の不
飽和炭化水素含有留分を得る際には、蒸留中に前
記ジシクロペンタジエン類成分が徐々に分解して
生成するシクロペンタジエン、メチルシクロペン
タジエンの他に、前記フルベン、メチルフルベ
ン、ジメチルフルベンなどのシクロペンタジエン
類成分が留出するので、重合原料である沸点範囲
が140ないし280℃の任意範囲の不飽和炭化水素含
有留分中には前記シクロペンタジエン類成分が約
1ないし7重量%の範囲で含まれているのが通常
である。 本発明者らは、このようにかなり多量のシクロ
ペンタジエン類成分を含有する沸点範囲が140な
いし280℃の任意の範囲にある不飽和炭化水素含
有留分から、高級分野のホツトメルト接着剤、感
圧接着剤などの粘着付与剤樹脂として使用するこ
とのできる色相、耐熱安定性ならびに臭気の点で
改善された芳香族系炭化水素樹脂を製造する方法
について鋭意検討した結果、本発明に到達したも
のである。本発明は、シクロペンタジエン、メチ
ルシクロペンタジエン、フルベン、メチルフルベ
ン、ジメチルフルベンなどのシクロペンタジエン
類成分を含有する沸点範囲が140ないし280℃にあ
る任意の芳香族系不飽和炭化水素含有留分を、蒸
留等の操作によつて前記シクロペンタジエン類成
分の含有率を特定の範囲に調整して得られる不飽
和炭化水素含有留分を、シクロペンタジエン類成
分に対して特定量のα・β−不飽和カルボン酸と
接触処理した後、重合することにより、前述の目
的を充足する炭化水素樹脂が製造できることを見
いだしたことに基づくものである。 すなわち、本発明は、石油類の熱分解の際に得
られる沸点範囲が140ないし280℃の任意の範囲に
あり、かつシクロペンタジエン類成分を含有する
不飽和炭化水素含有留分中のシクロペンタジエン
類成分の含有率を0.01ないし0.7重量%の範囲に
調整した前記沸点範囲の不飽和炭化水素含有留分
を、シクロペンタジエン類成分1モルに対して
0.8ないし3モルの範囲のα・β−不飽和カルボ
ン酸と接触処理した後もしくは両者の共存下に、
フリーデルフラフツ型触媒で重合することを特徴
とする色相ならびに耐熱安定性の改善された炭化
水素樹脂の製造方法である。 本発明の方法において、炭化水素樹脂の製造原
料として使用される不飽和炭化水素含有留分は、
石油類の水蒸気分解、気相分解、サンドクラツキ
ング、ハイドロホーミングなどの熱分解において
副生する沸点範囲が140ないし280℃の任意の範囲
にありかつシクロペンタジエン類成分を含有する
不飽和炭化水素含有留分、好ましくは140ないし
240℃の任意の範囲にありかつシクロペンタジエ
ン類成分を含有する不飽和炭化水素含有留分であ
る。 ここで、シクロペンタジエン類成分とは、前述
のごとくシクロペンタジエン、メチルシクロペン
タジエン、フルベン、メチルフルベン、ジメチル
フルベンなどのシクロペンタジエン環を有する化
合物である。製造原料として使用される前述の沸
点範囲が140ないし280℃の任意の範囲にありかつ
シクロペンタジエン類成分を含有する不飽和炭化
水素含有留分は、通常前述のように石油類の熱分
解の際に得られる沸点範囲が−20ないし+280℃
の不飽和炭化水素含有留分を蒸留することにより
得られる。その蒸留操作の際に、原料の不飽和炭
化水素含有留分中に含まれているジシクロペンタ
ジエン、メチルジシクロペンタジエン、ジメチル
ジシクロペンタジエンなどが分解して留出するた
めに、シクロペンタジエン、メチルシクロペンタ
ジエン、フルベンなどのシクロペンタジエン類成
分は低沸点であるにもかかわらず、沸点範囲が
140ないし280℃の不飽和炭化水素含有留分中に含
まれてくる。また、メチルフルベン、ジメチルフ
ルベンなどは前記沸点範囲の不飽和炭化水素含有
留分中に本質的に含まれているものである。この
ようにして得られた沸点範囲が140ないし280℃の
不飽和炭化水素含有留分中には前記シクロペンタ
ジエン類成分が通常1ないし7重量%の範囲で含
まれており、とくに1.5ないし3重量%の範囲で
含まれている場合が多い。 前述の沸点範囲140ないし280℃にあり、シクロ
ペンタジエン類成分を含有する不飽和炭化水素含
有留分を蒸留等の処理により、低沸点前留分のシ
クロペンタジエン類成分の含有率を0.01ないし
0.7重量%の範囲に調整することが必要であり、
とくに0.05ないし0.5重量%の範囲に調整するこ
とが好ましい。シクロペンタジエン類成分の含有
率が0.7重量%より多くなると、α・β−不飽和
カルボン酸の使用量が多くなるので経済性にも欠
けるようになり、しかも色相、耐熱安定性ならび
に臭気の点で優れた炭化水素樹脂は得られなくな
る。また、シクロペンタジエン類成分の含有率を
蒸留等によつて0.01重量%より少なくすること
は、蒸留塔に供給する前記原料留分中に存在する
ジシクロペンタジエン類成分が蒸留の際に常に分
解してシクロペンタジエン類成分が生成するので
困難であるとともに、不飽和炭化水素含有留分中
の重合性の他の不飽和成分が消失するようにな
る。 前述のごとくシクロペンタジエン類成分の含有
率を0.01ないし0.7重量%の範囲に調製した沸点
範囲が140ないし280℃の不飽和炭化水素含有留分
は、主として炭素数が9の炭化水素留分を含有
し、その他に炭素数が10以上の炭化水素留分ある
いは炭素数7および8の炭化水素留分を含有して
いても差しつかえない。この不飽和炭化水素含有
留分には、スチレン、α−メチルスチレン、β−
メチルスチレン、o−ビニルトルエン、m−ビニ
ルトルエン、p−ビニルトルエン、インデン、メ
チルインデンなどの芳香族系不飽和炭化水素、キ
シレン、エチルベンゼン、クメン、エチルトルエ
ン、n−プロピルベンゼン、トリメチルベンゼ
ン、インダン、メチルインダン、ナフタリン、メ
チルナフタリン、ジメチルナフタリンなどの芳香
族系飽和炭化水素などの成分が含まれている。ま
た、この不飽和炭化水素含有留分からキシレン、
エチルベンゼンあるいはスチレンなどの特定の成
分を除去した留分あるいはこれらの特定の成分を
含有しない不飽和炭化水素含有留分を使用するこ
ともできる。 本発明の方法では、前述のシクロペンタジエン
類成分の含有率を調整された不飽和炭化水素含有
留分は重合する前にα・β−不飽和カルボン酸の
存在下に予め接触処理を施した後重合に供する
か、もしくは前記シクロペンタジエン類成分の含
有率が調整された不飽和炭化水素含有留分はα・
β−不飽和カルボン酸の共存下に重合される。こ
れらの方法のうちでは、重合前にα・β−不飽和
カルボン酸の存在下に予め接触処理を施した後重
合する方法が好ましい。 本発明の方法において使用されるα・β−不飽
和カルボン酸としては、たとえば、アクリル酸、
メタクリル酸、α−エチルアクリル酸範、クロト
