JPS6138127B2 - - Google Patents

Info

Publication number
JPS6138127B2
JPS6138127B2 JP15247379A JP15247379A JPS6138127B2 JP S6138127 B2 JPS6138127 B2 JP S6138127B2 JP 15247379 A JP15247379 A JP 15247379A JP 15247379 A JP15247379 A JP 15247379A JP S6138127 B2 JPS6138127 B2 JP S6138127B2
Authority
JP
Japan
Prior art keywords
gold
potassium
solution
tetracyanoaurate
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15247379A
Other languages
Japanese (ja)
Other versions
JPS5678418A (en
Inventor
Takashi Konase
Shunichiro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP15247379A priority Critical patent/JPS5678418A/en
Publication of JPS5678418A publication Critical patent/JPS5678418A/en
Publication of JPS6138127B2 publication Critical patent/JPS6138127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/11Complex cyanides

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金或いは金合金鍍金用テトラシアノ金
()酸カリウムの新規な製造方法に関するもの
である。 従来、金或いは金合金鍍金において鍍金浴とし
て酸性、中性、及びアルカリ性の浴がその目的、
用途に応じて適宜用いられており、そのいずれも
おいても鍍金用試薬としてジシアノ金()酸カ
リウム(KAu(CN)2)が広く使用されている。 しかし、ジシアノ金()酸カリウムは酸性域
において不安定なため鍍金操作上種々の工夫を要
し、浴の管理も容易でないという問題があつた。 最近、金或いは金合金鍍金においてテトラシア
ノ金()酸カリウム(KAu(CN)4)が酸性域に
おいても安定的に挙動し鍍金用試薬として好適で
あることが提案されている。 このテトラシアノ金()酸カリウムの製造方
法として、これまでシアン化金()をシアン化
カリウム水溶液中で加熱下で反応させる方法、或
いは塩化金()をフエロシアン化カリウム水溶
液と反応させ、得られたカリウム塩を複分解させ
る方法が公知である。 しかし前者はスタート物質であるシアン化金
()が入手困難でありまたその製造も工業的に
困難であるという問題を有し、後者はその製造過
程で鉄が製品中に混入し、高品質のものが得られ
ないという問題を有していた。 本発明者は上記従来の欠点に鑑み、鋭意研究の
結果、簡単な操作でしかも高品質の金或いは金合
金鍍金用テトラシアノ金()酸カリウムの製造
方法を提供するに至つた。 即ち本発明は塩化金()水溶液にシアン化カ
リウムを加えて反応させた後、該反応生成物を有
機系溶媒で抽出することを特徴とするテトラシア
ノ金()酸カリウムの製造方法を提供する。 以下本発明について詳しく説明する。 本発明で用いる塩化金()(AuCl3)は以下に
記載する種々の方法で得ることができる。 即ち乾燥した細粉状の金に900〜950mmHgの加
圧下で塩素ガスを225〜250℃で作用させ生じた塩
化金()を昇華させ、この塩素ガス中で結晶化
させることによつて塩化金()を得ることがで
きる。 また金を王水に溶解し次式により塩化金()
を生成する方法もある。 2Au+2HNO3+6HCl→ 2AuCl3+4H2O+2NO↑ 或いは別の方法として電気金を陽極として隔膜
を用い100〜400g/の塩酸溶液中で電解溶出し
てAu濃度100〜400g/の塩化金()酸
(HAuCl4)溶液を得、この塩化金()酸溶液を
加熱濃縮後、120〜150℃,300〜760mmHgの条件
下で減圧加熱を行ない脱塩酸して塩化金()を
得ることもできる。 上記いずれかの方法により得られた純度99%以
上の塩化金()を純水で溶解しAu濃度100〜
300g/の塩化金溶液とした後、シアン化カリ
ウムを加えて、撹拌下で反応させる。ここで用い
るシアン化カリウムはできるだけ高純度(純度95
%以上)のものが好ましく、固体粉末状或いは水
溶液のいずれの形態で用いてもよい。水溶液とし
て用いる場合は200〜400g/の濃度のものが好
ましい。 前記反応は下記反応式によつて進行するものと
考えられる。 AuCl3+4KCN=KAu(CN)4+3KCl ここで塩化金()1モルに対して4モルのシ
アン化カリウムを加えると、溶液は淡黄色を呈
し、更に加えると無色透明になる。 本発明では上記反応を十分に行なわせるととも
に反応の終点を明確にするためにシアン化カリウ
ムは赤褐色を呈する塩化金()水溶液の色が無
色となるまで撹拌下で添加する。 従つてシアン化カリウムの添加量は塩化金
()1モルに対して4モルよりも若干過剰の4.2
〜4.8モルとする。 上記反応が終つた溶液を、液表面に皮膜や形成
し始めるまで70〜100℃で加熱濃縮した後5〜30
℃に冷却して、反応生成物を晶出し、そして別
する。 この時の冷却速度は後の抽出操作の効率を考慮
してできるだけ微細な晶出物を得るべく−2〜−
5℃/minの冷却速度にすることが好ましい。 次いで上記別により得られた反応生成物を有
機系溶剤と接触させることにより有機系溶剤中へ
テトラシアノ金()酸カリウムを抽出し、そし
て過或いはデカンテーシヨンにより有機系溶剤
に抽出されない塩化カリウムと分離する。この操
作は有機系溶剤へ該反応生成物を混入し100〜300
g/のスラリ状とし、接触効率を高めるため、
撹拌下に行なうことが好ましい。 上記有機系溶剤は、テトラシアノ金()酸カ
リウムを溶解し、塩化カリウムを溶解しないもの
であればよい。 例えば有機系溶剤としてメチルアルコール、エ
チルアルコール、エチルエーテル、アセトン等が
The present invention relates to a novel method for producing potassium tetracyanoaurate for gold or gold alloy plating. Conventionally, acidic, neutral, and alkaline baths have been used as plating baths for gold or gold alloy plating.
It is used as appropriate depending on the application, and potassium dicyanaurate (KAu(CN) 2 ) is widely used as a plating reagent in all of them. However, since potassium dicyanoaurate () is unstable in an acidic region, various measures must be taken in plating operations, and bath management is also difficult. Recently, it has been proposed that potassium tetracyanoaurate (KAu(CN) 4 ) behaves stably even in an acidic region and is suitable as a plating reagent for gold or gold alloy plating. As methods for producing potassium tetracyanoaurate (), there have been two methods: reacting gold cyanide () in an aqueous potassium cyanide solution under heating, or reacting gold chloride () with an aqueous potassium ferrocyanide solution to produce a potassium salt. A method of metathesizing is known. However, the former has the problem that the starting material, gold cyanide, is difficult to obtain and its production is also industrially difficult, and the latter