JPS6137355A - Cooling pad of belt type continuous casting machine - Google Patents

Cooling pad of belt type continuous casting machine

Info

Publication number
JPS6137355A
JPS6137355A JP15903384A JP15903384A JPS6137355A JP S6137355 A JPS6137355 A JP S6137355A JP 15903384 A JP15903384 A JP 15903384A JP 15903384 A JP15903384 A JP 15903384A JP S6137355 A JPS6137355 A JP S6137355A
Authority
JP
Japan
Prior art keywords
belt
cooling
water
holes
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15903384A
Other languages
Japanese (ja)
Inventor
Sadayuki Saito
斉藤 貞之
Hisashi Yoshida
尚志 吉田
Tomoaki Kimura
智明 木村
Tadashi Nishino
西野 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Ltd
Priority to JP15903384A priority Critical patent/JPS6137355A/en
Publication of JPS6137355A publication Critical patent/JPS6137355A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0677Accessories therefor for guiding, supporting or tensioning the casting belts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a slab stock having a flat surface shape by forming the discharge side of the water feed parts formed to a cooling pad into the shape expanding outward thereby decreasing the pressure loss in the water feed parts and executing cooling in a stable state. CONSTITUTION:Respectively plural pieces of water feed holes 12 and discharge holes 13 are formed approximately at equal intervals to the cooling pad 5 in the transverse direction of a belt 4. Cooling water is supplied from the same header 11 to an array of the holes 12 lines up in the transverse direction. The cooling water outlet side of the holes 12 is chamfered 12a and is so formed that the hole diameter increases successively toward the advancing direction of the belt 4. On the other hand, the discharge inlet side of the holes 13 is formed with an edge so that the diameter of the holes 13 decreases successively toward the advancing direction of the belt 4. The pressure loss in the water feed part is thus decreased and the driving power is correspondingly decreased. The cooling in the stable state against the fluctuation of load is made possible in the water discharge part.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はベルト式連続鋳造機に係夛、特に鋳片表面形状
がフラットなスラブ材を鋳造するに好適なベルト鋳型冷
却用の冷却パットの構造に関すム〔発明の背景〕 ベルト式連続鋳造機の概略の構成を第1図に示す。溶鋼
1はダンディツシュ2よシノズル3を介し一対のエンド
レスベルト4により構成されたベルト鋳型部へ導入され
る。このベルト鋳凰はその背部に設けられた固定板、す
なわち冷却パット5と前記ベルト4との間に形成された
間隙部6に導入される流水によって冷却される。前記溶
鋼1は前記鋳型部で凝固殻7が生長し、未凝固部8が凝
固完了した状態でピンチロール9によシ引抜かれる。前
記一対のベルト4はそれぞれガイドロール10a、10
b、IOCによって案内され引抜きと同期して駆動され
ている。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a belt-type continuous casting machine, and particularly relates to a structure of a cooling pad for cooling a belt mold, which is suitable for casting slab materials with a flat surface shape. [Background of the Invention] Fig. 1 shows a schematic configuration of a belt type continuous casting machine. Molten steel 1 is introduced into a belt mold section constituted by a pair of endless belts 4 through a dandy pipe 2 and a nozzle 3. This belt casting hood is cooled by running water introduced into a gap 6 formed between a fixed plate provided at the back thereof, that is, a cooling pad 5 and the belt 4. The molten steel 1 is pulled out by pinch rolls 9 in a state in which a solidified shell 7 grows in the mold portion and an unsolidified portion 8 is completely solidified. The pair of belts 4 have guide rolls 10a and 10, respectively.
b. Guided by IOC and driven in synchronization with extraction.

