JPS6137848B2 - - Google Patents
Info
- Publication number
- JPS6137848B2 JPS6137848B2 JP2383478A JP2383478A JPS6137848B2 JP S6137848 B2 JPS6137848 B2 JP S6137848B2 JP 2383478 A JP2383478 A JP 2383478A JP 2383478 A JP2383478 A JP 2383478A JP S6137848 B2 JPS6137848 B2 JP S6137848B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- circuit
- relay
- voltage
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 24
- 238000009499 grossing Methods 0.000 claims description 10
- 230000002441 reversible effect Effects 0.000 claims description 9
- 230000006378 damage Effects 0.000 description 5
- 230000018199 S phase Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 244000145845 chattering Species 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Landscapes
- Emergency Protection Circuit Devices (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は三相交流を電源として運転される電
気機器のうちの電源の誤接続または相回転が逆に
なる反相によつて破損や焼損が生じる電気機器を
保護するのに用いられる反相保護装置に関するも
のである。[Detailed Description of the Invention] [Field of Industrial Application] This invention is designed to prevent damage or burnout caused by incorrect connection of the power supply or reverse phase rotation in electrical equipment operated using three-phase alternating current as a power source. This invention relates to antiphase protection devices used to protect electrical equipment that generates.
一般に三相交流を電源とする電気機器は、その
動力源として三相誘導電動機を用いるものが多
い。この三相誘導電動機は、電源の相回転によつ
て回転方向が決まるものであり、可逆運転はその
二相を切換えて行なうものであるが、この電動機
によつて駆動される機器によつては回転方向が一
定で逆転ができず、誤つて逆転させると破損など
の事故となるものが多い。またその機器が可逆運
転できるものであつても、たとえばプロセス工業
に広く使われている伝導バルブアクチユエータな
どは電源を誤接続すると、アクチユエータのリミ
ツトスイツチが作動しないことにより、逸走して
バルブを破壊したり、電動機を焼損する事故とな
る。そこで、従来これらの機器を電源の反相から
保護する装置として用いられているものの一つ
に、誘導円板形反相継電器で3個のくま取り環形
駆動マグネツトに各相電流を流し、円板に与える
動作トルクと相回転による抑制トルクとの平衡度
により反相または欠相を検出作動する構造のもの
がある。
Generally, many electrical devices that use three-phase alternating current as a power source use a three-phase induction motor as their power source. The rotation direction of this three-phase induction motor is determined by the phase rotation of the power supply, and reversible operation is performed by switching the two phases, but depending on the equipment driven by this motor, The direction of rotation is fixed and cannot be reversed, and if reversed by mistake, it often causes damage or other accidents. Even if the equipment is capable of reversible operation, for example, if the power supply is incorrectly connected to a conduction valve actuator, which is widely used in the process industry, the actuator's limit switch will not operate, causing it to run away and destroy the valve. This may cause an accident that may cause the motor to burn out. Therefore, one of the devices conventionally used to protect these devices from the reverse phase of the power supply is an induction disk type reverse phase relay, in which each phase current is passed through three shaded ring drive magnets. There is a structure that detects phase inversion or phase loss depending on the balance between the operating torque applied to the phase rotation and the suppressing torque due to phase rotation.
しかしながら、前記反相保護装置は、回転機構
等を要して構造が複雑となり、しかも、即応性に
おいても後述の電子式3Eリレーより劣る欠点が
る。また、現在もつとも多く用いられている電子
式3Eリレーは、三相各線の負荷電流を3台の変
流器で電圧に変換し、その電圧を数段の電子回路
で処理して保護用のリレーの作動信号を出力する
ようになつているので、回路構成が複雑になると
ともに高価な変流器を3台も必要とするために、
非常にコスト高となる欠点がある。
However, the anti-phase protection device has a complicated structure because it requires a rotation mechanism and the like, and has the disadvantage that it is inferior to the electronic 3E relay described later in terms of quick response. In addition, the electronic 3E relay, which is widely used today, converts the load current of each three-phase line into voltage using three current transformers, and processes the voltage with several stages of electronic circuits to connect the protective relay. Since the circuit is designed to output an operating signal, the circuit configuration becomes complicated and three expensive current transformers are required.