has the problem that iron is mixed into the product during the manufacturing process, resulting in a high quality product. The problem was that they couldn't get anything. In view of the above-mentioned conventional drawbacks, the present inventor has conducted extensive research and has now provided a method for producing potassium tetracyanoaurate () for plating gold or gold alloy with simple operation and high quality. That is, the present invention provides a method for producing potassium tetracyanoaurate (), which comprises adding potassium cyanide to an aqueous solution of gold () chloride and reacting it, and then extracting the reaction product with an organic solvent. The present invention will be explained in detail below. Gold chloride (AuCl 3 ) used in the present invention can be obtained by various methods described below. That is, gold chloride is produced by sublimating gold chloride () produced by applying chlorine gas at 225 to 250°C under a pressure of 900 to 950 mmHg to dried fine powder gold, and crystallizing it in this chlorine gas. () can be obtained. In addition, gold chloride () can be obtained by dissolving gold in aqua regia and using the following formula.
There is also a way to generate . 2Au+2HNO 3 +6HCl→ 2AuCl 3 +4H 2 O+2NO↑ Alternatively, as an alternative, electrolytic gold is used as an anode and a diaphragm is used to electrolytically elute in a hydrochloric acid solution of 100 to 400 g/g to produce chloroauric acid (HAuCl) with an Au concentration of 100 to 400 g/ 4 ) Gold chloride () can also be obtained by obtaining a solution, heating and concentrating this chloroauric () acid solution, and then dehydrochlorinating it by heating under reduced pressure at 120-150°C and 300-760 mmHg. Dissolve gold chloride () with a purity of 99% or more obtained by any of the above methods in pure water to obtain an Au concentration of 100~
After making a 300 g/g gold chloride solution, potassium cyanide is added and reacted with stirring. The potassium cyanide used here is as pure as possible (purity 95
% or more), and may be used in the form of either solid powder or aqueous solution. When used as an aqueous solution, the concentration is preferably 200 to 400 g/. The reaction is thought to proceed according to the following reaction formula. AuCl 3 +4KCN=KAu(CN) 4 +3KCl Here, when 4 mol of potassium cyanide is added to 1 mol of gold chloride (), the solution becomes pale yellow, and when more is added, it becomes colorless and transparent. In the present invention, potassium cyanide is added under stirring until the reddish-brown aqueous solution of gold chloride () becomes colorless in order to ensure that the above reaction is carried out sufficiently and to clarify the end point of the reaction. Therefore, the amount of potassium cyanide added is 4.2, which is slightly in excess of 4 mol per 1 mol of gold chloride ().
~4.8 mol. The solution after the above reaction is heated and concentrated at 70 to 100℃ until a film starts to form on the surface of the solution.
Upon cooling to 0.degree. C., the reaction product crystallizes out and is separated. The cooling rate at this time is -2~- to obtain as fine a crystallized product as possible in consideration of the efficiency of the subsequent extraction operation.
Preferably, the cooling rate is 5°C/min. Next, the reaction product obtained in the above separation is brought into contact with an organic solvent to extract potassium tetracyanoaurate () into the organic solvent, and potassium chloride that is not extracted into the organic solvent is extracted by filtration or decantation. To separate. This operation involves mixing the reaction product into an organic solvent and
In order to improve the contact efficiency,
It is preferable to carry out the reaction under stirring. The organic solvent may be any solvent as long as it dissolves potassium tetracyanoaurate but does not dissolve potassium chloride. For example, methyl alcohol, ethyl alcohol, ethyl ether, acetone, etc. are organic solvents.