前記冷却水の供給は第2図に示す冷却パット5内に形成
されたヘッダ部11から給水孔12を通して行われ、こ
の供給された冷却水は前記間隙部6に水膜を形成して通
過したのち排水孔13に入シ、この排水孔13の背部に
形成された排水溝14を通シ外部へ排出される。ス2プ
幅は後述の第11図および第12図に示す鋳型幅方向断
面図における短辺17を移動可能に設けて変更可能に構
成されている。
The cooling water was supplied from the header 11 formed in the cooling pad 5 shown in FIG. 2 through the water supply hole 12, and the supplied cooling water formed a water film in the gap 6 and passed through. Afterwards, it enters the drain hole 13 and is discharged to the outside through a drain groove 14 formed at the back of the drain hole 13. The width of the spout can be changed by movably providing a short side 17 in cross-sectional views in the width direction of the mold shown in FIGS. 11 and 12, which will be described later.

前記冷却パット5の構造としては従来特開昭57−10
0851によって提案された第3図および第4図に示す
ものがあった。該図において冷却パット5のベルト4側
に短径a、長径すの長円形の溝15が該ベルト4に対向
して縦横それぞれほぼ等間隔に複数個配設されておシ、
ベルト4の移動方向に直角の方向の列が交互に給水孔列
、排水孔列となっておシ、それぞれの溝のほぼ中心に給
水孔12.排水孔13が形成されている。このような構
造の冷却パット5とベルト4の間に形成された間隙部6
に水膜が形成され、との水膜部がベルト鋳型の溶鋼1よ
シ受ける熱による昇温を抑える冷却能と、ベルト鋳型に
加わる溶鋼静圧に代表される外部負荷を支持し、ベルト
4と冷却パット5との間を非接触状態にしてベルト4の
摺動による摩耗を防止する軸受を形成する役割を果して
いる。
The structure of the cooling pad 5 is conventionally disclosed in Japanese Patent Application Laid-open No. 57-10.
0851, as shown in FIGS. 3 and 4. In the figure, a plurality of oval grooves 15 with a short diameter a and a long diameter are arranged on the side of the belt 4 of the cooling pad 5 facing the belt 4 at approximately equal intervals in the vertical and horizontal directions.
The rows in the direction perpendicular to the direction of movement of the belt 4 alternately serve as water supply hole rows and drainage hole rows, and a water supply hole 12. is provided approximately at the center of each groove. A drainage hole 13 is formed. A gap 6 formed between the cooling pad 5 and the belt 4 having such a structure
A water film is formed on the belt mold, and the water film part has the cooling ability to suppress the temperature rise due to the heat received by the molten steel 1 of the belt mold, and supports the external load represented by the static pressure of the molten steel applied to the belt mold. It plays the role of forming a bearing that prevents wear due to sliding of the belt 4 by keeping the contact between the belt 4 and the cooling pad 5 in a non-contact state.

第3図に示す従来例の長方溝15の寸法および配列は第
4図に示す短径a=50〜150m、長径b = 10
0〜200+m、横間隔t1=200〜4’00mm+
縦間隔t2 =200〜400tm程度となっていた。
The dimensions and arrangement of the conventional rectangular groove 15 shown in FIG. 3 are as shown in FIG.
0~200+m, horizontal distance t1=200~4'00mm+
The vertical distance t2 was approximately 200 to 400 tm.

このような構造の従来例による冷却パット5は、前述し
た軸受機能に重点がおかれておシ冷却機能に問題を残し
ていた。
In the conventional cooling pad 5 having such a structure, emphasis was placed on the bearing function described above, and there remained a problem in the cooling function.

ベルト冷却の強度は冷却水の流れによる′熱伝導率αW
で評価でき、この熱伝導率αWと流速vwおよび水膜厚
みδとの関係は次式(1)で表わされる。
The strength of belt cooling is determined by the thermal conductivity αW due to the flow of cooling water.
The relationship between the thermal conductivity αW, the flow velocity vw, and the water film thickness δ is expressed by the following equation (1).

式(1)を単位幅当シの流量Qで表わすと次式(2)の
如くなる。
Expressing equation (1) in terms of flow rate Q per unit width gives the following equation (2).