ン酸などのα・β−不飽和モノカルボン酸;マレ
イン酸、イタコン酸、シトラコン酸、テトラヒド
ロフタル酸などのα・β−不飽和ジカルボン酸な
どがあげられる。これらのα・β−不飽和カルボ
ン酸のうちではα・β−不飽和ジカルボン酸を使
用することが好ましく、とくにマレイン酸を使用
することが好ましい。これらのα・β−不飽和カ
ルボン酸の使用量は、前記蒸留等の操作によつて
シクロペンタジエン類成分の含有率が調整された
重合原料中のシクロペンタジエン類成分1モルに
対して0.8ないし3.0モルの範囲にあることが必要
であり、とくに1.0ないし2.0モルの範囲にあるこ
とが好ましい。α・β−不飽和カルボン酸の使用
量がシクロペンタジエン類成分1モルに対して
0.8モルより少なくなつてもまた3.0モルより多く
なつても、色相、耐熱安定性ならびに臭気の改善
された炭化水素樹脂は得られない。これらのα・
β−不飽和カルボン酸は、シクロペンタジエン類
成分の含有率が調整された前記不飽和炭化水素含
有留分に、固体状態、溶融状態あるいは溶液状態
のいずれの状態で供給することもできる。 シクロペンタジエン類成分の含有率が調整され
た不飽和炭化水素含有留分とα・β−不飽和カル
ボン酸との接触処理の際の温度はとくに限定され
ないが、通常は10ないし80℃の範囲であり、好ま
しくは20ないし60℃の範囲である。接触処理の際
の時間は接触温度によつても異なるが、通常は1
分なし2時間、好ましくは2分ないし1時間の範
囲である。 前述の方法によりα・β−不飽和カルボン酸の
存在下に接触処理が施された不飽和炭化水素含有
留分は重合反応に供される。前記接触処理を施し
た不飽和炭化水素含有留分を単独で重合すること
もできるし、またその他に前記接触処理を施した
不飽和炭化水素含有留分に、必要に応じて沸点範
囲が−20ないし+100℃の任意の範囲にありかつ
シクロペンタジエン類成分を実質的に含有しない
脂肪族系不飽和炭化水素含有留分またはこの沸点
範囲にありかつシクロペンタジエン類成分以外の
脂肪族系不飽和炭化水素成分を配合した混合不飽
和炭化水素含有留分を重合原料として使用するこ
ともできる。共重合原料として使用できる沸点範
囲が−20ないし+100℃の任意の範囲にあり、か
つシクロペンタジエン類成分を実質的に含有しな
い脂肪族系不飽和炭化水素含有留分として、具体
的には、たとえば、脱ブタジエンC4留分、脱シ
クロペンタジエン類C5留分、脱イソプレンC5
分であつてかつシクロペンタジエン類成分を含有
しない留分、C4C5留分であつてシクロペンタジ
エン類成分を含有しない留分などをあげることが
できる。 前述の方法により、α・β−不飽和カルボン酸
で接触処理が施された不飽和炭化水素含有留分は
通常の方法、たとえば、三フツ化ホウ素あるいは
その錯体、三塩化アルミニウム、三臭化アルミニ
ウム、四塩化スズ、四塩化チタンなどのフリーデ
ルクラフツ型触媒の存在下に、通常0ないし80
℃、好ましくは20ないし50℃の温度で重合され
る。重合反応終了後の反応混合物を常法によつて
処理することにより本発明の炭化水素樹脂が得ら
れる。また、ジシクロペンタジエン類成分の含有
率が調整された前記沸点範囲の不飽和炭化水素含
有留分をα・β−不飽和カルボン酸の共存下に重
合する場合にも、同様の処法によつて本発明の炭
化水素樹脂が得られる。 本発明の方法を採用することとによつて、従来
の芳香族系炭化水素樹脂の最大の欠点とされてい
た色相ならびに耐熱安定性が大巾に改善される他
に、臭気も改善される。さらに、本発明の方法に
より原料の不飽和炭化水素含有留分を処理するこ
とによつて、原料中の触媒毒成分が除去されるの
で、従来の方法にくらべて触媒の使用量を低減さ
せることができるという利点もある。 本発明の方法で製造された炭化水素樹脂は色
相、耐熱安定性ならびに臭気に優れているので、
ホツトメルト接着剤、感圧接着剤あるいは熱溶融
型トラフイツクペイントなどの用途に利用され
る。 次に、実施例によつて本発明の方法を具体的に
説明する。なお、実施例および比較例において、
炭化水素樹脂を次の方法によつて評価した。 (1) 色相 炭化水素樹脂10gを試験管(内径16mm)に取
り、これを150℃に保つた恒温槽中に浸漬し、
加熱溶融した状態で直ちにガードナー標準色と
比較し、ガードナー値で示した。 (2) 耐熱安定性 炭化水素樹脂5gを試験管(内径16mm)に取
り、これを200℃に保つた恒温槽中に3時間浸
漬した後、ガードナー標準色と比較し、ガード
ナー値で示した。 (3) 臭気 加熱溶融時(200℃)の臭気の弱いものから
強い刺激臭を示すものまでをA、B、Cの3段
階に分けて評価した。 実施例 1 沸点範囲が140ないし240℃のナフサ分解留分(A)
は次の組成を有する。 重合可能成分 46.3重量% シクロペンタジエン類成分 1.8重量% この分解留分(A)を出発原料油とし、これを表1
に示す蒸留塔にフイードし、表1に記載の運転条
件で蒸留を行い、塔頂よりシクロペンタジエン類
成分を含有する低沸点留分を、また塔底より高沸
点留分を除去し、シクロペンタジエン類成分の含
有率を低い主留分を7段から取り出した。
The present invention relates to a method for producing a hydrocarbon resin with improved hue and heat resistance stability. More specifically, the boiling point range obtained during thermal decomposition of petroleum is
It relates to a method in which a fraction at 140 to 280°C is contacted with an α/β-unsaturated carboxylic acid and then polymerized. The unsaturated hydrocarbon-containing fraction obtained during the thermal decomposition of petroleum is polymerized using a Friedel-Crafts type catalyst,
Methods of producing hydrocarbon resins are well known. Hydrocarbon resins primarily have a boiling point range of −20