【表】 このようにして得られたテトラシアノ金()
酸カリウム水溶液のAu濃度は100〜500g/で
ありこのままでも十分鍍金用試薬として実用に供
し得るが、所望により固体結晶状として供給する
こともできる。 即ち上記テトラシアノ金()酸カリウム水溶
液を液表面に結晶被膜の形成が認められるまで80
〜100℃で加熱濃緒を行ない、次いで常温まで放
置冷却してテトラシアノ金()酸カリウムを晶
出する。 これを減圧過分離して得た晶出物を50〜80℃
にて真空乾燥することによりテトラシアノ金
()酸カリウムの板状結晶を得ることができ
る。 以下実施例に基づき本発明を更に詳細に説明す
る。 実施例 1 純度99.998%の電気金板(21cm×18cm×0.7
cm)を陽極として、18%塩酸溶液中で隔膜(日本
硝子製)を用い、90A/dm2の電流密度で電解溶
出を行ないAu濃度320g/の塩化金()酸
(HAuCl4)溶液を得た。 この塩化金()酸溶液200mlを102℃で煮沸濃
縮した後、120℃、600mmHgの条件下で7時間真
空乾燥を行ない脱塩酸して、純度99%の塩化金
()(AuCl3)を得た。 この塩化金()を純水で溶解し、Au濃度200
g/の塩化金()水溶液300mlとした後、こ
れにシアン化カリウムを溶液の赤褐色が無色にな
るまで添加した。この時のシアン化カリウムの添
加量は85gであつた。 上記反応終了後該溶液を、液表面に皮膜が形成
し始めるまで100℃で加熱濃縮した後、約30分か
けて5℃まで徐冷して168gの晶出物を得た。次
いで該晶出物をエチルアルコールで2段階抽出を
行なつた後、過して得られたエチルアルコール
抽出液1000mlに200mlの純水を加え撹拌後80℃で
蒸溜を行ない液を濃縮した。 濃縮は液表面に結晶被膜ができるまで行ない、
以後これを5℃まで冷却し、そして減圧過する
ことによつて40gの晶出物を得た。 次いでこの晶出物を80℃で真空乾燥することに
より、36gの板状の結晶を得た。 得られた板状結晶の分析結果は下記の如くであ
つた。 Au :57.4% K :11.2% Cl :0.1%以下 CN :30.5% H2O(結晶水):0.8% また結晶中の金の原子価分析を行なつた結果金
の原子価は三価であつた。このことから得られた
結晶は間違いなくテトラシアノ金()酸カリウ
ムであることを確認した。 参考例 1 実施例1で得られたテトラシアノ金()酸カ
リウムの結晶を純水に溶解し2.0g/の金を含
有する水溶液とし、これに硫酸を加えてPH1.0の
鍍金浴を得た。 陽極としてPt板、陰極として真鍮板を用い、浴
温度40℃、陰極電流密度1.0A/dm2として上記
鍍金浴中で金の電気鍍金を行なつた。 鍍金操作中、浴は極めて安定であり、陰極板上
には均一で美麗な銃金被膜が得られた。 参考例 2 実施例1で得られたテトラシアノ金()酸カ
リウムと市販のジシアノ金()酸カリウムを
夫々、硫酸、塩酸、及びクエン酸の各浴にPH1.0
となるように溶解して沈殿発生の有無を観察し
た。 ジシアノ金()酸カリウムではいずれの浴に
おいてもシアン化第一金(AuCN)の白色沈殿が
生成されたがテトラシアノ金()酸カリウムで
はいずれの浴においても沈殿が生成せず、酸性域
で極めて安定であつた。 以上説明したように本発明により、鍍金用試薬
として酸性域でも極めて安定に挙動するテトラシ
アノ金()酸カリウムが簡単な操作でしかも高
品質をもつて製造することが可能となり、金或い
は金合金鍍金分野の技術の発展に寄与するところ
大である。
[Table] Tetracyano gold obtained in this way ()
The Au concentration of the potassium acid aqueous solution is 100 to 500 g/L, and it can be used as a plating reagent as it is, but it can also be supplied in the form of solid crystals if desired. That is, the above potassium tetracyanoaurate aqueous solution was heated for 80 minutes until formation of a crystalline film was observed on the surface of the solution.
The mixture is heated at ~100°C and then left to cool to room temperature to crystallize potassium tetracyanoaurate. The crystallized product obtained by over-separating this under reduced pressure was heated to 50-80℃.
Platy crystals of potassium tetracyanoaurate can be obtained by drying under vacuum. The present invention will be explained in more detail below based on Examples. Example 1 Electric gold plate with 99.998% purity (21cm x 18cm x 0.7cm)
Using a diaphragm (manufactured by Nippon Glass Co., Ltd.) in an 18% hydrochloric acid solution as an anode, electrolytic elution was carried out at a current density of 90 A/dm 2 to obtain a chloroauric acid (HAuCl 4 ) solution with an Au concentration of 320 g/cm). Ta. After boiling and concentrating 200 ml of this chloroauric acid solution at 102°C, vacuum drying was performed for 7 hours at 120°C and 600 mmHg to remove hydrochloric acid, yielding gold chloride () (AuCl 3 ) with a purity of 99%. Ta. Dissolve this gold chloride () in pure water to obtain an Au concentration of 200.
