JPS613817A - Method for blowing gas into molten iron in steel making vessel - Google Patents

Method for blowing gas into molten iron in steel making vessel

Info

Publication number
JPS613817A
JPS613817A JP12495384A JP12495384A JPS613817A JP S613817 A JPS613817 A JP S613817A JP 12495384 A JP12495384 A JP 12495384A JP 12495384 A JP12495384 A JP 12495384A JP S613817 A JPS613817 A JP S613817A
Authority
JP
Japan
Prior art keywords
gas
tuyere
blowing
molten iron
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12495384A
Other languages
Japanese (ja)
Other versions
JPH0440407B2 (en
Inventor
Yoshihide Kato
嘉英 加藤
Tetsuya Fujii
徹也 藤井
Yasuhiro Kakio
垣生 泰弘
Rinzo Tachibana
橘 林三
Nobumoto Takashiba
高柴 信元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12495384A priority Critical patent/JPS613817A/en
Publication of JPS613817A publication Critical patent/JPS613817A/en
Publication of JPH0440407B2 publication Critical patent/JPH0440407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To prevent the erosion of a bottom blowing tuyere consisting of plural pieces of metallic pipes as gas passage holes embedded into a refractory compsn. and to regulate the rate of blowing over a wide range by decreasing the inside diameter of said pipes and using a high-pressure gas. CONSTITUTION:The tuyere 1 disposed in a furnace bottom brike 5 convering the inside of a bottom shell 4 of a converter consists of plural pieces of the stainless steel pipes 2 which have <=3mm. inside diameter and is embedded into a tuyere brick 3 as the common refractory compsn. of the furnace. The bottom end of the pipe 2 is commonly connected to a gas accumulation chamber 6 and is further communicated with a feed pipe 7 for a gas such as inert gas. The gas is blown into the molten iron in the converter by using such tuyere 1 so that the inlet pressure of the tuyere attains >=50kg/cm<2> in at least part of the entire blowing period. The erosion of the tuyere is thus prevented and the service life of the tuyere is extended. Since the flow rate of gas blowing is regulatable over a wide range, the dephosphorization and desulfurization or the blowing metting the purpose such as the improvement of an iron yield is made possible.

Description

【発明の詳細な説明】 この発明は、例えば転炉等の製鋼容器の底部に設けられ
た羽口から製鋼容器内溶鉄中に不活性ガス等の気体を吹
込む製鋼容器内溶鉄中への気体吹込み方法に関するもの
である。
Detailed Description of the Invention This invention relates to a method for injecting gas such as an inert gas into molten iron in a steelmaking container from a tuyere provided at the bottom of a steelmaking container such as a converter. This relates to the blowing method.

近時、転炉の炉底からはArやN2ガスを底吹きし、炉
上からは上吹きランスによって酸素を吹き込む複合吹錬
法が工業的に広く行なわれている。
Recently, a combined blowing method in which Ar or N2 gas is bottom-blown from the bottom of the converter furnace and oxygen is blown from the top of the furnace using a top-blowing lance has been widely used industrially.

この複合吹錬法によれば溶鉄からの脱炭を低炭素濃度ま
で行なっても鉄が過剰に酸化するようなことシよなく、
また、スプラッシュの発生が少いことから鉄歩留も良好
で、更に底吹きされる不活性ガスによる溶鉄の撹拌効果
でスラグ−メタル反応が促進され、精錬効果が良好とな
る、等の種々の効果が得られる。
According to this combined blowing method, even if the molten iron is decarburized to a low carbon concentration, there will be no excessive oxidation of the iron.
In addition, the iron yield is good because there is little splash, and the slag-metal reaction is promoted by the stirring effect of the molten iron by the bottom-blown inert gas, which improves the refining effect. Effects can be obtained.

しかしながらこの複合吹錬法を実施するために転炉底部
に設けられる羽口として従来用いられていた金属製の1
本または複数本の集合したパイプや多孔状の耐火物製プ
ラグ(例えば特開昭47−42531号公報記載のプラ
グ)には次のような問題があった。
However, in order to carry out this composite blowing method, the metal tuyeres traditionally installed at the bottom of the converter
A pipe or a plurality of pipes or a porous refractory plug (for example, the plug described in Japanese Patent Application Laid-Open No. 47-42531) has the following problems.