It has the disadvantage of being very costly.
この発明は、このような問題点に鑑みなされた
もので、複雑な回転機構や高価な変流器を用いる
ことなく、僅かな電子部品からなる電子回路の時
定数を活用し、小型かつ堅牢で廉価に製作でき、
しかも的確に三相電源の反相を検出でき、迅速に
負荷を電源から解放してその損傷を防止すること
のできる反相保護装置を提供することを目的とす
るものである。 This invention was created in view of these problems, and utilizes the time constant of an electronic circuit made of a small number of electronic components without using a complicated rotation mechanism or expensive current transformer, and is small and robust. Can be produced inexpensively,
Moreover, it is an object of the present invention to provide an anti-phase protection device that can accurately detect anti-phase of a three-phase power supply, quickly release a load from the power supply, and prevent damage to the load.
この発明の三相交流負荷の反相保護装置は、前
記目的を達成するために、三相交流負荷に接続さ
れる三相交流回路の一線を中点として他の二線と
のそれぞれの間に、何れも半波整流素子とコンデ
ンサおよび抵抗が並列接続されて成るコンデンサ
入力形平滑回路を、それぞれの半波整流素子が互
いに逆直列接続となる向きに配して接続するとと
もに、それぞれの前記半波整流素子と前記コンデ
ンサ入力形平滑回路との各直列接続点の間に、直
流リレーと他の半波整流素子とが直列接続されか
つ前記直流リレーに他のコンデンサが並列接続さ
れて成る直流リレー回路を接続し、前記直流リレ
ーの作動接点を、前記三相交流回路を断接する主
開閉器の開閉制御回路に介挿接続した構成を要旨
とするものである。
In order to achieve the above-mentioned object, the anti-phase protection device for a three-phase AC load of the present invention is provided between one line of the three-phase AC circuit connected to the three-phase AC load and the other two lines as the midpoint. In each case, a capacitor-input smoothing circuit consisting of a half-wave rectifying element, a capacitor, and a resistor connected in parallel is connected in such a way that the half-wave rectifying elements are connected in anti-series with each other, and A DC relay comprising a DC relay and another half-wave rectifier connected in series between each series connection point of the wave rectifier and the capacitor input smoothing circuit, and another capacitor connected in parallel to the DC relay. The circuit is connected, and the operating contact of the DC relay is inserted and connected to a switching control circuit of a main switch that connects and disconnects the three-phase AC circuit.
前記構成としたことにより、三相交流回路の一
線と他の二線との各間に設けられる二つの半波整
流素子の向きが逆直列になつているから、この両
半波整流素子間に接続されている直流リレー回路
のコンデンサには、各半波整流素子にそれぞれ直
列接続されたコンデンサ入力形平滑回路に発生す
る線間電圧の差電圧があらわれる。従つて、三相
交流回路が正相に接続された場合には、二相間に
あらわれる線間電圧の位相差は120゜であつて、
その差電圧は直流リレーの定格電圧以下となり、
直流リレーは作動されない。一方、三相交流回路
が反相に接続された場合には、二相間にあらわれ
る線間電圧の位相差が240゜となり、その差電圧
が直流リレーの定格電圧以上となり、直流リレー
が駆動してその作動接点が作動され、主開閉器に
よつて負荷への主回路が遮断される。
With the above configuration, the two half-wave rectifying elements provided between one line and the other two lines of the three-phase AC circuit are oriented in anti-series, so that there is a The difference voltage between the line voltages generated in the capacitor input type smoothing circuit connected in series with each half-wave rectifying element appears in the capacitor of the connected DC relay circuit. Therefore, when a three-phase AC circuit is connected to the positive phase, the phase difference between the line voltages appearing between the two phases is 120°, and
The voltage difference is less than the rated voltage of the DC relay,
DC relays are not activated. On the other hand, when a three-phase AC circuit is connected to the opposite phase, the phase difference between the line voltages appearing between the two phases becomes 240°, and the voltage difference exceeds the rated voltage of the DC relay, causing the DC relay to drive. Its operating contact is actuated and the main switch interrupts the main circuit to the load.