Aliphatic hydrocarbon resin obtained by polymerizing an unsaturated hydrocarbon-containing fraction with a boiling point range of 140 to +100℃ and an aromatic resin obtained by polymerizing an unsaturated hydrocarbon-containing fraction with a boiling point range of 140 to 280℃. There are two types of hydrocarbon resins. Among these hydrocarbon resins, aromatic hydrocarbon resins have particularly poor hue and heat resistance stability, and are also inferior in odor compared to aliphatic hydrocarbon resins. Therefore, it is difficult to use it in applications that require excellent hue, heat stability, or odor, such as hot melt adhesives, pressure-sensitive adhesives, or hot-melt traffic paints. Conventionally, in the production method of hydrocarbon resin, cyclopentadiene or As a method for removing cyclopentadiene components such as methylcyclopentadiene by pretreatment before polymerization, Japanese Patent Publication No. 34-5422 describes a method for removing cyclopentadiene components such as methylcyclopentadiene by dimerizing the cyclopentadiene components by preheating treatment. A method of removing the maleic anhydride and a method of forming an addition product with maleic anhydride at room temperature in Japanese Patent Publication No. 43-21737 are proposed, and these methods are known as methods for improving the hue of hydrocarbon resins. Among these methods, the former method requires complicated processing operations and also produces addition products of unsaturated hydrocarbon components in the unsaturated hydrocarbon-containing fraction of the polymerization raw material with cyclopentadiene components. When this method is applied to the polymerization of aliphatic unsaturated hydrocarbon-containing fractions, the loss of unsaturated hydrocarbon components other than the cyclopentadiene components is large.
A certain degree of hue improvement effect is recognized, but the boiling point range is 140 to
Even if this method is applied to the polymerization of a fraction containing aromatic unsaturated hydrocarbons at 280°C, a hydrocarbon resin that is excellent in hue, heat resistance stability, and odor cannot be obtained. In addition, in the latter method, as described in the same publication, an unsaturated hydrocarbon-containing fraction containing a large amount of cyclopentadiene components is used as the unsaturated hydrocarbon-containing fraction of the raw material. In order to form an addition product with the pentadiene component, a large amount of maleic anhydride must be used, and as a result, a large amount of the addition product must be removed by distillation, which requires complicated operations. In addition, this method has disadvantages in that it uses a large amount of maleic anhydride, which tends to cause corrosion of the equipment, and is also less economical. In addition, in the latter method, as is clear from the examples in the same publication, the boiling point range is 20 to 100.