すなわち、金属製パイプを羽口とする構造は、安価であ
るという利点がある反面、ガス流量を絞ると転炉内の溶
鉄がパイプ内に差し込み、羽口の閉塞を生じるおそれが
あり、流量を変化させて調整し得る範囲が狭いという欠
点がある。また、多孔状の耐火物製プラグ(いわゆるポ
ーラスプラグ)は、ガス流量を絞っても羽口の閉塞を生
じるおそれはなく、流量を調整し得る範囲が広いという
利点がある反面、烏価であるという欠点がある。更に、
上記金属製パイプ及び多孔状の耐火物製プラグ共に、転
炉炉底耐大物と較べた場合、耐用寿命が短く、転炉炉底
耐大物が未だ健全であるにもかかわらず金属パイプまた
は耐火物製プラグの羽口が寿命に達し、そのために炉体
を交換したり、あるいは羽口を閉塞して底吹き不活性ガ
スの吹込みを停止し、上吹きランスから吹込まれるW1
素のみによって精錬を行なう、等の不経済な対策を採ら
ざるを得なかった。
In other words, a structure in which metal pipes are used as tuyeres has the advantage of being inexpensive, but if the gas flow rate is reduced, the molten iron in the converter may enter the pipes and clog the tuyeres, making it difficult to reduce the flow rate. The disadvantage is that the range in which it can be changed and adjusted is narrow. In addition, porous refractory plugs (so-called porous plugs) have the advantage that there is no risk of clogging the tuyere even if the gas flow rate is reduced, and that the flow rate can be adjusted over a wide range. There is a drawback. Furthermore,
Both the metal pipe and the porous refractory plug mentioned above have a short service life when compared to the large converter bottom, and even though the converter bottom is still healthy, the metal pipe or refractory When the tuyere of the manufactured plug reaches the end of its life, it is necessary to replace the furnace body or close the tuyere to stop the injection of bottom-blown inert gas, and the W1 injected from the top-blowing lance is replaced.
Uneconomical measures such as refining only with raw materials had to be taken.

この発明は、以上の従来の事情に鑑みてなされたもので
あり、羽口の溶損を有効に防止できると同時に、広い範
囲で吹込み流量の調整ができる製鋼容器内溶鉄中への気
体吹込み方法を提供することを目的とするものである。
This invention has been made in view of the above-mentioned conventional circumstances, and provides a method for blowing gas into molten iron in a steelmaking container, which can effectively prevent melting of the tuyere and at the same time, can adjust the blowing flow rate over a wide range. The purpose is to provide a method for embedding

この発明の発明者等は、上記目的を達成するために、ガ
ス通孔どしての金属製パイプが耐火物組成物(いわゆる
羽「]レンガ)中に埋込まれてなる底吹き用の羽口につ
いて積々実験検討を行なったところ、複数本の金属製パ
イプを集合した構造(°4なわち同一の羽口レンガに複
数本の金属製パイプを埋込んだ構造)とするとともに、
それらの各金属製パイプの内径を従来よりも格段に小さ
く(3m!!1以下)して、羽口に送られる不活性ガス
の圧力を大きくすれば、羽口の溶損を有効に抑制し得る
ことを見出し・た。その理由は次の通りである。
In order to achieve the above object, the inventors of the present invention have developed a bottom-blowing blade in which a metal pipe as a gas vent is embedded in a refractory composition (so-called feather brick). After conducting extensive experiments on the opening, we found that it had a structure in which multiple metal pipes were assembled (°4, that is, a structure in which multiple metal pipes were embedded in the same tuyere brick).
By making the inner diameter of each of these metal pipes much smaller than before (3m!!1 or less) and increasing the pressure of the inert gas sent to the tuyeres, it is possible to effectively suppress the erosion of the tuyeres. I found something to gain. The reason is as follows.

f%わち第1に、羽口に送られる不活性ガスの圧力を大
きくすれば、羽口出口での不活性ガスの膨張による吸熱
効甲が大きく、羽口の冷却効果が向−トされるからであ
る。すなわち、羽口のガス通孔としてのバイ1の径を小
さくし、高圧ガスを用いれば、羽口の各パイプ内壁の単
位面積当りのガスの質量流量が増加し、ガスによる羽口
の冷却効果が向上づる。また、高圧ガスは流速が大きく
、そのためガスと羽口のパイプの内壁との間の伝熱係数
が大きくなり、それによってもガスが羽口を冷却する効
果は向上される。さらに、複数本のパイプを集合させる
構造であるので、単管に比べて羽口全体のガス流通部分
の表面積が大きく、パイプを通過中のガスと周囲の耐火
物の熱交換も促進され、羽口金体の冷却が保たれる。
f% First, if the pressure of the inert gas sent to the tuyere is increased, the heat absorption effect due to the expansion of the inert gas at the tuyere outlet increases, and the cooling effect of the tuyere is improved. This is because that. In other words, by reducing the diameter of the via 1 as the gas passage hole in the tuyere and using high-pressure gas, the mass flow rate of gas per unit area of the inner wall of each pipe of the tuyere increases, and the cooling effect of the gas on the tuyere is increased. will improve. In addition, the high-pressure gas has a high flow velocity, which increases the heat transfer coefficient between the gas and the inner wall of the tuyere pipe, which also improves the effectiveness of the gas in cooling the tuyere. Furthermore, since the structure is made up of multiple pipes, the surface area of the entire gas flow area of the tuyere is larger than that of a single pipe, which promotes heat exchange between the gas passing through the pipe and the surrounding refractories. Cooling of the cap body is maintained.