以下、この発明の一実施例を図面に基づいて詳
細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.
第1図は一実施例の三相交流負荷の反相保護装
置の回路構成図で、R,S,Tは三相交流電路で
あり、例えば220Vである。1は電路または負荷
に地絡や相関短絡が生じたときに電路を遮断する
気中遮断器、2は電磁開閉器から成る負荷回路の
主開閉器であり、3はその接触子である。4は前
記主開閉器2の開閉制御回路で、破線で囲つたこ
の発明の反相保護の装置6の出力部である直流リ
レーRyとその作動接点b,b′(常時閉)を内蔵
している。5,5′は前記開閉制御回路4の交流
電源端子である。電路R,S,Tには電圧調整器
などが使用される場合もあるが、この発明に関係
ないので図示しない。6は、前述のようにこの発
明の反相保護装置であり、正相時、三相がT′相
−A点、S′相−B点、R′相−C点というように接
続される。D1,D2,D3はそれぞれダイオードか
ら成る半波正流素子で、交流最大値の2倍の逆耐
圧に耐えるものを用いている。C1,C2,C3は平
滑コンデンサで互いに逆直列となる2個のコンデ
ンサC1,C2としては、今例とし1μFを用い、
他のコンデンサC3には20μFを用いる。また、
出力抵抗R1,R2は10KΩとし、図示のように、各
コンデンサC1,C2、と各出力抵抗R1,R2との各
並列回路が半波整流素子D1,D2に直列接続され
てT′相、R′相に対しコンデンサ入力形平滑回路
を形成している。この平滑回路の時定数は上記の
ように10msec以上20msec位に設定し、直列リレ
ーRyに並列接続されたコンデンサC3による時定
数は直流リレーRyの応答性が低下しない範囲に
大きく設定する。 FIG. 1 is a circuit configuration diagram of an anti-phase protection device for a three-phase AC load according to an embodiment, where R, S, and T are three-phase AC power lines, for example, 220V. Reference numeral 1 denotes an air circuit breaker that interrupts the electric circuit when a ground fault or correlated short circuit occurs in the electric circuit or the load, 2 is the main switch of the load circuit consisting of an electromagnetic switch, and 3 is its contact. Reference numeral 4 denotes a switching control circuit for the main switch 2, which incorporates a DC relay Ry, which is the output part of the anti-phase protection device 6 of the present invention, and its operating contacts b and b' (normally closed), which are surrounded by a broken line. There is. 5 and 5' are AC power supply terminals of the opening/closing control circuit 4. A voltage regulator or the like may be used for the electric lines R, S, and T, but it is not shown because it is not related to this invention. 6 is the anti-phase protection device of the present invention as described above, and when the phase is positive, the three phases are connected as T' phase - point A, S' phase - point B, R' phase - point C. . D 1 , D 2 , and D 3 are half-wave forward current elements each consisting of a diode, which can withstand a reverse breakdown voltage twice the maximum AC value. C 1 , C 2 , C 3 are smoothing capacitors, and the two capacitors C 1 and C 2 are 1 μF in this example, and are connected in anti-series to each other.
Use 20μF for the other capacitor C3 . Also,
The output resistances R 1 and R 2 are 10KΩ, and as shown in the figure, each parallel circuit of each capacitor C 1 and C 2 and each output resistance R 1 and R 2 is connected in series to the half-wave rectifier D 1 and D 2 . They are connected to form a capacitor input type smoothing circuit for the T' and R' phases. As mentioned above, the time constant of this smoothing circuit is set to 10 msec or more and about 20 msec, and the time constant of capacitor C3 connected in parallel to series relay Ry is set large enough to not reduce the responsiveness of DC relay Ry.
次ぎに、前記実施例の作動を、第2図および第
3図を参照しながら説明する。 Next, the operation of the embodiment will be explained with reference to FIGS. 2 and 3.