すなわち冷却強度は供給される流量Qが一定であれは流
速vyに比例し、水膜厚みδに反比例する。但し水膜厚
みδは冷却剤自体の昇温を考えるとあまシ小さくできず
、0.5m+m程度が下限値とされる。
That is, if the supplied flow rate Q is constant, the cooling intensity is proportional to the flow velocity vy, and is inversely proportional to the water film thickness δ. However, the water film thickness δ cannot be made too small considering the temperature rise of the coolant itself, and the lower limit is set at about 0.5 m+m.

上記の如き従来の構造の冷却パット5においては、ベル
ト4に対向する面の給水孔12および排水孔13の周囲
に座ぐシが施されているため、給水孔12の近傍で放射
状に拡散する冷却水の流れに滞流が生じるため、この座
ぐられた溝部15において形成される水流部と他の面に
おける水流部に冷却強度の差が生じる。この冷却強度の
差によってベルト4が波状を呈するに至シ、溶鋼注湯初
期段階での溶融状態では金属ベルト4と冷却パット5と
の液密接触が阻害され、溶鋼の洩出をおこし鋳造事故や
形状不良鋳片を発生する危険がある。
In the cooling pad 5 having the conventional structure as described above, since the water supply hole 12 and the drainage hole 13 on the surface facing the belt 4 are provided with countersinks, the water is diffused radially near the water supply hole 12. Since stagnation occurs in the flow of the cooling water, a difference in cooling intensity occurs between the water flow portion formed in this spotted groove portion 15 and the water flow portion on the other surface. This difference in cooling strength causes the belt 4 to take on a wavy shape, and in the molten state at the initial stage of pouring molten steel, the liquid-tight contact between the metal belt 4 and the cooling pad 5 is inhibited, causing molten steel to leak and causing a casting accident. There is a risk of producing slabs with poor shape.

さらに凝固が進んだ場合も平滑な鋳片表面が得られず品
質劣下を招く欠点があった。
Furthermore, even when solidification progresses, a smooth slab surface cannot be obtained, resulting in quality deterioration.

このような欠点を解決し冷却能力を向上させるためには
、流量の大幅増加が必要とな)、このために必要な動力
はますます犬きくなシ、ススプ材の製造原価を高くする
という欠点があった。
In order to solve these drawbacks and improve the cooling capacity, it is necessary to significantly increase the flow rate), and the power required for this is even more powerful, which increases the manufacturing cost of the suspension material. was there.

さらにまた水膜部において十分な冷却能を持つ均一な冷
却水流れを有し、圧力分布によって発生する凹凸が0.
1 m以下になる均一な水膜厚みを有するようにするた
め、水膜流れの状態を常時管理し、外部信号による流量
および圧力の制御法が考えられるが、装置が複雑となシ
非常に大掛シなものとなるため実用的でない。
Furthermore, the water film part has a uniform cooling water flow with sufficient cooling ability, and there are no irregularities caused by pressure distribution.
In order to have a uniform water film thickness of 1 m or less, it is possible to constantly manage the flow state of the water film and control the flow rate and pressure using external signals, but this method requires complicated equipment and is extremely expensive. It is not practical because it is a bulky item.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、表面形状が平坦なス2プ材を得ることが
できる簡単な構造のベルト式連鋳機の冷却パットを提供
するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a cooling pad for a belt-type continuous casting machine that has a simple structure and is capable of producing sprue material with a flat surface. be.

〔発明の概要〕[Summary of the invention]

本発明はベルト式連鋳機の冷却パットに形成された冷却
水給水部の排出側の形状を外側に向って広がシを持たせ
、さらにこの冷却水給水部の排出側を帯状の凹部で連結
することによシ所期の目的を達成するようになしたもの
である。
In the present invention, the shape of the discharge side of the cooling water supply part formed on the cooling pad of a belt-type continuous casting machine is expanded outward, and the discharge side of the cooling water supply part is further formed with a band-shaped recess. By connecting them, the intended purpose was achieved.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係るベルト式連続鋳造機の冷却パットの一
実施例を図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cooling pad for a belt-type continuous casting machine according to the present invention will be described below with reference to the drawings.