After preparing 300 ml of an aqueous solution of gold chloride (g/g), potassium cyanide was added thereto until the reddish brown color of the solution became colorless. The amount of potassium cyanide added at this time was 85 g. After the above reaction was completed, the solution was heated and concentrated at 100°C until a film began to form on the liquid surface, and then gradually cooled to 5°C over about 30 minutes to obtain 168 g of crystallized product. Next, the crystallized product was extracted in two stages with ethyl alcohol, and 200 ml of pure water was added to 1000 ml of the ethyl alcohol extract obtained by filtration, stirred, and then distilled at 80°C to concentrate the liquid. Concentration is carried out until a crystal film forms on the surface of the liquid.
Thereafter, this was cooled to 5° C. and filtered under reduced pressure to obtain 40 g of crystallized product. Next, this crystallized product was vacuum-dried at 80°C to obtain 36 g of plate-shaped crystals. The analysis results of the obtained plate crystals were as follows. Au: 57.4% K: 11.2% Cl: 0.1% or less CN: 30.5% H 2 O (crystal water): 0.8% In addition, the valence analysis of gold in the crystal revealed that the valence of gold is trivalent. Ta. This confirmed that the obtained crystals were definitely potassium tetracyanoaurate. Reference Example 1 The crystals of potassium tetracyanoaurate () obtained in Example 1 were dissolved in pure water to obtain an aqueous solution containing 2.0 g of gold, and sulfuric acid was added to this to obtain a plating bath with a pH of 1.0. . Gold electroplating was carried out in the above plating bath using a Pt plate as an anode and a brass plate as a cathode at a bath temperature of 40° C. and a cathode current density of 1.0 A/dm 2 . During the plating operation, the bath was extremely stable and a uniform and beautiful gunmetal coating was obtained on the cathode plate. Reference Example 2 Potassium tetracyanoaurate () obtained in Example 1 and commercially available potassium dicyanoaurate () were heated to pH 1.0 in each bath of sulfuric acid, hydrochloric acid, and citric acid.
The presence or absence of precipitation was observed. With potassium dicyanoaurate (), a white precipitate of gold-rich cyanide (AuCN) was formed in all baths, but with potassium tetracyanoaurate (), no precipitate was formed in any bath, and it was extremely difficult to form a precipitate in the acidic region. It was stable. As explained above, the present invention makes it possible to produce potassium tetracyanoaurate (), which behaves extremely stably as a plating reagent even in an acidic region, with simple operations and with high quality, and which can be used for gold or gold alloy plating. This will greatly contribute to the development of technology in this field.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化金()水溶液にシアン化カリウムを加
えて反応させた後、該反応生成物を有機系溶剤で
抽出することを特徴とするテトラシアノ金()
酸カリウムの製造方法。
1 Tetracyanogold(), which is characterized by adding potassium cyanide to an aqueous solution of gold chloride() and reacting it, and then extracting the reaction product with an organic solvent.
Method for producing potassium acid.
JP15247379A 1979-11-27 1979-11-27 Preparation of potassium tetracyanoaurate (3) Granted JPS5678418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15247379A JPS5678418A (en) 1979-11-27 1979-11-27 Preparation of potassium tetracyanoaurate (3)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15247379A JPS5678418A (en) 1979-11-27 1979-11-27 Preparation of potassium tetracyanoaurate (3)