第2図A〜E図は三相が正相時の各部の電圧波
形を示し、まず第2図A図のv1は第1図で示す
T′相とS′相の線間電圧、v2は線間電圧v1より120
゜位相の進んだR′相とS′相の線間電圧である。同
B図は上記線間電圧v2が半波整流素子D2で整流
された後にコンデンサC2を充電し、かつ抵抗R2
への放電特性による直流電圧V2の波形で、点9
が+で点8が−である。同C図は線間電圧v1の整
流波形で、線間電圧v2と逆極性の半波が半波整流
素子D1で整流された後にコンデンサC1を充電
し、かつ抵抗R1への放電特性によるもので、点
7を+とし、点8が−となる。同D図は電圧V2
と電圧V1との差電圧すなわち点9と点7間にあ
らわれる差電圧△VN′で、コンデンサC3がない
と仮定した場合に半波整流素子D3と直流リレー
Ryに印加される直流電圧である。同E図は第1
図のようにコンデンサC3が並列に接続されてい
る場合の差電圧△VNで、平均値は約35Vとなる
が、直流リレーRyは、定格100Vであるため、上
記35V程度の差電圧△VNでは付勢されず、また
うなりやチヤタリングも生ずることなく、その作
動接点b,b′が閉状態を保持して負荷に給電す
る。 Figures 2A to 2E show the voltage waveforms of various parts when the three phases are in positive phase, and first, v 1 in Figure 2A is shown in Figure 1.
Line voltage of T′ phase and S′ phase, v 2 is 120 from line voltage v 1
゜It is the line voltage of the R' phase and S' phase which are advanced in phase. Figure B shows that after the line voltage v 2 is rectified by the half-wave rectifier D 2 , the capacitor C 2 is charged, and the resistor R 2
The waveform of the DC voltage V 2 due to the discharge characteristics at point 9
is + and point 8 is -. Figure C shows the rectified waveform of the line voltage v 1. After the half-wave with the opposite polarity to the line voltage v 2 is rectified by the half-wave rectifier D 1 , the capacitor C 1 is charged and the voltage is applied to the resistor R 1 . This is due to the discharge characteristics, with point 7 being + and point 8 being -. The same figure D shows the voltage V 2
and the voltage V 1 , that is, the differential voltage △V N ' appearing between points 9 and 7, and assuming that there is no capacitor C 3 , the half-wave rectifier D 3 and the DC relay
This is the DC voltage applied to Ry. Figure E is the first
As shown in the figure, the average value of the differential voltage △V N when capacitors C3 are connected in parallel is approximately 35V, but since the DC relay Ry has a rating of 100V, the differential voltage △ of the above 35V At VN , the operating contacts b and b' remain closed and supply power to the load without being energized and without any beat or chattering.
つぎに、反相接続時の動作を第3図により説明
する。例えば、第1図に破線で示すようにS相お
よびT相の二相は各接続点10,11がそれぞれ
接続点12,13に誤接続されると、接続端子
B,C間に印加される電圧は、R相とT相の線間
電圧であつて同A図のv2′となり、これに対し、
接続端子A,B間に印加される電圧は、T相とS
相の線間電圧であつて前述の線間電圧v2′に対し
位相が240゜遅れたv1′となり、前述の第2図A図
の線間電圧v1に比し120゜遅れた位相になつてい
る。第3図B図は、前記線間電圧v2′が整流され
た後にコンデンサC2を充電し、かつ抵抗R2への
放電による直流電圧V2′の波形を示す。さらに、
同C図は線間電圧v1′が整流された後にコンデン
サC1を充電し、かつ抵抗R1への放電による直流
電圧V1′の波形である。さらにまた、同D図は電
圧V2′と電圧V1′との差電圧すなわち点9と点7間
にあらわれる差電圧△V′であつて、第1図に示
すコンデンサC3が接続されていないと仮定した
場合に半波整流素子D3と直流リレーRyに印加さ
れる直流電圧の波形であり、その最大値△V′Bnax
は約180Vにもなるがその発生時間はきわめて瞬
間的で、平均値は約30V程度になつて直流リレー
Ryを作動させることができないが、第1図のよ
うにコンデンサC3が接続れていることにより、
同E図に示すように、差電圧△VB′が平滑されて
平均値が約100V程度となるとともに、直流電圧
V2′の次の半数があらわれるe時点まで持続す
る。従つて、この平滑された差電圧△VBが直流
リレーRyに給電それてその作動接点b,b′が開
放されるので、主開閉器2が作動して負荷回路が
遮断され、反相接続に対し負荷を保護すると同時
に、接点b′によつて制御回路4に付設した警報表
示灯(図示せず)などを点灯し、反相接続を操作
者に表示により警報する。 Next, the operation at the time of anti-phase connection will be explained with reference to FIG. For example, as shown by the broken lines in FIG. 1, when the two phases S and T are connected incorrectly to the connection points 12 and 13, the voltage is applied between the connection terminals B and C. The voltage is the line voltage between the R phase and T phase, which is v 2 ' in the same figure A, and on the other hand,