第5図〜第17図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 5 to 17.

該図において第2図〜第4図に示す従来例と同一部分は
同一番号にて示す。冷却パット5以外は第1図に示す鋳
造機の構成と同一であるので、本発明の特徴である冷却
パジト5について詳述する。
In this figure, parts that are the same as those of the conventional example shown in FIGS. 2 to 4 are designated by the same numbers. Since the construction of the casting machine is the same as that of the casting machine shown in FIG. 1 except for the cooling pad 5, the cooling pad 5, which is a feature of the present invention, will be described in detail.

゛ この冷却ぶット5には第5図に示す如くベルト40
幅方向にほぼ等間隔に給水孔12および排水孔13がそ
れぞれ複数個形成されておシ、幅方向に並んだ一列の給
水孔12は同一のヘッダ11から冷却水が供給される。
゛ This cooling butt 5 is equipped with a belt 40 as shown in FIG.
A plurality of water supply holes 12 and a plurality of drainage holes 13 are formed at approximately equal intervals in the width direction, and cooling water is supplied from the same header 11 to a row of water supply holes 12 arranged in the width direction.

この給水孔12の冷却水出側には給水孔径dKに対しd
 ic / 2〜2dxの面取、り12aが施されてお
シ、この孔径dKはベルト4の進行方向に進むに従って
順次大きくなるように形成されている。一方排水孔13
の排水部入側にはC015以下のエツジが形成されてお
シ、この排水孔13の孔径dIIはベルト4の進行方向
に進むに従って順次小さくなるように形成されている。
The cooling water outlet side of this water supply hole 12 has a diameter d relative to the water supply hole diameter dK.
A chamfer 12a of ic/2 to 2dx is provided, and the hole diameter dK is formed to gradually increase as the belt 4 advances in the traveling direction. On the other hand, drainage hole 13
An edge of C015 or smaller is formed on the inlet side of the drainage part, and the diameter dII of the drainage hole 13 is formed so as to gradually become smaller as the belt 4 advances in the traveling direction.

この排水孔13はベルト4の幅方向に並んだ一列につい
て同一の排水溝14に連結され冷却水を外部に排出する
ようになっている。前記各給水孔12、排水孔13は第
6図に示す如く、幅方向に並んだ一列については同一孔
径同一ピッチに配列されておシ、幅方向給水孔位置に対
し幅方向排水孔位置は該給水孔間のほぼ中央となる千鳥
格子状になる如く配置されている。また前記給水孔12
のうち中央部のスラブ幅不変域に位置する給水孔12は
、第7図に示す如く幅方向に隣接する給水孔12のベル
ト側が帯状の凹部16によって連結されている。
The drain holes 13 are connected to the same drain groove 14 in one row in the width direction of the belt 4 so as to drain the cooling water to the outside. As shown in FIG. 6, the water supply holes 12 and drain holes 13 are arranged at the same pitch and have the same diameter in a row in the width direction, and the drain hole positions in the width direction are the same as the water supply hole positions in the width direction. They are arranged in a houndstooth pattern approximately in the center between the water supply holes. In addition, the water supply hole 12
Among the water supply holes 12 located in the slab width constant area at the center, the belt sides of the water supply holes 12 adjacent to each other in the width direction are connected by a band-shaped recess 16, as shown in FIG.