Publications (2)

Publication Number Publication Date
JPS5678418A JPS5678418A (en) 1981-06-27
JPS6138127B2 true JPS6138127B2 (en) 1986-08-27

Family

ID=15541277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15247379A Granted JPS5678418A (en) 1979-11-27 1979-11-27 Preparation of potassium tetracyanoaurate (3)

Country Status (1)

Country Link
JP (1) JPS5678418A (en)

Also Published As

Publication number Publication date
JPS5678418A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
CA1322855C (en) Process for refining gold and apparatus employed therefor
US3530049A (en) Gold and ruthenium plating baths
JPH04331235A (en) Production of polysilane
KR20150124884A (en) Preparation method of metal cyanide using cooling crystallization and dewatering process
US3760070A (en) Manufacture of copper oxide
US3598706A (en) Acid gold plating baths
US3091626A (en) Method of making ferrous citrate
JPS6138127B2 (en)
US3989800A (en) Alkali metal gold cyanide method
JP2000319016A (en) Production of gold sodium sulfite solution
JPS6169991A (en) Manufacture of ammonium salt of n,n,n',n'-tetrakis-(p-dialkylamino)-p-phenylenediamine
JPS60258193A (en) Quaternary ammonium salt of mono-, di- or trisulfonated triarylphosphine and manufacture
CN109183093B (en) Preparation method of tetraammine palladium bicarbonate compound
US4658047A (en) Method of preparing 1,2-diaminocyclohexane tetrachloro platinum (IV) isomers
JP2560061B2 (en) Method for producing gold (II) cyanide salt
US3981782A (en) Electroplating of gold and gold compounds therefor
JP2993983B2 (en) Separation method of barium from water-soluble strontium salt
JPH03146419A (en) Production of gold sulfite
JPS6035439B2 (en) Palladium electroplating method
JP2006045089A (en) METHOD FOR PRODUCING DI-mu-CHLOROBIS(1,5-CYCLOOCTADIENE) DIIRIDIUM(I)
CN105293594B (en) A kind of synthetic method of cis-platinum
KR920001586B1 (en) Method for making a kcn
JPH03180481A (en) Production of copper oxide powder by electrolysis
JP3859093B2 (en) Method for producing antitumor platinum complex carboplatin
US2956057A (en) Process for the preparation of pteroylglutamic acid