Aliphatic hydrocarbon resins obtained from unsaturated hydrocarbon-containing fractions with a boiling point range of 100 to 200°C
The hue (Gardner) of the aromatic hydrocarbon resins obtained from the unsaturated hydrocarbon-containing fractions was not good, being 9 to 12 and 14 to 18, respectively. However, even if this method is applied to the polymerization of , a hydrocarbon resin having excellent hue, particularly heat stability and odor cannot be obtained. Furthermore, in the latter method, an addition product of cyclopentadiene and maleic anhydride produced by treating an unsaturated hydrocarbon-containing fraction of the raw material containing a large amount of cyclopentadiene components with maleic anhydride is used. Even if the polymer is directly polymerized without being separated and removed by distillation or the like, a hydrocarbon resin that is excellent in hue, heat resistance stability, and odor cannot be obtained. In addition, Japanese Patent Publication No. 36-19287 states that the boiling point range obtained during thermal decomposition of petroleum is 20 to 280℃.
A method has been proposed for producing a hydrocarbon resin with a high acid value and saponification value by copolymerizing an unsaturated hydrocarbon-containing fraction with an unsaturated carboxylic acid or its anhydride, and the resulting hydrocarbon resin It is stated that the hue is light. However, as in this method, α-· Even when polymerized in the coexistence of β-unsaturated carboxylic acid or its anhydride, the obtained hydrocarbon resin has a sufficiently good hue, as is clear from the description of the examples in the same publication. However, it is difficult to say that it is possible to produce a hydrocarbon resin that is excellent in terms of heat resistance stability and odor. In general, in the process of producing aromatic hydrocarbon resins, the unsaturated hydrocarbon-containing fraction that is the polymerization raw material is the unsaturated carbon with a boiling point range of -20 to +280°C that is produced during thermal decomposition of petroleum. The boiling point range obtained by distilling hydrogen-containing fractions is 140
Any unsaturated hydrocarbon-containing fraction between 280°C and 280°C can be used. The unsaturated hydrocarbon-containing fraction produced during thermal decomposition of petroleum contains cyclopentadiene components such as cyclopentadiene, methylcyclopentadiene, fulvene, methylfulvene, and dimethylfulvene, as well as dicyclopentadiene and methyldicyclopentadiene. , dicyclopentadiene components such as dimethyldicyclopentadiene are included along with other unsaturated hydrocarbon components.
When distilling this unsaturated hydrocarbon-containing fraction to obtain an unsaturated hydrocarbon-containing fraction with a boiling point range of 140 to 280°C, the dicyclopentadiene component is gradually removed during distillation. In addition to cyclopentadiene and methylcyclopentadiene, which are produced by decomposition of The unsaturated hydrocarbon-containing fraction usually contains the cyclopentadiene component in an amount of about 1 to 7% by weight. The present inventors have developed a method for producing high-grade hot melt adhesives and pressure-sensitive adhesives from unsaturated hydrocarbon-containing fractions with a boiling point ranging from 140 to 280°C, which contain a fairly large amount of cyclopentadiene components. The present invention was arrived at as a result of extensive research into a method for producing an aromatic hydrocarbon resin that can be used as a tackifier resin for adhesives, etc., and has improved hue, heat resistance stability, and odor. . The present invention provides any aromatic unsaturated hydrocarbon-containing fraction with a boiling point range of 140 to 280°C containing cyclopentadiene components such as cyclopentadiene, methylcyclopentadiene, fulvene, methylfulvene, and dimethylfulvene. The unsaturated hydrocarbon-containing fraction obtained by adjusting the content of the cyclopentadiene component to a specific range by distillation or other operations is used to add a specific amount of α/β-unsaturation to the cyclopentadiene component. This is based on the discovery that a hydrocarbon resin that satisfies the above objectives can be produced by contact treatment with a carboxylic acid and then polymerization. That is, the present invention provides cyclopentadienes in an unsaturated hydrocarbon-containing fraction obtained during thermal decomposition of petroleum, which has a boiling point in any range of 140 to 280°C and contains a cyclopentadiene component. A fraction containing unsaturated hydrocarbons in the boiling point range mentioned above, the content of which is adjusted to a range of 0.01 to 0.7% by weight, is added to 1 mole of the cyclopentadiene component.