スラブ幅を変更する場合は第11.12図に示す如くベ
ルト4の幅方向の両側に設けられた短辺17を移動して
規定のスラブ幅に設定する。第12図における鋳片7と
ベルト4の非接触部となる該短辺17よシ外側のベルト
4端部における冷却水の流れは、ベルト側無負荷すなわ
ち大気中への排出状態と同等と考えられる。この場合圧
力ΔPと流量Qとの関係は で与えられ、給水孔12の管路長が孔径dKよυ犬とな
る場合はベルト側の孔形状すなわち給水噴出側の形状と
は無関係となる。式(8)においてΔPは第2図に示す
ヘッダ部11の圧力P0と水膜部6との圧力差でラシ、
ベルト端部ではΔP −P 。
When changing the slab width, the short sides 17 provided on both sides of the belt 4 in the width direction are moved to set the specified slab width as shown in FIGS. 11 and 12. The flow of cooling water at the end of the belt 4 on the outside of the short side 17, which is the non-contact area between the slab 7 and the belt 4 in FIG. It will be done. In this case, the relationship between the pressure ΔP and the flow rate Q is given by: If the pipe length of the water supply hole 12 is equal to the hole diameter dK, it is independent of the shape of the hole on the belt side, that is, the shape of the water supply jet side. In equation (8), ΔP is the pressure difference between the pressure P0 of the header part 11 and the water film part 6 shown in FIG.
At the belt end, ΔP −P.

となる。CKはヘッダ部11から給水孔12への入口形
状によって決まる係数、Qは流量、Nは給水孔12の孔
数、dKは孔径、rwは水の比重を表わす。
becomes. CK is a coefficient determined by the shape of the inlet from the header portion 11 to the water supply hole 12, Q is the flow rate, N is the number of the water supply holes 12, dK is the hole diameter, and rw is the specific gravity of water.

ベルト側給水孔縁の特性は鋳片との接触部において、 ・・・・・・・・・(4) で与えられる。式(4)においてCwはヘッダ部11か
ら水膜部6に至るまでの給水孔12の形状によって与え
られる係数であシ、Bは水膜部の幅を表わす。この係数
Cwは給水孔12の形状を第13図に示す如〈従来の4
から本実施例にょるbに変えることによ#)2〜5割程
度減少する。
The characteristics of the edge of the water supply hole on the belt side at the contact part with the slab are given by (4). In equation (4), Cw is a coefficient given by the shape of the water supply hole 12 from the header part 11 to the water film part 6, and B represents the width of the water film part. This coefficient Cw is determined by the shape of the water supply hole 12 as shown in FIG.
By changing from #) to b according to this embodiment, it decreases by about 20 to 50%.

圧力損失は冷却水の流れに対する抵抗を表わすものでメ
ジ、給水部におけるこの圧力損失は第2図におけるヘッ
ダ部11から給水孔12に入る時点でのΔPI、および
水膜部6に至シベルト4と衝突後流れ方向を変化する時
点で発生するΔP2がある。式(8)に示すΔPはこれ
らのΔP1とΔP2との和である。
Pressure loss represents the resistance to the flow of cooling water, and this pressure loss in the water supply section is calculated by ΔPI at the time it enters the water supply hole 12 from the header section 11 in FIG. There is ΔP2 that occurs at the time when the flow direction changes after the collision. ΔP shown in equation (8) is the sum of these ΔP1 and ΔP2.

本実施例では孔径d、を小さくできるためΔP1を大と
しΔP2を小となし得ることがら、同じヘッダ圧PGに
対しスラブ幅減小時の短辺17の外側への不要な冷却水
の流水を抑えることが可能となる。さらに水膜部6にお
ける冷却水の流れは第15図に示す如くなシ、幅方向の
圧力分布は第・16図に示す如く給水孔12の上部とそ
の他の部分の圧力差ΔPi+が従来例に比べて本実施例
による場合の方が小さくなり、均一なt椿≠1可鮒μに
る。これは第13図に示すbm給水孔の方がa型給水孔
よシ冷却水の流れが第15図に示す如くスムーズとなる
ためである。
In this embodiment, since the hole diameter d can be made small, ΔP1 can be made large and ΔP2 can be made small, thereby suppressing the unnecessary flow of cooling water to the outside of the short side 17 when the slab width is reduced for the same header pressure PG. becomes possible. Furthermore, the flow of cooling water in the water film portion 6 is as shown in Fig. 15, and the pressure distribution in the width direction is as shown in Fig. 16. In comparison, the case according to this embodiment is smaller, and uniform t camellia≠1 crucian μ. This is because cooling water flows more smoothly in the bm water supply hole shown in FIG. 13 than in the a type water supply hole as shown in FIG. 15.