The voltage applied between connection terminals A and B is T phase and S
The phase line voltage is v 1 ′, which is 240° behind the line voltage v 2 ′ mentioned above, and is 120° behind the line voltage v 1 in Figure 2A. It's getting old. FIG. 3B shows the waveform of the DC voltage V 2 ' caused by charging the capacitor C 2 and discharging into the resistor R 2 after the line voltage V 2 ' is rectified. moreover,
Figure C shows the waveform of the DC voltage V 1 ' caused by charging the capacitor C 1 after the line voltage V 1 ' has been rectified and discharging it to the resistor R 1 . Furthermore, Figure D shows the differential voltage between the voltage V 2 ' and the voltage V 1 ', that is, the differential voltage △V' appearing between points 9 and 7, when the capacitor C 3 shown in Figure 1 is connected. This is the waveform of the DC voltage applied to the half-wave rectifier D 3 and the DC relay Ry when it is assumed that the maximum value △V′ Bnax
The voltage reaches about 180V, but the generation time is extremely instantaneous, and the average value is about 30V, so the DC relay
Although Ry cannot be activated, by connecting capacitor C 3 as shown in Figure 1,
As shown in Figure E, the differential voltage △V B ' is smoothed to an average value of about 100V, and the DC voltage
It lasts until time e when the next half of V 2 ' appears. Therefore, this smoothed differential voltage △V B is supplied to the DC relay Ry and its operating contacts b and b' are opened, so the main switch 2 is operated and the load circuit is cut off, resulting in an anti-phase connection. At the same time, the contact b' lights up an alarm indicator light (not shown) attached to the control circuit 4 to warn the operator of the out-of-phase connection.
また、第1図に基づくS相とT相が正常に接続
され、R相とS相が反相接続された場合、すなわ
ち点14と点17がかつ点15と点16が破線で
示すようにそれぞれ誤接続されたとすると、端子
B,C間にはS相とR相間の線間電圧が印加さ
れ、端子A,B間にはR相とT相間の線間電圧が
印加されることになり、その位相差は第3図の線
間電圧v2′と線間電圧v1′との位相差と同じ240゜と
なり、各部の波形は第3図A〜E図と同一とな
り、上記同様作動して主回路を遮断する。以上述
べたとおりいずれの二相が逆接続されても装置の
2組のコンデンサ入力形平滑回路の出力電圧の平
衡が破れて直流リレーRyを付勢し、的確に反相
保護装置は作動する。 In addition, when the S phase and T phase based on FIG. If each is incorrectly connected, the line voltage between S phase and R phase will be applied between terminals B and C, and the line voltage between R phase and T phase will be applied between terminals A and B. , the phase difference is 240 degrees, which is the same as the phase difference between the line voltage v 2 ' and the line voltage v 1 ' in Figure 3, and the waveforms of each part are the same as in Figures A to E in Figure 3, and the operation is the same as above. to cut off the main circuit. As described above, even if any two phases are reversely connected, the balance between the output voltages of the two sets of capacitor input type smoothing circuits of the device is broken, energizing the DC relay Ry, and the anti-phase protection device is properly activated.