After contact treatment with α/β-unsaturated carboxylic acid in the range of 0.8 to 3 mol, or in the coexistence of both,
This is a method for producing a hydrocarbon resin with improved hue and heat resistance stability, characterized by polymerization using a Friedel-Frafts type catalyst. In the method of the present invention, the unsaturated hydrocarbon-containing fraction used as a raw material for producing hydrocarbon resin is
Unsaturated hydrocarbons with a boiling point within any range of 140 to 280°C and containing cyclopentadiene components, which are produced as by-products during thermal decomposition such as steam cracking, gas phase cracking, sand cracking, and hydroforming of petroleum. The fraction contained, preferably from 140 to
It is an unsaturated hydrocarbon-containing fraction that is within an arbitrary range of 240°C and contains cyclopentadiene components. Here, the cyclopentadiene component is a compound having a cyclopentadiene ring, such as cyclopentadiene, methylcyclopentadiene, fulvene, methylfulvene, and dimethylfulvene, as described above. The unsaturated hydrocarbon-containing fraction, which is used as a production raw material and has a boiling point within the range of 140 to 280°C and contains cyclopentadiene components, is usually used during the thermal decomposition of petroleum as mentioned above. The boiling point range obtained is -20 to +280℃
It is obtained by distilling a fraction containing unsaturated hydrocarbons. During the distillation operation, dicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, etc. contained in the unsaturated hydrocarbon-containing fraction of the raw material are decomposed and distilled out. Although cyclopentadiene components such as cyclopentadiene and fulvene have low boiling points, their boiling point range is
It is contained in fractions containing unsaturated hydrocarbons at temperatures between 140 and 280°C. Further, methylfulvene, dimethylfulvene, etc. are essentially contained in the unsaturated hydrocarbon-containing fraction having the boiling point range mentioned above. The unsaturated hydrocarbon-containing fraction with a boiling point range of 140 to 280°C thus obtained usually contains the cyclopentadiene component in an amount of 1 to 7% by weight, particularly 1.5 to 3% by weight. It is often included in the range of %. The unsaturated hydrocarbon-containing fraction, which has a boiling point range of 140 to 280°C and contains cyclopentadiene components, is treated by distillation or the like to reduce the content of cyclopentadiene components in the low-boiling pre-fraction to 0.01 to 280°C.
It is necessary to adjust to a range of 0.7% by weight,
In particular, it is preferable to adjust the content to a range of 0.05 to 0.5% by weight. When the content of cyclopentadiene components exceeds 0.7% by weight, the amount of α/β-unsaturated carboxylic acid used increases, making it uneconomical, and also resulting in poor hue, heat stability, and odor. Excellent hydrocarbon resins will no longer be obtained. In addition, reducing the content of cyclopentadiene components to less than 0.01% by weight by distillation etc. means that the dicyclopentadiene components present in the raw material fraction supplied to the distillation column are always decomposed during distillation. This is difficult because cyclopentadiene components are produced, and other polymerizable unsaturated components in the unsaturated hydrocarbon-containing fraction disappear. As mentioned above, the unsaturated hydrocarbon-containing fraction with a boiling point range of 140 to 280°C, which has been adjusted to have a content of cyclopentadiene components in the range of 0.01 to 0.7% by weight, mainly contains a hydrocarbon fraction with a carbon number of 9. However, it may also contain hydrocarbon fractions having 10 or more carbon atoms or hydrocarbon fractions having 7 and 8 carbon atoms. This unsaturated hydrocarbon-containing fraction includes styrene, α-methylstyrene, β-
Aromatic unsaturated hydrocarbons such as methylstyrene, o-vinyltoluene, m-vinyltoluene, p-vinyltoluene, indene, methylindene, xylene, ethylbenzene, cumene, ethyltoluene, n-propylbenzene, trimethylbenzene, indan It contains components such as aromatic saturated hydrocarbons such as , methylindane, naphthalene, methylnaphthalene, and dimethylnaphthalene. In addition, xylene,
It is also possible to use a fraction from which specific components such as ethylbenzene or styrene have been removed, or an unsaturated hydrocarbon-containing fraction that does not contain these specific components. In the method of the present invention, the unsaturated hydrocarbon-containing fraction whose content of cyclopentadiene components has been adjusted is subjected to a contact treatment in the presence of an α/β-unsaturated carboxylic acid before polymerization. The unsaturated hydrocarbon-containing fraction that is subjected to polymerization or whose content of the cyclopentadiene component has been adjusted is α.
It is polymerized in the coexistence of β-unsaturated carboxylic acid. Among these methods, a method in which a contact treatment is performed in advance in the presence of an α/β-unsaturated carboxylic acid prior to polymerization and then polymerization is preferred. Examples of the α/β-unsaturated carboxylic acid used in the method of the present invention include acrylic acid,
Examples include α/β-unsaturated monocarboxylic acids such as methacrylic acid, α-ethyl acrylic acid, and crotonic acid; α/β-unsaturated dicarboxylic acids such as maleic acid, itaconic acid, citraconic acid, and tetrahydrophthalic acid. . Among these α·β-unsaturated carboxylic acids, it is preferable to use α·β-unsaturated dicarboxylic acids, and it is particularly preferable to use maleic acid. The amount of these α/β-unsaturated carboxylic acids to be used is 0.8 to 3.0 per mole of the cyclopentadiene component in the polymerization raw material whose content of cyclopentadiene component has been adjusted by the above-mentioned operation such as distillation. It is necessary that the amount is in a molar range, and particularly preferably in a range of 1.0 to 2.0 molar. The amount of α/β-unsaturated carboxylic acid used per mole of cyclopentadiene components
If the amount is less than 0.8 mol or more than 3.0 mol, a hydrocarbon resin with improved hue, heat resistance stability, and odor cannot be obtained. These α・
The β-unsaturated carboxylic acid can be supplied to the unsaturated hydrocarbon-containing fraction in which the content of cyclopentadiene components has been adjusted in any state, such as a solid state, a molten state, or a solution state. The temperature during the contact treatment of the unsaturated hydrocarbon-containing fraction with an adjusted content of cyclopentadiene components and the α/β-unsaturated carboxylic acid is not particularly limited, but is usually in the range of 10 to 80°C. The temperature is preferably in the range of 20 to 60°C. The time for contact treatment varies depending on the contact temperature, but is usually 1
The duration ranges from 2 minutes to 2 hours, preferably from 2 minutes to 1 hour. The unsaturated hydrocarbon-containing fraction subjected to the contact treatment in the presence of an α/β-unsaturated carboxylic acid by the method described above is subjected to a polymerization reaction. The unsaturated hydrocarbon-containing fraction subjected to the above contact treatment can be polymerized alone, or the unsaturated hydrocarbon-containing fraction subjected to the above contact treatment may be polymerized, if necessary, with a boiling point range of -20 An aliphatic unsaturated hydrocarbon-containing fraction having a boiling point within this range and not substantially containing cyclopentadiene components, or aliphatic unsaturated hydrocarbons other than cyclopentadiene components having a boiling point within this range A mixed unsaturated hydrocarbon-containing fraction containing the components can also be used as a polymerization raw material. Examples of aliphatic unsaturated hydrocarbon-containing fractions that can be used as copolymerization raw materials and have a boiling point in any range from -20 to +100°C and do not substantially contain cyclopentadiene components include, for example, , butadiene-free C 4 fraction, cyclopentadiene-free C 5 fraction, isoprene-free C 5 fraction that does not contain cyclopentadiene components, C 4 C 5 fraction that does not contain cyclopentadiene components Examples include distillates that do not contain . The unsaturated hydrocarbon-containing fraction that has been subjected to the contact treatment with α/β-unsaturated carboxylic acids by the above method can be treated using conventional methods such as boron trifluoride or its complexes, aluminum trichloride, aluminum tribromide. , usually in the presence of a Friedel-Crafts type catalyst such as tin tetrachloride or titanium tetrachloride.