なおスラブ幅が変更されない場合、または最小幅となる
両短辺17よシ内側に位置する給水孔12の出側を第1
4図に示す如く帯状の凹部16で連結すると、第16図
に示すΔPBは更に小となシ、よシ均一な冷却水の流れ
が得られる。
If the slab width is not changed, or if the minimum width is the outlet side of the water supply hole 12 located on the inside of both short sides 17,
If they are connected by a band-shaped recess 16 as shown in FIG. 4, ΔPB shown in FIG. 16 will be further reduced and a more uniform flow of cooling water will be obtained.

排水部は水膜郡全体の圧力を決定するベース圧力となシ
、排水部の圧力特性によって全体の圧力が決まる。第1
7図に流量Qが一定の場合の圧力Pと水膜厚さδとの関
係を示す。該図において実線aはa型排水孔での特性で
あ如実線すは孔径を同じとし、た場合のb型排水孔での
特性である。破線b′はb型排水孔の孔径なa型排水孔
の孔径よシ小さくした場合の特性である。この第17図
によシ判る如く負荷変動として与えられるΔPに対し水
膜厚さの変動Δδを比較すると、a型では小であるのに
対しb型では大となる。すなわち負荷変動を水膜厚さの
変化によってセルフコントロールする際に、amでは僅
かなδ変動で対応可能となるが、b型では大幅な変動を
起して対応することになシ、平坦なスラブ材を製造する
のに不利となる。また負荷が大幅に減少した場合δが大
幅に増加するため冷却能力を損う結果となる。
The drainage section is the base pressure that determines the pressure of the entire water membrane group, and the overall pressure is determined by the pressure characteristics of the drainage section. 1st
Figure 7 shows the relationship between pressure P and water film thickness δ when the flow rate Q is constant. In the figure, the solid line a shows the characteristics of an A-type drainage hole, and the solid line A shows the characteristics of a B-type drainage hole when the hole diameters are the same. The broken line b' represents the characteristic when the hole diameter of the B-type drainage hole is made smaller than the hole diameter of the A-type drainage hole. As can be seen from FIG. 17, when the variation Δδ in the water film thickness is compared with ΔP given as the load variation, it is small in the a type, but large in the b type. In other words, when self-controlling load fluctuations by changes in the water film thickness, in the case of an am type, it is possible to cope with a slight fluctuation in δ, but in the case of a type b, it is not possible to cope with a large fluctuation, and the flat slab It is disadvantageous for manufacturing materials. Furthermore, if the load is significantly reduced, δ will significantly increase, resulting in a loss of cooling capacity.

本発明の他の実施例を第18図c −fに示す。Another embodiment of the invention is shown in FIGS. 18c-f.

Cは給水孔12の出側の座ぐJ)12aをR状にしたも
のでアシ、テーバ状のものよシさらに圧力損失を減少で
き冷却水の流れがよシ滑らかになる。
C is an R-shaped seat 12a on the outlet side of the water supply hole 12, which can further reduce pressure loss and make the flow of cooling water smoother than a reed-shaped or tapered-shaped one.