第2に、羽口から溶鉄中に吹込まれる不活性ガスの噴出
流の挙動の遠いに起因し、吹込ガスの圧力を高くした方
が、羽口の溶損が少なくなる。すなわち、本発明者等の
水を用いたコールドモデル実験によれば、第1図(A)
及び(B)に見られるように、ガス圧力が50〜100
k(J/c!lrの場合と、10〜20kMarの場合
では、水中に吹込まれたガスのジェット領域工と気泡領
域Hに違いが生じることが判明している。第1図(A)
に示されるようにガス圧力が50〜100kg/alr
の場合は、羽口1から吹込まれたガスは相当距離ジェッ
ト状で進行した後に、気泡となって浮上する。したがっ
て、ジェット領域工が長い。これに比較すると、’11
図(8)に示されるようにガス圧力が10〜20kg/
cdの場合は、羽口1から吹込まれたガスがジェット状
で進行する距離、すなわちジx7に一領域I +−1短
い。一般に、吹込まれるガス圧が低い程ジエツ1−状で
進行する領域■が短く、そのようにジェット・状で進行
する領域■が短いと、吹込まれたガスの気泡が羽口出口
近傍で生成し、その気泡によって羽口出口近傍の水には
乱流が発生して、水流の流速が速くなる。したがって現
実の転炉においては、羽口出口近傍の耐火物表面の溶鉄
の流速がそのような乱流の発生により加速され、それに
よ番つ羽口出口近傍の耐火物が他の部分の耐火物よりも
〒く溶損する。また、そのため羽口自体の溶損ち早めら
れてしまうこととなる。なお¥1図(Δ)、(B)にお
いてはこの発明に対応して複数本の金属パイプ2を同一
の羽口レンガ3中に埋込んでなる羽口1の例を示し・て
いる。
Secondly, due to the slow behavior of the jet flow of the inert gas blown into the molten iron from the tuyeres, the higher the pressure of the blown gas, the less the erosion of the tuyeres. That is, according to the cold model experiment using water by the present inventors, Fig. 1(A)
and (B), the gas pressure is 50-100
It has been found that there are differences in the jet area and the bubble area H of the gas blown into the water in the case of k(J/c!lr and in the case of 10 to 20 kMar. Figure 1 (A)
Gas pressure is 50-100kg/alr as shown in
In this case, the gas blown from the tuyere 1 travels a considerable distance in the form of a jet, and then floats up as bubbles. Therefore, the jet area work is long. Compared to this, '11
As shown in Figure (8), the gas pressure is 10 to 20 kg/
In the case of CD, the distance that the gas blown in from the tuyere 1 travels in a jet shape, that is, one area I + -1 shorter than the distance x7. In general, the lower the injected gas pressure, the shorter the jet-shaped region (■), and when the jet-shaped region (■) is short, bubbles of the injected gas are generated near the tuyere exit. However, the bubbles generate turbulence in the water near the tuyere outlet, increasing the flow velocity of the water flow. Therefore, in an actual converter, the flow velocity of molten iron on the surface of the refractory near the tuyere outlet is accelerated by the generation of such turbulence, and as a result, the refractory near the tuyere outlet is affected by the refractories in other parts. It is more likely to be eroded than 〒. In addition, the tuyeres themselves are subject to accelerated wear and tear. Note that Figures (Δ) and (B) show an example of a tuyere 1 in which a plurality of metal pipes 2 are embedded in the same tuyere brick 3 in accordance with the present invention.