The polymerization is carried out at a temperature of 20 to 50°C, preferably 20 to 50°C. The hydrocarbon resin of the present invention can be obtained by treating the reaction mixture after the polymerization reaction by a conventional method. Furthermore, when polymerizing a fraction containing unsaturated hydrocarbons in the boiling point range mentioned above, in which the content of dicyclopentadiene components has been adjusted, in the coexistence of an α/β-unsaturated carboxylic acid, the same treatment method can be used. The hydrocarbon resin of the present invention is thus obtained. By employing the method of the present invention, not only the hue and heat resistance stability, which were considered to be the biggest drawbacks of conventional aromatic hydrocarbon resins, are greatly improved, but also the odor is also improved. Furthermore, by treating the unsaturated hydrocarbon-containing fraction of the raw material with the method of the present invention, catalyst poison components in the raw material are removed, so the amount of catalyst used can be reduced compared to conventional methods. It also has the advantage of being able to The hydrocarbon resin produced by the method of the present invention has excellent hue, heat resistance stability, and odor.
It is used for applications such as hot melt adhesives, pressure sensitive adhesives, and hot melt traffic paints. Next, the method of the present invention will be specifically explained using Examples. In addition, in the examples and comparative examples,
The hydrocarbon resin was evaluated by the following method. (1) Hue Take 10g of hydrocarbon resin in a test tube (inner diameter 16mm), immerse it in a constant temperature bath kept at 150℃,
Immediately after heating and melting, it was compared with a Gardner standard color and expressed as a Gardner value. (2) Heat resistance stability 5 g of hydrocarbon resin was placed in a test tube (inner diameter 16 mm), and after immersing it in a constant temperature bath kept at 200°C for 3 hours, the test tube was compared with the Gardner standard color and expressed as a Gardner value. (3) Odor The odor was divided into three grades, A, B, and C, ranging from weak odor to strong irritating odor when heated and melted (200°C). Example 1 Naphtha cracking fraction (A) with a boiling point range of 140 to 240°C
has the following composition: Polymerizable component: 46.3% by weight Cyclopentadiene component: 1.8% by weight This cracked fraction (A) was used as a starting material oil, and it was summarized in Table 1.
The feed is fed to the distillation column shown in Table 1, and distillation is carried out under the operating conditions listed in Table 1. A low boiling point fraction containing cyclopentadiene components is removed from the top of the column, and a high boiling point fraction is removed from the bottom of the column. The main fraction with a low content of similar components was taken out from the seventh stage.

【表】 この蒸留によつて出発原料油(A)の低沸点留分を
8重量%、また高沸点留分を21重量%除去し、次
の組成をもつ主留分を得た。 重合可能成分 41.5重量% シクロペンタジエン類成分 0.2重量% 次にこの主留分に粉末のマレイン酸を0.6重量
%(シクロペンタジエン類成分の2.0モル当量)
を加えて撹拌下に40℃で30分間処理した。次いで
この処理留分に三弗化ホウ素フエノール錯体触媒
0.5重量%を加えて35℃で2時間重合した後、カ
セイソーダ水溶液で触媒を分解し、水洗した後、
蒸留により未反応油および低重合物を留去し、表
3に記載の性状を有する炭化水素樹脂を得た。 実施例2〜5、比較例1 実施例1で使用したナフサ分解留分(A)を、表3
に記載の蒸留条件に変えた以外は、実施例1と同
様の条件で蒸留し、表3に記載の組成を有する主
留分を得た。次いで主留分を表3に記載の条件で
マレイン酸で処理した後、実施例1と同様に重合
および後処理を行つて表3に記載の性状を有する
炭化水素樹脂を得た。 実施例6〜8、比較例2、3 実施例4でマレイン酸処理に使用した主留分を
表3に記載の条件で処理を行つた後、実施例1と
同様に重合および後処理を行つて表3に記載の性
状を有する炭化水素樹脂を得た。 実施例 9 実施例1で得た主留分を実施例1と同様にマレ
イン酸で処理した。次いでこの処理留分80重量部
と表2に記載した沸点範囲が−20ないし+20℃の
ナフサ分解留分(重合可能成分93.6重量%)20重
量部との混合留分を原料とし、三弗化ホウ素フエ
ノール錯体触媒0.5重量部を加えて実施例1と同
様に重合および後処理を行つた。その結果、表3
に記載した性状を有する炭化水素樹脂を得た。
[Table] Through this distillation, 8% by weight of the low boiling point fraction and 21% by weight of the high boiling point fraction of the starting material oil (A) were removed to obtain a main fraction having the following composition. Polymerizable component: 41.5% by weight Cyclopentadiene component: 0.2% by weight Next, 0.6% by weight of powdered maleic acid was added to this main fraction (2.0 molar equivalent of cyclopentadiene component).