以上の実施例は交流220Vについて説明した
が、440Vの場合には直流リレーRyとして直流
200V定格のものを用いるか、または直流100V定
格の直流リレーの内部抵抗分の直列抵抗を挿入し
てもよい。またこの直流リレーRyを直流キープ
リレーに置き換えると、反相のとき接点開放の状
態がそのまま保持され、反相現象を除去し正常に
なつた時点でリセツトすることができ、保護機能
が一段と向上する。 The above embodiments have been explained for AC 220V, but in the case of 440V, DC relay Ry is used as DC relay Ry.
You can use one with a 200V rating, or insert a series resistor equivalent to the internal resistance of a DC relay with a 100V DC rating. In addition, if this DC relay Ry is replaced with a DC keep relay, the contacts will remain open when the phase is out of phase, and the protection function will be further improved by eliminating the out-of-phase phenomenon and resetting when the situation returns to normal. .
この発明は以上のように構成されているので、
三相各線に高価な変流器を挿入して負荷電流を電
圧に変換する手段を用いることなく、僅かな電子
部品の構成により三相電源の反相を瞬時に検出し
て、その負荷回路を遮断することができ、負荷、
例えば電動機あるいは電動機によつて駆動される
バルブなどの損傷や破壊を未然に防止することが
できる。しかも、構造が簡素でかつ小型化でき、
設置が便利でかつ低廉な装置となる利点がある。
Since this invention is configured as described above,
Without inserting an expensive current transformer into each three-phase line to convert the load current into voltage, the reverse phase of the three-phase power supply can be instantly detected using a small number of electronic components, and the load circuit can be changed. can cut off the load,
For example, it is possible to prevent damage or destruction to an electric motor or a valve driven by the electric motor. Moreover, the structure is simple and compact,
This has the advantage of being a convenient and inexpensive device to install.
第1図はこの発明の一実施例の三相交流負荷の
反相保護装置の回路構成図、第2図A〜E図は三
相が正相である場合の作動説明用の各部の波形
図、第3図A〜E図は三相のうち二相が逆接続さ
れた反相時の同じく各部の波形図である。
R,S,T……三相交流電路、R′,S′,T′…
…各線間電圧引出点、2……負荷主開閉器、4…
…開閉制御回路、6……反相保護装置、D1〜D3
……半波整流素子、C1〜C3……平滑コンデン
サ、R1〜R2……出力抵抗、Ry……直流リレー、
b,b′……同上の作動接点(常時閉)、v1……正
相時のS相とT相の線間電圧、v1′……反相時の
上記線間電圧、v2……正相時のR相とS相の線間
電圧、v2′……反相時の上記線間電圧、V1,V1′,
V2,V2′……v1,v1′,v2,v2′のそれぞれ半波整流
出力電圧、△VN……正相時のリレーRyに印加さ
れる差電圧、△VB……反相時のリレーRyに印加
される差電圧。
Fig. 1 is a circuit configuration diagram of an anti-phase protection device for a three-phase AC load according to an embodiment of the present invention, and Figs. 2 A to E are waveform diagrams of various parts for explaining operation when the three phases are positive phases. , and FIGS. 3A to 3E are waveform diagrams of respective parts when two of the three phases are reversely connected. R, S, T...Three-phase AC line, R', S', T'...
...Each line voltage extraction point, 2...Load main switch, 4...
...opening/closing control circuit, 6...reverse phase protection device, D 1 to D 3
... Half-wave rectifier, C 1 - C 3 ... Smoothing capacitor, R 1 - R 2 ... Output resistance, Ry ... DC relay,
b, b'...Same operating contact (normally closed), v 1 ...S-phase and T-phase line voltage during positive phase, v 1 '...Above line voltage during anti-phase, v 2 ... ...Line voltage of R phase and S phase during positive phase, v 2 ′...Above line voltage during anti-phase, V 1 , V 1 ′,
V 2 , V 2 ′...Half-wave rectified output voltage of v 1 , v 1 ′, v 2 , v 2 ′, respectively, △V N ...Differential voltage applied to relay Ry during positive phase, △V B ...Differential voltage applied to relay Ry when the phase is out of phase.