この発明はj:1.上のような知見に基いてなされたも
のであり、製鋼容器底部に、ガス通孔としての金属製パ
イプを耐火物組成物中に埋込んでなる羽口を設置し、そ
の羽口から前記製鋼容器の溶鉄中に気体を底吹きする製
鋼容器内の溶鉄中への気体吹込み方法におい°て、 前記羽口として、共通の耐火物組成物中に複数本の金属
製パイプが埋込まれかつそれぞれのパイプの内径が31
Il以下とされた羽口を用い、かつその羽口の入口の気
体圧力が全吹込み期間の少なくとも一部の13間におい
て50 ka/’c!!r以上となるJ:うに気体を吹
込むことを特徴とするものである。
This invention j:1. This was done based on the above knowledge, and a tuyere consisting of a metal pipe embedded in a refractory composition as a gas vent is installed at the bottom of the steelmaking container, and the steelmaking process is carried out through the tuyere. In a method of blowing gas into molten iron in a steelmaking container in which gas is bottom-blown into molten iron in the container, a plurality of metal pipes are embedded in a common refractory composition as the tuyeres, and The inner diameter of each pipe is 31
A tuyere with a pressure below Il is used, and the gas pressure at the inlet of the tuyere is 50 ka/'c! for at least part of the entire blowing period. ! J which is equal to or more than r: Characterized by blowing sea urchin gas.

以下にこの発明の方法を実施例により更に詳細に説明す
る。
The method of the present invention will be explained in more detail below with reference to Examples.

第2図は、この発明の実施に供される羽口の構造を示し
ている。第2図において、転炉の底部鉄皮4の内側を被
覆する炉底レンガ5にこの発明の特徴的な羽口1が配設
されている。この羽口1は、羽口の共通耐火物組成物と
しての羽口レンガ3に、金属製パイプとしての内径3a
+m以下の複数本のステンレスパイプ2が埋込まれてい
る。これらのステンレスパイプ2の下端は蓄気室6に共
通に連結され、さらに不活性ガス送給管7に連通されて
いる。
FIG. 2 shows the structure of a tuyere used for carrying out the invention. In FIG. 2, a tuyere 1, which is characteristic of the present invention, is disposed on a hearth brick 5 covering the inside of a bottom shell 4 of a converter. This tuyere 1 has an inner diameter 3a as a metal pipe and a tuyere brick 3 as a common refractory composition of the tuyere.
A plurality of stainless steel pipes 2 with a length of +m or less are embedded. The lower ends of these stainless steel pipes 2 are commonly connected to the air storage chamber 6 and further communicated with an inert gas feed pipe 7.

このようなmmの羽口を1本用いて、そ/7)羽口のス
テンレスパイプ2の内径、本数を各種設定し、この発明
の方法を次のようにして実施した。なお各ステンレスパ
イプ2のtitは5LJS304である。第1実施例の
バrブ2の径は0.8m11で28本、第2の実施例で
は1.51で8本、第3実施例では3Iで2木とした。
Using one such mm tuyere, the inner diameter and number of stainless steel pipes 2 of the tuyere were set variously, and the method of the present invention was carried out as follows. The tit of each stainless steel pipe 2 is 5LJS304. The diameter of the bulbs 2 in the first embodiment was 0.8 m11 and 28 pieces, in the second example there were 8 pieces with a diameter of 1.51 mm, and in the third example there were 2 pieces with a diameter of 3I.

比較例としてステンレスパイプ2の内径を41とじ、6
本を集合させた。また羽口光調における羽口レンガの所
面はいずれの例でも円形とし、その径を100mmとし
た。
As a comparative example, the inner diameter of stainless steel pipe 2 is 41, and 6
I collected the books. Further, the surface of the tuyere brick in the tuyere light control was circular in all examples, and its diameter was 100 mm.

そして上記各羽口を用いて溶銑に対する吹錬を行なった
。、各実施例及び比較例において、精錬されうi8銑の
潤度は1270〜1350℃、吹錬時m tit、14
〜17分、出w4瀧度は1660〜1720℃であ)だ
。また1、各実施例において不活性ガスの吹込条件は、
ガス流量を0.01〜0.03 N−/馴・t、ガス圧
力を50〜100kL’ctとした。一方、比較例にお
いては、ガス流量を0.01〜0.03 N m’ 、
、/nm ・t 、ガス圧力を5〜20kg/dとした
Then, blowing of hot metal was performed using each of the above-mentioned tuyeres. , In each example and comparative example, the moisture content of the i8 pig to be refined is 1270 to 1350°C, m tit at the time of blowing, 14
~17 minutes, output w4 waterfall temperature is 1660-1720℃). In addition, 1. In each example, the inert gas injection conditions are as follows:
The gas flow rate was 0.01 to 0.03 N-/t, and the gas pressure was 50 to 100 kL'ct. On the other hand, in the comparative example, the gas flow rate was 0.01 to 0.03 N m',
, /nm·t, and the gas pressure was 5 to 20 kg/d.