was added and treated at 40°C for 30 minutes with stirring. This treated fraction was then treated with a boron trifluoride phenol complex catalyst.
After adding 0.5% by weight and polymerizing at 35°C for 2 hours, the catalyst was decomposed with an aqueous solution of caustic soda and washed with water.
Unreacted oil and low polymers were removed by distillation to obtain a hydrocarbon resin having the properties shown in Table 3. Examples 2 to 5, Comparative Example 1 The naphtha cracked fraction (A) used in Example 1 is shown in Table 3.
Distillation was carried out under the same conditions as in Example 1, except that the distillation conditions were changed to those described in Table 3, to obtain a main fraction having the composition shown in Table 3. Next, the main fraction was treated with maleic acid under the conditions shown in Table 3, and then polymerized and post-treated in the same manner as in Example 1 to obtain a hydrocarbon resin having the properties shown in Table 3. Examples 6 to 8, Comparative Examples 2 and 3 After treating the main fraction used for maleic acid treatment in Example 4 under the conditions listed in Table 3, polymerization and post-treatment were performed in the same manner as in Example 1. A hydrocarbon resin having the properties shown in Table 3 was obtained. Example 9 The main fraction obtained in Example 1 was treated with maleic acid in the same manner as in Example 1. Next, a mixed fraction of 80 parts by weight of this treated fraction and 20 parts by weight of a naphtha cracked fraction (polymerizable component 93.6% by weight) with a boiling point range of -20 to +20°C listed in Table 2 was used as a raw material, and trifluoride was added. Polymerization and post-treatment were carried out in the same manner as in Example 1 by adding 0.5 parts by weight of a boron phenol complex catalyst. As a result, Table 3
A hydrocarbon resin having the properties described in was obtained.

【表】【table】

【表】 実施例 10、11 実施例1で得た主留分を表3に記載のα・β−
不飽和カルボン酸で処理し、実施例1と同様に重
合および後処理を行つて表3に記載の性状を有す
る炭化水素樹脂を得た。 実施例 12〜13 実施例1で得た主留分をマレイン酸を用いて表
3に記載の条件で処理した後、実施例1と同様に
重合および後処理を行つて表3に記載の性状を有
する炭化水素樹脂を得た。
[Table] Examples 10, 11 The main fraction obtained in Example 1 was
The resin was treated with an unsaturated carboxylic acid, and subjected to polymerization and post-treatment in the same manner as in Example 1 to obtain a hydrocarbon resin having the properties shown in Table 3. Examples 12-13 The main fraction obtained in Example 1 was treated with maleic acid under the conditions listed in Table 3, and then polymerized and post-treated in the same manner as in Example 1 to obtain the properties listed in Table 3. A hydrocarbon resin having the following properties was obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 石油類の熱分解の際に得られる沸点範囲が
140ないし280℃の任意の範囲にあり、かつシクロ
ペンタジエン類成分を含有する不飽和炭化水素含
有留分中のシクロペンタジエン類成分の含有率を
0.01ないし0.7重量%の範囲に調整した前記沸点
範囲の不飽和炭化水素含有留分を、シクロペンタ
ジエン類成分1モルに対して0.8ないし3.0モルの
範囲のα・β−不飽和カルボン酸と接触処理した
後もしくは両者の共存下に、フリーデルクラフツ
型触媒で重合することを特徴とする色相ならびに
耐熱安定性の改善された炭化水素樹脂の製造方
法。 2 不飽和炭化水素含有留分として、沸点範囲が
140ないし280℃の任意の範囲にあり、かつシクロ
ペンタジエン類成分の含有率を0.05ないし0.5重
量%の範囲に調製した不飽和炭化水素含有留分を
使用する特許請求の範囲第1項に記載の方法。 3 α・β−不飽和カルボン酸を不飽和炭化水素
含有留分中のシクロペンタジエン類成分1モルに
対して1.0ないし2.0モルの範囲で使用する特許請
求の範囲第1項または第2項に記載の方法。 4 α・β−不飽和カルボン酸として、α・β−
不飽和ジカルボン酸を使用する特許請求の範囲第
1項ないし第3項に記載のいずれかの方法。
[Claims] 1. The boiling point range obtained during thermal decomposition of petroleum is
The content of cyclopentadiene components in an unsaturated hydrocarbon-containing fraction that is within the arbitrary range of 140 to 280°C and contains cyclopentadiene components.