dは給水孔12が直線部を有しない例で、冷却パットと
なる固定板5が薄い場合に採用される。eは幅方向流れ
を滑らかにし給水孔間の滞流を防止する効果がある。f
はCと同様であるが出側の径の大きくすることによシΔ
Piをよシ小さくすることができる。
d is an example in which the water supply hole 12 does not have a straight portion, and is adopted when the fixed plate 5 serving as a cooling pad is thin. e has the effect of smoothing the flow in the width direction and preventing stagnation between the water supply holes. f
is the same as C, but by increasing the exit diameter, Δ
Pi can be made much smaller.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によれば、ベルト式連鋳機の冷却パ
ットに形成された冷却水給水部の排出側の形状を外側に
向って広がシを持たせ、さらに冷却水給水部の排出側を
帯状の凹部で連結したものでらるから、給水部における
圧力損失の減少によシ動力を1〜3割減少でき、排水部
においては負荷の変動に対して水膜厚みに剛性をもった
安定状態での冷却が可能となシ、表面形状が平坦なスラ
ブ材を得ることができるようになったのでその効果は大
である。
As described above, according to the present invention, the shape of the discharge side of the cooling water supply section formed on the cooling pad of a belt type continuous casting machine is expanded outwardly, and the discharge side of the cooling water supply section is further expanded. Since the sides are connected by a belt-shaped concave part, it is possible to reduce the driving force by 10 to 30% by reducing the pressure loss in the water supply part, and in the drainage part, the water film thickness has rigidity against changes in load. The effect is great because it is now possible to cool the material in a stable state, and it is now possible to obtain a slab material with a flat surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベルト式連鋳機の構成を示す概要図、第2図は
第1図の冷却パット部を示す部分縦断面図、第3図は従
来の冷却パット部の一例を示す部分縦断面図、第4図は
第3図の給水孔、排水孔の配列を示す説明図、第5図は
本発明に係るベルト式連鋳機の冷却パットの一実施例を
示す部分縦断面図、第6図および第7図は第5図の給水
孔、排水孔の配列を示す説明図、第8図は第7図のI−
IIM面図、第9図は第7図の■−■断面図、第10図
は第7図の■−■断面図、第11図および第12図は第
5図の幅方向部分断面図、第13図は結水孔の孔形状を
示す図、第14図は給水孔を連結する帯状凹部を示す図
、第15図は給水部における冷却水の流れを示す状態図
で(a)は従来の給水孔の場合(b)は本実施例による
給水孔の場合を示す、第16図は給水部幅方向の圧力分
布図で(a)。 (b)は第15図の場合と同様である、第17図は排水
孔の圧力特性図、第18図は本発明の他の実施例による
給水孔の孔形状を示す図である。
Fig. 1 is a schematic diagram showing the configuration of a belt-type continuous casting machine, Fig. 2 is a partial vertical cross-sectional view showing the cooling pad part of Fig. 1, and Fig. 3 is a partial longitudinal cross-sectional view showing an example of the conventional cooling pad part. 4 is an explanatory view showing the arrangement of the water supply holes and drainage holes shown in FIG. 3, and FIG. Figures 6 and 7 are explanatory diagrams showing the arrangement of the water supply holes and drainage holes in Figure 5, and Figure 8 is an illustration showing the arrangement of the water supply holes and drainage holes in Figure 5.
IIM side view, FIG. 9 is a cross-sectional view taken along ■-■ in FIG. 7, FIG. 10 is a cross-sectional view taken along ■-■ in FIG. 7, FIGS. 11 and 12 are partial cross-sectional views in the width direction of FIG. 5, Fig. 13 is a diagram showing the shape of the water condensation hole, Fig. 14 is a diagram showing the band-shaped recess connecting the water supply holes, and Fig. 15 is a state diagram showing the flow of cooling water in the water supply part. In the case of the water supply hole (b) shows the case of the water supply hole according to this embodiment, and FIG. 16 is a pressure distribution diagram in the width direction of the water supply part (a). (b) is the same as the case of FIG. 15, FIG. 17 is a pressure characteristic diagram of a drainage hole, and FIG. 18 is a diagram showing the shape of a water supply hole according to another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、一対の可動エンドレスベルトにより構成されたベル
ト鋳型部と、該ベルトの背部に設けられ該ベルトを支承
しつつ冷却するための冷却水を給排水する複数の給排水
部を有する冷却パットとを設けてなるベルト連鋳機の冷
却パットにおいて、該冷却パットに形成された前記給水
部の排出側の形状を外側に向つて広がりをもたせたこと
を特徴とするベルト式連鋳機の冷却パット。 2、一対の可動エンドレスベルトにより構成されたベル
ト鋳型部と、該ベルトの背部に設けられ該ベルトを支承
しつつ冷却するための冷却水を給排水する複数の給排水
部を有する冷却パットとを設けてなるベルト連鋳機の冷
却パットにおいて、該冷却パットに形成された前記給水
部の排出側を帯状の凹部で連結したことを特徴とするベ
ルト式連鋳機の冷却パット。
[Scope of Claims] 1. A belt mold part constituted by a pair of movable endless belts, and a plurality of water supply and drainage parts provided at the back of the belt to supply and drain cooling water for cooling the belt while supporting the belt. A cooling pad for a belt type continuous casting machine, characterized in that the shape of the discharge side of the water supply section formed on the cooling pad is expanded outward. cooling pad. 2. A belt mold part constituted by a pair of movable endless belts, and a cooling pad provided on the back of the belt and having a plurality of water supply and drainage parts for supplying and discharging cooling water for cooling the belt while supporting the belt. A cooling pad for a continuous belt casting machine, characterized in that the discharge side of the water supply section formed in the cooling pad is connected by a band-shaped recess.
JP15903384A 1984-07-31 1984-07-31 Cooling pad of belt type continuous casting machine Pending JPS6137355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15903384A JPS6137355A (en) 1984-07-31 1984-07-31 Cooling pad of belt type continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15903384A JPS6137355A (en) 1984-07-31 1984-07-31 Cooling pad of belt type continuous casting machine