以上の各条件で溶銑に対する吹錬を行ない、所定のチャ
ージ間隔で各実施例及び比較例における羽口の残長さを
測定し、羽口の溶損速度を求めた。
Hot metal was blown under each of the above conditions, and the remaining length of the tuyeres in each example and comparative example was measured at predetermined charging intervals to determine the erosion rate of the tuyeres.

その結果、第1実施例における溶損速度は0.1711
11〜0.21 +ue、/チャージ、第2実施例では
0.16〜0.24mm /チャージ、第3実施例では
0.19〜0.24n+m /チャージであった。
As a result, the erosion rate in the first example was 0.1711
11 to 0.21 +ue,/charge, 0.16 to 0.24 mm/charge in the second example, and 0.19 to 0.24 n+m/charge in the third example.

これに対し、比較例における溶損速度は0.32〜0.
591111 /チャージであった。この結果を第1表
に示す。
On the other hand, the erosion rate in the comparative example was 0.32-0.
It was 591111/charge. The results are shown in Table 1.

第1表 以上の結果から明らかなように、比較例の溶損速度に較
べ各実施例における溶損3!度は、はるかに小さく、し
かも、各ステンレスパイプ2は吹錬後もすべて貫通して
いる。それに対して比較例では6本のステンレスパイプ
2のうち2本のパイプが閉塞してガスが流れなかった。
As is clear from the results in Table 1 and above, the erosion rate in each example is 3! compared to the erosion rate in the comparative example! The degree is much smaller, and each stainless steel pipe 2 is completely penetrated even after blowing. On the other hand, in the comparative example, two of the six stainless steel pipes 2 were blocked and gas did not flow.

上記各実施例でも実施されたように、この発明の製鋼容
器内溶鉄中への気体吹込み方法では、溶鉄中へ吹込まれ
る気体の羽口入口圧力が50 kQ/cllr以1とな
るように設定されるが、溶鉄中に気体が吹込−よれる全
期間を通じて羽口の入口ガス圧力を50 bg、z′C
l1i’以上とする必要はなく、羽口の入口ガス圧力を
50 ka、・’ at以上とする期間は、転炉底部か
ら転炉自溶鉄中にガスを吹込む目的に応じて任意に設定
することができる。
As carried out in each of the above embodiments, in the method of blowing gas into molten iron in a steelmaking container of the present invention, the pressure at the tuyere inlet of the gas blown into the molten iron is 50 kQ/cllr or more. The gas pressure at the inlet of the tuyere is kept at 50 bg, z′C during the entire period during which gas is blown into the molten iron.
It is not necessary to keep the gas pressure at the inlet of the tuyere at 50 ka, *'at or more, and it can be set arbitrarily depending on the purpose of blowing gas from the bottom of the converter into the flash-molten iron of the converter. be able to.

一般に、転炉底部からの不活性ガスの吹込みは、次の(
1) −、−(3’)を目的として行なわれるー。
In general, the injection of inert gas from the bottom of the converter is carried out as follows (
1) -, -(3') is carried out for the purpose of -.

(1)溶鉄の炭素潤度が低くなっても、鉄の酸化に優先
して脱炭反応を生じさせ、鉄の過剰な酸化を防止して鉄
歩留を向上させる。
(1) Even if the carbon moisture content of molten iron is low, the decarburization reaction takes precedence over the oxidation of iron, preventing excessive oxidation of iron and improving the iron yield.

(2)スラグど溶鉄どの間の脱硫・脱燐反応を促進し、
不純物の除去効果を増大する。
(2) Promote desulfurization and dephosphorization reactions between slag and molten iron,
Increases impurity removal effect.

(3)吹錬前半におけるスロッピングの防止を図る。(3) Aim to prevent slopping in the first half of blowing.

転炉底部からの不活性ガスの吹込みについて、上記(1
)を目的とする場合には、吹錬後半における不活性ガス
の流量を増大する必要がある。一方、上記(2)のII
RP反応の促進する場合には、吹#A後半において不活
性ガス流量を絞る必要がある。すなわち、吹錬後半にお
いて不活性ガス流量が多いと鉄の酸化が少なくなり、ス
ラグ中の酸化鉄濃度が低下して、脱燐が良好に行なわれ
なくなるのである。
Regarding the injection of inert gas from the bottom of the converter, see (1) above.
), it is necessary to increase the flow rate of inert gas in the latter half of blowing. On the other hand, II of (2) above
When promoting the RP reaction, it is necessary to reduce the inert gas flow rate in the second half of blowing #A. That is, if the inert gas flow rate is large in the latter half of blowing, oxidation of iron will be reduced, the concentration of iron oxide in the slag will be reduced, and dephosphorization will not be carried out well.