The unsaturated hydrocarbon-containing fraction in the boiling point range adjusted to 0.01 to 0.7% by weight is contacted with α/β-unsaturated carboxylic acid in the range of 0.8 to 3.0 mol per mol of the cyclopentadiene component. A method for producing a hydrocarbon resin with improved hue and heat resistance stability, which comprises polymerizing with a Friedel-Crafts type catalyst after or in the coexistence of both. 2 As a fraction containing unsaturated hydrocarbons, the boiling point range is
The method according to claim 1, which uses an unsaturated hydrocarbon-containing fraction having a temperature in an arbitrary range of 140 to 280°C and a content of cyclopentadiene components in a range of 0.05 to 0.5% by weight. Method. 3. According to claim 1 or 2, the α/β-unsaturated carboxylic acid is used in an amount of 1.0 to 2.0 mol per 1 mol of the cyclopentadiene component in the unsaturated hydrocarbon-containing fraction. the method of. 4 As an α・β-unsaturated carboxylic acid, α・β-
4. A method according to any one of claims 1 to 3, wherein an unsaturated dicarboxylic acid is used.
JP10382878A 1977-12-26 1978-08-28 Preparation of hydrocarbon resin Granted JPS5531827A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP10382878A JPS5531827A (en) 1978-08-28 1978-08-28 Preparation of hydrocarbon resin
GB7849855A GB2012287B (en) 1977-12-26 1978-12-22 Process for producing hydrocarbon resins having colour and thermal stability
NL7812514A NL7812514A (en) 1977-12-26 1978-12-22 PROCESS FOR PREPARING HYDROCARBON RESINS WITH IMPROVED COLOR AND THERMAL STABILITY.
US05/973,445 US4230840A (en) 1977-12-26 1978-12-26 Process for producing hydrocarbon resins having improved color and thermal stability
FR7836306A FR2412573A1 (en) 1977-12-26 1978-12-26 PROCESS FOR MANUFACTURING HYDROCARBON RESINS
DE2856335A DE2856335C2 (en) 1977-12-26 1978-12-27 Process for the production of hydrocarbon resins by treating petroleum cracking or reforming fractions
CA000318616A CA1134994A (en) 1977-12-26 1978-12-27 Process for producing hydrocarbon resins having improved color and thermal stability
IT31333/78A IT1101749B (en) 1977-12-26 1978-12-27 PROCEDURE FOR PRODUCING HYDROCAREUPI RESINS WITH IMPROVED COLOR AND IMPROVED THERMAL STABILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10382878A JPS5531827A (en) 1978-08-28 1978-08-28 Preparation of hydrocarbon resin

Publications (2)

Publication Number Publication Date
JPS5531827A JPS5531827A (en) 1980-03-06
JPS6138204B2 true JPS6138204B2 (en) 1986-08-28

Family

ID=14364271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10382878A Granted JPS5531827A (en) 1977-12-26 1978-08-28 Preparation of hydrocarbon resin

Country Status (1)

Country Link
JP (1) JPS5531827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189203U (en) * 1986-05-26 1987-12-02
JPS6363202U (en) * 1986-10-15 1988-04-26
JPH037607A (en) * 1989-06-06 1991-01-14 Amano Kogyo Kk Antiskid tire
JPH03204312A (en) * 1989-12-28 1991-09-05 Yoshihiro Inomura Retractable device for projecting/retracting spike tire pin during traveling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372851B1 (en) * 2000-07-06 2002-04-16 Eastman Chemical Resins, Inc. Maleated liquid C5 hydrocarbon resins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189203U (en) * 1986-05-26 1987-12-02
JPS6363202U (en) * 1986-10-15 1988-04-26
JPH037607A (en) * 1989-06-06 1991-01-14 Amano Kogyo Kk Antiskid tire
JPH03204312A (en) * 1989-12-28 1991-09-05 Yoshihiro Inomura Retractable device for projecting/retracting spike tire pin during traveling

Also Published As

Publication number Publication date
JPS5531827A (en) 1980-03-06

Similar Documents

Publication Publication Date Title
US4558107A (en) Aromatic high softening point petroleum resins and process for its preparation
US3478005A (en) Terpene copolymers
JPS6138204B2 (en)
JPS6195013A (en) Petroleum resin and its production
US2856389A (en) Petroleum resins containing indene
US4230840A (en) Process for producing hydrocarbon resins having improved color and thermal stability
US2211038A (en) Purification of unsaturated compounds
DE2716763C3 (en) Process for the production of hydrocarbon resins
EP0013060B1 (en) Carene-modified petroleum resins and their production
EP0233074A2 (en) Low color aromatic resins
US2383921A (en) Method for purifying ring substituted methyl styrene
US3761457A (en) Process for beta pinene dipentene copolymers
JPH0462772B2 (en)
JPS626570B2 (en)
JPH0440367B2 (en)
US4358574A (en) Production of hydrocarbon resins and products resulting therefrom
JPS5937002B2 (en) Method for producing hydrocarbon resin
US4403080A (en) Isomerization and polymerization of hydrocarbon resins
US2372528A (en) Depolymerization of styrene polymers
JPS5914486B2 (en) Method for producing hydrocarbon resin
US3880820A (en) Method for producing thermoplastic resin
GB2032442A (en) Petroleum resins
US3950453A (en) Process for preparing petroleum resins
JPH027328B2 (en)
US4100336A (en) Method for the continuous manufacture of hydrocarbon resins