Publications (1)

Publication Number Publication Date
JPS6137355A true JPS6137355A (en) 1986-02-22

Family

ID=15684783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15903384A Pending JPS6137355A (en) 1984-07-31 1984-07-31 Cooling pad of belt type continuous casting machine

Country Status (1)

Country Link
JP (1) JPS6137355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725046A (en) * 1994-09-20 1998-03-10 Aluminum Company Of America Vertical bar caster

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108829A (en) * 1977-03-04 1978-09-22 Larex Ag Method of cooling and guiding circulation type casting belt in metal strip continuous casting facility and cooling and guide apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108829A (en) * 1977-03-04 1978-09-22 Larex Ag Method of cooling and guiding circulation type casting belt in metal strip continuous casting facility and cooling and guide apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725046A (en) * 1994-09-20 1998-03-10 Aluminum Company Of America Vertical bar caster

Similar Documents

Publication Publication Date Title
CA1050723A (en) Belt back-up apparatus and coolant application means for twin-belt casting machines
US4759400A (en) Belt type cast sheet continuous caster and prevention of melt leakage in such a caster
JPH0445256B2 (en)
JPS6137355A (en) Cooling pad of belt type continuous casting machine
US4635703A (en) Cooling pad for use in a continuous casting apparatus for the production of cast sheets
JP6515283B2 (en) Cooling roll of twin roll strip continuous casting machine
CA1061986A (en) Method and apparatus for continuously casting a slab
JP2003311377A (en) Tube-type mold for continuous casting
US6123186A (en) Supporting arrangement for thin strip casting
JPS609553A (en) Stopping down type continuous casting machine
JP4130482B2 (en) Casting wheel
JPH09201661A (en) Method for secondary-cooling continuously cast slab
JP3179326B2 (en) Immersion nozzle for continuous casting of wide thin cast slab and continuous casting method
CA1234673A (en) Cooling pad for use in a continuous casting apparatus for the production of cast sheets
JP7151665B2 (en) Water-cooled mold for continuous casting and continuous casting method for steel
JPH0847757A (en) Divided roll with groove and device for guiding cast slab and method for guiding cast slab
KR102180728B1 (en) Mold Device for Continuous Casting
KR100798027B1 (en) Cooling roll for strip casting of twin roll type
KR200188747Y1 (en) Device of continuous thin slab casting for twin roll type
JPH0270358A (en) Mold for continuous casting
KR20030036719A (en) Chilled continuous casting mould for casting metal
JPH02247053A (en) Method for cooling pinch roll for continuous casting
JPH0646598Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JPS6331818Y2 (en)
JPH0215854A (en) Belt type continuous casting machine