Claims (1)
線を中点として他の二線とのそれぞれの間に、何
れも半波整流素子とコンデンサおよび抵抗が並列
接続されて成るコンデンサ入力形平滑回路との直
列回路を、それぞれの半波整流素子が互いに逆直
列接続となる向きに配して接続するとともに、そ
れぞれの前記半波整流素子と前記コンデンサ入力
形平滑回路との各直列接続点の間に、直流リレー
と他の半波整流素子とが直列接続されかつ前記直
流リレーに他のコンデンサが並列接続されて成る
直流リレー回路を接続し、前記直流リレーの作動
接点を、前記三相交流回路を断接する主開閉器の
開閉制御回路に介挿接続したことを特徴とする三
相交流負荷の反相保護装置。1 A capacitor-input type smoothing device in which a half-wave rectifying element, a capacitor, and a resistor are connected in parallel between one line of a three-phase AC circuit connected to a three-phase AC load and the other two lines as the midpoint. A series circuit with the circuit is connected in such a way that each half-wave rectifying element is connected in anti-series connection with each other, and each series connection point between each half-wave rectifying element and the capacitor input type smoothing circuit is connected. A DC relay circuit in which a DC relay and another half-wave rectifying element are connected in series and another capacitor is connected in parallel to the DC relay is connected between them, and the operating contacts of the DC relay are connected to the three-phase AC A reverse phase protection device for a three-phase AC load, characterized in that it is inserted and connected to the switching control circuit of a main switch that connects and disconnects the circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2383478A JPS54115747A (en) | 1978-02-28 | 1978-02-28 | Phase-inversion protective equipement for ac three-phase load |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2383478A JPS54115747A (en) | 1978-02-28 | 1978-02-28 | Phase-inversion protective equipement for ac three-phase load |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54115747A JPS54115747A (en) | 1979-09-08 |
JPS6137848B2 true JPS6137848B2 (en) | 1986-08-26 |
Family
ID=12121409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2383478A Granted JPS54115747A (en) | 1978-02-28 | 1978-02-28 | Phase-inversion protective equipement for ac three-phase load |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54115747A (en) |
-
1978
- 1978-02-28 JP JP2383478A patent/JPS54115747A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS54115747A (en) | 1979-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4100469A (en) | Hybrid motor starter | |
US3631332A (en) | Inverter starting circuit | |
US20200052641A1 (en) | Method for detecting a motor phase fault of a motor arrangement and drive circuit for driving an electronically commutated motor | |
JPS601808B2 (en) | Open phase detection method | |
JPS6137848B2 (en) | ||
JPH0543800U (en) | Inverter device | |
JP2686071B2 (en) | Neutral wire open phase detection circuit breaker | |
JPH10336881A (en) | Three-phase four-wire neutral line phase interruption detection device and circuit breaker | |
JP6513320B1 (en) | Motor control device and mechanical device | |
SU1601687A1 (en) | Device for protecting three-phase motor from phase-fault operation | |
JP2779106B2 (en) | Open / close control device | |
JPH11285253A (en) | Power supply | |
SU1403202A1 (en) | Arrangement for protecting three-phase electric motor against incomplete-phase operation | |
JPH03198661A (en) | Power supply device | |
JP2853028B2 (en) | High voltage power supply cutoff circuit for static eliminator | |
SU712889A1 (en) | Arrangement for protecting induction three-phase electric motor from two-phase operation | |
RU1786584C (en) | Device for electric drive protection | |
JPH0742199Y2 (en) | Electric motor overload protection device | |
SU1525802A2 (en) | Device for protecting three-phase motor from phase-fault operation | |
RU2269855C1 (en) | Device for protection of induction motors against asymmetric operating conditions | |
JPS63249059A (en) | Abnormality detector of contactless contactor | |
SU1614068A1 (en) | Device for protecting a groups of single-phase a.c.installations | |
JPS5927179B2 (en) | Power supply inrush current limiting circuit | |
GB2044023A (en) | Semiconductor switching circuit | |
SU1446671A1 (en) | Device for protecting single-phase induction motor of cine projector from overloads |