したがって、上記(2)及び(3)を目的とする場合に
は、吹錬前半において不活性ガスを多量に吹込み、後半
には不活性ガス吹込み流量を減少させる必要がある。
Therefore, when aiming at (2) and (3) above, it is necessary to inject a large amount of inert gas in the first half of blowing, and reduce the inert gas injection flow rate in the second half.

この発明の方法によれば、内径が31以下の複数本の金
属パイプが用いられるので、上記(2)及び(3)を目
的とした吹込ガス流量の調整も容易に行なえる。すなわ
ち、従来の大径ノズルを用い、低圧ガスを吹込む方法で
は、吹錬の途中で吹込ガスの流量を大幅に減らすと、羽
口が溶鉄によって閉塞するおそれがあった。しかしなが
らこの発明の方法によればそのようなおそれはなく、吹
錬の途中でガス流量な大幅に減らすことができる。
According to the method of the present invention, since a plurality of metal pipes with an inner diameter of 31 mm or less are used, the flow rate of the blown gas can be easily adjusted for the purposes of (2) and (3) above. That is, in the conventional method of blowing low-pressure gas using a large-diameter nozzle, if the flow rate of the blowing gas was significantly reduced during blowing, there was a risk that the tuyeres would be clogged with molten iron. However, according to the method of the present invention, there is no such fear, and the gas flow rate can be significantly reduced during the blowing process.

以上のことは、前記各実施例から明らかである。The above is clear from each of the above embodiments.

すなわら実施例1・〜3においてはガス圧力を50・−
100kg/l・シとしてもガス流量は0.01〜0.
03Nrn”/+傭・+Pi!度と、過剰に流れること
はない。
That is, in Examples 1 to 3, the gas pressure was set to 50.
Even if it is 100 kg/l・shi, the gas flow rate is 0.01~0.
03Nrn''/+Yen・+Pi! degree, it does not flow excessively.

これに対し、土較例の4nu++のステンレスパイプを
用いればガスIF力が5〜20kg/cllrで0.0
1〜0.03 N m’ /’輔・(のガス流量が流れ
、しかも2本パイプの閉塞が生じた。これは、低圧力で
は同一流量でも羽口閉塞が生じることを意味しており、
低圧力下での流Q (L! fiは操業上問題となるこ
とが明らかである。
On the other hand, if you use the 4nu++ stainless steel pipe in the soil comparison example, the gas IF force will be 0.0 at 5 to 20 kg/cllr.
A gas flow rate of 1 to 0.03 N m'/'輔・() flowed, and two pipes were blocked. This means that at low pressure, tuyere blockage would occur even at the same flow rate.
It is clear that the flow Q (L!fi) under low pressure is an operational problem.

次に、ごの発1iqの方法によって、実際に前記(2)
及び(3)を目的とした吹錬を実施した実施例を説明す
る。
Next, by using the method described above, (2) is actually carried out.
An example in which blowing was carried out for the purpose of (3) and (3) will be described.

羽口のステラ1ノスパイブ径、本数等の吹錬の条件は、
前記したこの発明の第1実施例と同じくし、また、結果
を比較するために、前記各実施例に対する比較例の方法
によっても前記(2)及び(3)を目的とした吹錬を実
施した。
The conditions for blowing, such as the diameter and number of Stella 1 nozzle pipes in the tuyere, are as follows:
In the same manner as in the first embodiment of this invention described above, and in order to compare the results, blowing was carried out for the purposes of (2) and (3) also by the method of the comparative example for each of the above embodiments. .

対象となる溶銑の成分は、Cが4.3〜4.4%、3i
が0.12〜0.40%、Mnが0.35 ・−0,4
5%、Pが0.10〜0.12%、Sが0ゴ02〜0.
03%であり、吹錬終了時の溶鋼成分のC濃度は0.0
4〜0.09 %、fJ jI 4J 1680 =−
’I 730 Cであつ Iこ 。
The components of the target hot metal are 4.3 to 4.4% C, 3i
is 0.12 to 0.40%, Mn is 0.35 ・-0.4
5%, P 0.10-0.12%, S 0go02-0.
03%, and the C concentration of the molten steel component at the end of blowing is 0.0.
4-0.09%, fJ jI 4J 1680 =-
'I 730 C de Atsu Iko.

この発明の方法を実施した吹錬においては、吹錬開始時
から吹III了時までの全期間のうち、吹lI開始時か
ら7割の時囚におけるガス圧力を60〜90kilI/
d、ガス流量を平均0 、03 N m’ / ra 
’tどし、その稜ガス圧力を10−15にΩ7・dに減
圧し、またガス流量を平均0.003〜0.005Nm
’z’wi−1に減量した。一方、比較例では、吹錬開
始時から7割の期間におけるガス圧力を10〜20ka
iai、ガス流Ωを上記実施例と同様に平均0603N
m’/篩・とじ、その後ガス圧力を3〜5ko/dに減
圧して、ガス流量を溶銑が羽口に流入して羽口が閉塞し
ないようにするために必要な最小のtRIraル0.0
1〜0.02 Nm3/lll1l−t 1.:m1i
bた。
In blowing using the method of this invention, during the entire period from the start of blowing to the end of blowing III, during 70% of the time from the start of blowing I, the gas pressure in the prisoner is set at 60 to 90 kilI/
d, average gas flow rate 0, 03 N m'/ra
Then, the ridge gas pressure was reduced to 10-15Ω7・d, and the gas flow rate was adjusted to an average of 0.003 to 0.005 Nm.
The weight was reduced to 'z'wi-1. On the other hand, in the comparative example, the gas pressure during 70% of the period from the start of blowing was set at 10 to 20 ka.
iai, the gas flow Ω is on average 0603N as in the above example.
m'/sieve/seal, then reduce the gas pressure to 3 to 5 ko/d, and adjust the gas flow rate to the minimum tRIra 0.0.m' required to prevent hot metal from flowing into the tuyere and clogging the tuyere. 0
1-0.02 Nm3/lll-t 1. :m1i
b.

以上の実施例及び比較例において、吹錬終了時の溶鋼の
成分を分析し、炭素濃度とms度との関係を求めた。、
(の結果を第3図に示す。第3図に示さ4するJうに、
吹錬末期のガス流量の大きいこの発明の実R例の方が比
較例に較べてP4濃度が低く、この発明の方法が脱燐特
性に優れていることがわかる。
In the above Examples and Comparative Examples, the components of the molten steel at the end of blowing were analyzed, and the relationship between carbon concentration and ms degrees was determined. ,
(The results are shown in Figure 3.
It can be seen that the actual R example of the present invention, in which the gas flow rate at the final stage of blowing is large, has a lower P4 concentration than the comparative example, and that the method of the present invention has excellent dephosphorization properties.

なお、この発明の方法の対象−となるのは転炉のみ1こ
限らず、例えば、取w4製錬を行なう場合についてもこ
の発明の方法を実施することができる。
Note that the method of the present invention is applicable not only to converters, but also to, for example, W4 smelting.

以上のようにこの発明によれば、内径が3+II!11
以下の複数本の金属製パイプを共通の羽口レンガ中に埋
込んだ羽口を用い、羽口の入口圧力が50k。
As described above, according to this invention, the inner diameter is 3+II! 11
A tuyere in which the following multiple metal pipes are embedded in a common tuyere brick is used, and the inlet pressure of the tuyere is 50 k.

7ci以上となるように製鋼容器内の溶鉄中へ気体を吹
込むようにしたことによって、羽口の溶損を防止して羽
口の耐用寿命を長くすることができる。
By blowing gas into the molten iron in the steel making container so that the molten iron reaches 7 ci or more, it is possible to prevent the tuyere from melting and damage and extend the useful life of the tuyere.

更に、この発明の方法を実施する際には、ガス吹込流量
を広い範囲でr:I整することができ、したがって、脱
燐及び脱硫或いは鉄歩留の向上等の目的に応じた吹錬を
行なうことが出来る。
Furthermore, when carrying out the method of the present invention, the gas blowing flow rate can be adjusted to r:I over a wide range, so that blowing can be carried out according to purposes such as dephosphorization and desulfurization or improving iron yield. It can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)は、水中に吹込まれるガスの圧力
ど吹込まれたガスジェットの挙動との関係を示す模式図
、第2図はこの発明の実態に供される羽口の断面図、第
3図は吹sPi了時の炭素濃度と燐濃度どの関係を示す
図である。 1・・・羽口、 2・・・金属製パイプ(ステンレスパ
イプ)、 3・・・耐火物組成物(羽口レンガ)、 ン
・・・不活性ガス送給管。
Figures 1 (A) and (B) are schematic diagrams showing the relationship between the pressure of gas blown into water and the behavior of the blown gas jet, and Figure 2 is a tuyere used for the actual state of this invention. FIG. 3 is a diagram showing the relationship between carbon concentration and phosphorus concentration at the end of blowing SPi. DESCRIPTION OF SYMBOLS 1...Tuyere, 2...Metal pipe (stainless steel pipe), 3...Refractory composition (tuyere brick), N...Inert gas feed pipe.

Claims (1)

【特許請求の範囲】 製鋼容器底部に、ガス通孔としての金属製パイプを耐火
物組成物中に埋込んでなる羽口を設置し、その羽口から
前記製鋼容器の溶鉄中に気体を底吹きする製鋼容器内の
溶鉄中への気体吹込み方法において、 前記羽口として、共通の耐火物組成物中に複数本の金属
製パイプが埋込まれかつそれぞれのパイプの内径が3m
m以下の羽口を用い、かつその羽口の入口の気体圧力が
全吹込み期間の少なくとも一部の期間において50kg
/cm^2以上となるように気体を吹込むことを特徴と
する製鋼容器内の溶鉄中への気体吹込み方法。
[Scope of Claims] A tuyere consisting of a metal pipe embedded in a refractory composition as a gas vent is installed at the bottom of the steelmaking container, and gas is pumped through the tuyere into the molten iron in the steelmaking container. In a method for blowing gas into molten iron in a blowing steelmaking container, as the tuyere, a plurality of metal pipes are embedded in a common refractory composition, and each pipe has an inner diameter of 3 m.
m or less, and the gas pressure at the inlet of the tuyere is 50 kg during at least part of the entire blowing period.
A method for blowing gas into molten iron in a steelmaking container, characterized by blowing gas into molten iron in a steel making container so that the gas is blown into molten iron at a pressure of /cm^2 or more.
JP12495384A 1984-06-18 1984-06-18 Method for blowing gas into molten iron in steel making vessel Granted JPS613817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12495384A JPS613817A (en) 1984-06-18 1984-06-18 Method for blowing gas into molten iron in steel making vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12495384A JPS613817A (en) 1984-06-18 1984-06-18 Method for blowing gas into molten iron in steel making vessel

Publications (2)

Publication Number Publication Date
JPS613817A true JPS613817A (en) 1986-01-09
JPH0440407B2 JPH0440407B2 (en) 1992-07-02

Family

ID=14898296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12495384A Granted JPS613817A (en) 1984-06-18 1984-06-18 Method for blowing gas into molten iron in steel making vessel

Country Status (1)

Country Link
JP (1) JPS613817A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153818A (en) * 1983-02-21 1984-09-01 Nippon Steel Corp Refining process in top and bottom-blown converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153818A (en) * 1983-02-21 1984-09-01 Nippon Steel Corp Refining process in top and bottom-blown converter

Also Published As

Publication number Publication date
JPH0440407B2 (en) 1992-07-02

Similar Documents

Publication Publication Date Title
US4405365A (en) Method for the fabrication of special steels in metallurgical vessels
US4280838A (en) Production of carbon steel and low-alloy steel with bottom blowing basic oxygen furnace
US4302244A (en) Steel conversion method
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
JPS613817A (en) Method for blowing gas into molten iron in steel making vessel
US4462825A (en) Method for increasing the scrap melting capability of metal refining processes
US4007035A (en) Method of using an expendable tap hole tuyere in open hearth decarburization
CN103160636B (en) The method of the even molten steel composition of a kind of converter tapping alloying
JPS6187810A (en) Method for blowing gas into molten iron in refining vessel
JP2002012907A (en) Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace
JP4686873B2 (en) Hot phosphorus dephosphorization method
JPS59185718A (en) Method for blowing gas into molten iron in steel manufacture vessel
KR100225249B1 (en) Remaining slag control method of of slopping control
JPS5833290B2 (en) Oxygen bottom blowing converter
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
SU1289891A1 (en) Method of steel melting in converter
CN117286299A (en) Method for smelting low-phosphorus steel by converter
JPS61276912A (en) Operating method for top and bottom blown converter
SU711106A1 (en) Method of steel production in convertor
JPS5819421A (en) Manufacture of steel with converter
JPS5970709A (en) Spiral conduit for gas blowing tuyere for refining
JPH0639612B2 (en) Tubular structure of converter bottom
JPH02179815A (en) Method and apparatus for refining stainless steel
JPS63179013A (en) Smelt-reduction method for top and bottom blow refining furnace
JP2003268434A (en) Top-blown lance and process for refining molten iron using this

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees