JPH02247053A - Method for cooling pinch roll for continuous casting - Google Patents

Method for cooling pinch roll for continuous casting

Info

Publication number
JPH02247053A
JPH02247053A JP6543889A JP6543889A JPH02247053A JP H02247053 A JPH02247053 A JP H02247053A JP 6543889 A JP6543889 A JP 6543889A JP 6543889 A JP6543889 A JP 6543889A JP H02247053 A JPH02247053 A JP H02247053A
Authority
JP
Japan
Prior art keywords
cooling
roll
cast slab
contact
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6543889A
Other languages
Japanese (ja)
Inventor
Takashi Kanazawa
敬 金沢
Juichi Kawashima
河嶋 寿一
Takeshi Nakai
中井 健
Koji Kajiwara
孝治 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6543889A priority Critical patent/JPH02247053A/en
Publication of JPH02247053A publication Critical patent/JPH02247053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To restrain bending of a roll and to prevent the development of inner crack in a cast slab by arranging plural cooling holes penetrating a pinch roll for drawing the cast slab in axial direction and controlling cooling water supplying rate to the side in contact with the cast slab according to casting velocity. CONSTITUTION:In continuous casting equipment, the cooled and solidified cast slab 3 is pinched with the pinch rolls 1, 1 and drawn out. Plural cooling holes 11, 12 are provided penetrating toward the axial direction at the center and the prescribed pitch in circular direction in the above pinch roll 1. By supplying the cooling water into these cooling holes 11, 12, the pinch roll 1 is cooled. In the above cooling method, a nozzle header for supplying as injecting the cooling water is divided into the side 21 in contact with the cast slab and the side in no contact with the cast slab having nozzle slits 211, 221, respectively. At the time of lowering the casting velocity by prediction of breakout, etc., in the continuous casting, supply of the cooling water to the cooling hole 12 at the side in contact with the cast slab 3 is increased for the prescribed time through the above divided header 21 at the side in contact with the cast slab. By this method, the above pinch roll 1 is effectively cooled and the bending is restrained and the development of the inner crack in the cast slab is prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、連続鋳造設備の鋳片引抜用ビンチロルの冷却
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a cooling method for a vinyl roll for drawing cast slabs in continuous casting equipment.

(ロ)従来技術 連続鋪造においては、鋳型内に供給された溶融金属が鋳
型内を通過しつつ冷却され、凝固殻を形成した後、支持
ロールによって案内されながら、スプレ冷却により徐々
に凝固を進行させ、最終的に完全凝固したスラブを所定
長さに切断している。
(b) In conventional continuous paving, molten metal supplied into a mold is cooled while passing through the mold, forming a solidified shell, and then gradually solidified by spray cooling while being guided by support rolls. The slab is then completely solidified and then cut to a predetermined length.

鋳片の引抜はピンチロールで鋳片を挾み込んで押し出す
ことによって行われる。この際、鋳片内部に未凝固部が
存在するときは、ピンチロールの圧力によっては、鋳片
の凝固界面に割れが発生し、それが内部割れに進展して
鋳片品質上問題となる。
The slab is pulled out by pinching the slab with pinch rolls and pushing it out. At this time, if there is an unsolidified portion inside the slab, cracks will occur at the solidified interface of the slab depending on the pressure of the pinch rolls, and this will develop into internal cracks, causing problems in terms of slab quality.

また、近年の傾向である高速鋳造化においては、未凝固
部か広範囲に広がるため、内部割れが発生する危険領域
が広くなり、ピンチロールの圧力適正化がさらに厳しく
なる。
In addition, in the recent trend of high-speed casting, the unsolidified portion spreads over a wide range, which widens the danger area where internal cracks may occur, making it even more difficult to adjust the pressure of the pinch rolls.

さらに、支持ロールの圧力が適正であっても、ロール自
身が曲っていれば(例えば、曲り凸側が鋳片に接してい
る場合)、鋳片に加わる圧力が過大となり、内部割れと
なる可能性が大きくなる。
Furthermore, even if the pressure of the support roll is appropriate, if the roll itself is bent (for example, if the curved convex side is in contact with the slab), the pressure applied to the slab will be excessive and there is a possibility of internal cracking. becomes larger.

このロールの曲りは、鋳片からの熱による変形が最も大
きく影響を受ける。特に、鋳込のトップ・ボトムやブレ
ークアウト予知による一時的な鋳造速度の変化により、
ロール円周方向に偏熱が生じて熱応力により曲りが発生
する。
The bending of this roll is most affected by the deformation caused by heat from the slab. In particular, temporary changes in casting speed due to the top/bottom of casting or prediction of breakout,
Uneven heat occurs in the circumferential direction of the roll, causing bending due to thermal stress.

従来、ロールの冷却は、鋳片幅や鋳造速度によらず一定
の冷却条件であるため、鋳造速度が変わったときにロー
ルの熱分布状況が変化して、ロル曲りが発生する。
Conventionally, roll cooling is performed under constant cooling conditions regardless of the slab width or casting speed, so when the casting speed changes, the heat distribution of the roll changes and roll bending occurs.

ロールの冷却方法による曲りの矯正は、例えば、特開昭
62−39065号公報がある。この方法は、ロールを
外部から冷却すると、鋳片にもその冷却水がかかるなめ
、鋳片温度が平均−となって、表面疵やクレータ−エン
ド形状の変化などによる内質悪化が問題となる。
For example, Japanese Patent Laid-Open No. 62-39065 discloses a method for straightening a roll by cooling the roll. In this method, when the rolls are cooled from the outside, the cooling water is also applied to the slab, which causes the slab temperature to become average - which causes problems with deterioration of internal quality due to surface flaws and changes in the shape of crater ends. .

従来のロールの内部冷却ては均一冷却てあり、ロール全
体の温度は制御できるとしても、ロール円周方向の偏熱
は防止できず、曲りを防止するには非常に長時間を要す
るなどの問題がある。
Conventional internal cooling of rolls is uniform, and even though the temperature of the entire roll can be controlled, uneven heating in the circumferential direction of the roll cannot be prevented, and it takes a very long time to prevent bending. There is.

(ハ)発明か解決しようとした課題 本発明が解決しようとした課題は、連続鋳造用ピンチロ
ールを有効に冷却して口=ルの曲りを抑制し、それに起
因する鋳片内部割れの発生を防止することにある。
(c) Problems to be solved by the invention The problems to be solved by the present invention are to effectively cool the pinch rolls for continuous casting to suppress the bending of the mouth-hole, and to prevent the occurrence of internal cracks in slabs caused by this. The purpose is to prevent it.

(ニ)課題を解決するための手段 本発明の連続鋳造用ピンチロールの冷却方法は、連続鋳
造設備の鋳片引抜用ピンチロールにおいて、該ピンチロ
ールの中心および円周方向に所定のピンチで軸方向に貫
通ずる複数の冷却孔を設け、該冷却孔に冷却水を供給し
、鋳造速度降下時に所定の時間だけ鋳片に接する側の所
定の冷却孔への冷却水の供給を強化することからなる手
段によって、上記課題を解決している。
(d) Means for Solving the Problems The method for cooling a pinch roll for continuous casting of the present invention provides a method for cooling a pinch roll for continuous casting in continuous casting equipment, in which a predetermined pinch is applied to the center and circumferential direction of the pinch roll. By providing a plurality of cooling holes penetrating in the direction, supplying cooling water to the cooling holes, and strengthening the supply of cooling water to the predetermined cooling holes on the side in contact with the slab for a predetermined period of time when the casting speed decreases. The above problem is solved by the following means.

前記円周方向に配置した冷却孔への冷却水の供給をノズ
ル・ヘッダからの噴射水によって行い、該ノズル・ヘン
タを鋳片接触側と非接触側とに2分割し、接触側分割ヘ
ッダの給水を調節自在に制御することが好ましい。
The cooling water is supplied to the cooling holes arranged in the circumferential direction by water jetted from the nozzle header, and the nozzle header is divided into two parts: a slab contact side and a non-contact side. Adjustable control of water supply is preferred.

(ホ)作用 連続鋳造用ピンチ・ロールの鋳込中のロール変動挙動を
調査したところ、ブレークアウト予知による鋳造速度低
下の後は、ロール曲りか発生ずることが判明した。これ
は、ロール回転速度の変化により、ロール円周方向に偏
熱が発生し、熱変形により曲りが発生ずるものである。
(E) Function When we investigated the roll fluctuation behavior of the pinch roll for continuous casting during casting, it was found that only roll bending occurs after the casting speed is reduced due to predicted breakout. This is because uneven heat is generated in the circumferential direction of the roll due to changes in the roll rotation speed, and bending occurs due to thermal deformation.

この偏熱を防止するためには、ロール円周方向に冷却強
度を変える構造として鋳片に接している部分の冷却を強
化すれば曲りを防止することが可能となる。
In order to prevent this uneven heat, bending can be prevented by strengthening the cooling of the part that is in contact with the slab by using a structure that changes the cooling intensity in the circumferential direction of the roll.

そこで、ピンチロールの円周方向に冷却孔を設け、鋳片
に接する側の冷却孔(例えば、上ロールでは下側の冷却
孔、下ロールでは上側の冷却孔)と他の残りの冷却孔と
の冷却水系統を分け、それぞれ冷却強度を可変にてきる
構造とした。ソレクアウト予知が働き、鋳造速度が低下
しなとき、鋳片に接する側の冷却孔系統の冷却水流速を
増加し、他の残りの系統は冷却水流速を低下さぜること
により、ロールの偏熱を防止することができる。
Therefore, cooling holes are provided in the circumferential direction of the pinch roll, and the cooling holes on the side in contact with the slab (for example, the lower cooling hole on the upper roll and the upper cooling hole on the lower roll) are connected to the other cooling holes. The cooling water systems are separated, and each system has a structure that allows variable cooling intensity. When the solek-out prediction is activated and the casting speed does not decrease, the flow rate of cooling water in the cooling hole system on the side in contact with the slab is increased, and the flow rate of cooling water in the remaining systems is decreased to prevent roll deviation. Can prevent heat.

鋳造速度変化後一定時間が過ぎると、両系統ともに同一
冷却強度に戻すことが必要となる。
After a certain period of time has passed after the casting speed change, both systems must be returned to the same cooling intensity.

鋳造速度と各系統の冷却強度の関係を第4図に示す。鋳
造速度変化後、冷却条件を保持する時間は鋳片幅、2次
冷却条件等によって異なるが、概わ5分間程度は必要で
ある。ロール冷却強度も、鋳片幅、2次冷却条件によっ
て変わるため、通常、冷却水流速1111/ SeC程
度である。鋳造速度変化に伴い、鋳片に接する側の系統
は通常流速の約2〜3倍、それ以外の系統は通常の流速
の約2〜3割減少する程度で十分である。減少させる必
要のない場合もある。
Figure 4 shows the relationship between casting speed and cooling intensity of each system. After changing the casting speed, the time for maintaining cooling conditions varies depending on the width of the slab, secondary cooling conditions, etc., but approximately 5 minutes is required. The roll cooling strength also varies depending on the slab width and secondary cooling conditions, so the cooling water flow rate is usually about 1111/SeC. As the casting speed changes, it is sufficient to reduce the flow rate to about 2 to 3 times the normal flow rate in the system in contact with the slab, and to reduce the flow rate by about 20 to 30% of the normal flow rate in other systems. In some cases, there is no need to reduce it.

中央に設けである既設の冷却孔は従来どうりの冷却用と
して用いる。このとき、中央の冷却孔の冷却水流方向と
円周冷却孔の冷却水流方向と互いに逆にしておけば、ロ
ールの軸方向の4N熱を防止できる。
The existing cooling hole in the center is used for conventional cooling. At this time, if the cooling water flow direction of the central cooling hole and the cooling water flow direction of the circumferential cooling hole are made opposite to each other, 4N heat in the axial direction of the roll can be prevented.

(へ)実施例 第1図から第3図までを参照して、本発明の方法の実施
例について説明する。
(F) Embodiment An embodiment of the method of the present invention will be described with reference to FIGS. 1 to 3.

本発明のピンチロール冷却方法は、連続@造設価の鋳片
引抜用ピンチロール1において、ピンチロール−の中心
および円周方向に所定のピンチて軸方向に貫通ずる複数
の冷却孔11および12を設け、冷却孔11,1.2に
冷却水を供給し、鋳造速度降下時に所定の時間だけ鋳片
3に接する側グ)所定の冷却孔12への冷却水の供給を
強化する。
In the pinch roll cooling method of the present invention, a plurality of cooling holes 11 and 12 are provided at a predetermined pinch point in the center and circumferential direction of the pinch roll and axially pass through the pinch roll 1 for drawing slabs of a continuous @ production setting price. is provided to supply cooling water to the cooling holes 11, 1.2, and strengthen the supply of cooling water to the predetermined cooling holes 12.

円周方向に配置した冷却孔12への冷却水の供給をノズ
ル・ヘンタ2からの噴射水によって行い、ノズル・ヘッ
ダ2を鋳片接触側(21)と非接触側(22)とに2分
割し、接触側分割ヘッダ21の給水を調節自在に制御す
る。
Cooling water is supplied to the cooling holes 12 arranged in the circumferential direction by jet water from the nozzle header 2, and the nozzle header 2 is divided into two parts: a slab contact side (21) and a non-contact side (22). The water supply to the contact-side split header 21 is controlled in an adjustable manner.

分割色、ツタ21.22は、円弧状のノズル・スワン1
〜211,221を設けられている。ノズル・プリント
21L 221から噴射される冷却水は各冷却孔12に
流入する。各冷却孔12に流入した冷却水は反対端から
流出する。
Divided color, ivy 21.22 is arc-shaped nozzle swan 1
~211,221 are provided. Cooling water jetted from the nozzle print 21L 221 flows into each cooling hole 12. The cooling water flowing into each cooling hole 12 flows out from the opposite end.

鋳片接触側の分割ヘッダ21は、第3図に示すように少
なくとも3つの冷却孔12に同時に給水できる円弧角θ
を有していることが好ましい。通常、この円弧角θは3
0〜120°程度である。
The split header 21 on the slab contact side has an arc angle θ that allows water to be supplied to at least three cooling holes 12 at the same time, as shown in FIG.
It is preferable to have the following. Usually, this arc angle θ is 3
It is about 0 to 120 degrees.

第1図に示すように、ロール中央の冷却孔11への冷却
水の供給は、従来どおり行う。この場合、ロール中央の
冷却孔11への冷却水の供給方向と、ロール円周方向の
冷却孔12へのそれとは互いに逆にすることが好ましい
。これにより、ロール軸方向の偏熱を防止することかた
きるからである。
As shown in FIG. 1, cooling water is supplied to the cooling hole 11 in the center of the roll in the conventional manner. In this case, it is preferable that the direction in which cooling water is supplied to the cooling hole 11 in the center of the roll and the direction in which the cooling water is supplied to the cooling hole 12 in the circumferential direction of the roll are opposite to each other. This is because uneven heat in the roll axis direction can be prevented.

円周方向の冷却孔12の半径方向の設置はロル半径Rの
約1/2R〜3.’4R,の範囲が好ましい。
The radial installation of the cooling holes 12 in the circumferential direction is approximately 1/2R to 3.5R of the roll radius R. '4R, is preferable.

また冷却孔12の直径αはロール直径りの約0.1D−
1−0,2Dの範囲が好ましい。
Also, the diameter α of the cooling hole 12 is approximately 0.1D-
A range of 1-0.2D is preferred.

次に、第5図から第8図まで参照して、本発明の方法の
具体的実施例について説明する。
Next, specific embodiments of the method of the present invention will be described with reference to FIGS. 5 to 8.

湾曲半径が1011の一点矯正連続鋳造設備において、
サイズが200關厚X 200Omm幅のスラブを鋳造
速度2.0”、”分で鋳造した。鋼種は第1表に示す低
炭素鋼を用いた。No、 1ストランドのピンチロール
は本発明によるロール冷却方法を用い、また、No、 
2ストランドのピンチロールには従来の均一冷却法を用
いて比較した。鋳込中のロールの表面温度変化およびロ
ール曲り状況を調査しな。
In single-point straightening continuous casting equipment with a curvature radius of 1011,
A slab with a size of 200mm thick x 2000mm wide was cast at a casting speed of 2.0'','' minutes. Low carbon steel shown in Table 1 was used as the steel type. No. 1 strand pinch roll uses the roll cooling method according to the present invention, and No.
A comparison was made using a conventional uniform cooling method for a two-strand pinch roll. Investigate the roll surface temperature change and roll bending during casting.

No、 1およびNo、 2ストランドとも同一タンデ
イツシュから2つの各鋳型に鋳込んだ。
Both strands No. 1 and No. 2 were cast from the same strand into two molds.

第  1  表 中炭素鋼を鋳造した。No、 1ストランドに本発明法
を用いて、ロール曲り量、内部割れ発生状況を調査した
The carbon steel shown in Table 1 was cast. The amount of roll bending and the occurrence of internal cracks were investigated using the method of the present invention for No. 1 strand.

第  2  表 鋳造速度は2.0  、/分から1.eln、7分まで
変化させたか、その際のN011ストランドの冷却水流
速度変化を第5図に示す。それに伴うロール表面温度変
化を第7図に示す。比較例のNo、 2ス)・ランドの
ロールか局部的に250℃以」二に温度上昇するのにく
らべて、本発明法てはほとんど温度変化は認ぬられない
。同時にロールの曲り量をロール中央部に設置した差動
トランスで調査した結果を第6図に示す。比較例のNo
、 2ストランドのロールが、約2 mmの周期変動、
すなわちロール曲りが認められなのに対して、本発明法
では定常鋳造速度時とほとんど変化しないことがわかる
Table 2 Casting speeds range from 2.0 to 1.0 m/min. Fig. 5 shows the changes in the cooling water flow velocity of the N011 strand when the temperature was changed up to 7 minutes. FIG. 7 shows the roll surface temperature change associated with this. Compared to the No. 2 land roll of Comparative Example where the temperature locally rose to 250° C. or higher, almost no temperature change was observed in the method of the present invention. At the same time, the amount of roll bending was investigated using a differential transformer installed in the center of the roll, and the results are shown in Figure 6. Comparative example No.
, a two-strand roll has a periodic variation of about 2 mm,
In other words, it can be seen that while no roll bending was observed, there was almost no change in the method of the present invention compared to when the casting speed was constant.

次いで、同じ設備でサイズが200關厚、2000mm
幅のスラブを鋳造速度2.0”、/分で第2表に示すこ
の鋳造の際、ブレークアウト予知が働き、鋳造速度が一
時的に0.8111/分まて低下した。この前後のロー
ル曲り量を第8図に示す。比較例のNo、 2ストラン
ドでは、約1.51T1mの曲りが発生しているのに対
して、本発明法はほとんど変化しない。
Next, the size is 200 mm thick and 2000 mm using the same equipment.
When casting a slab with a width of 2.0"/min as shown in Table 2, a breakout prediction occurred and the casting speed temporarily decreased to 0.8111/min. The amount of bending is shown in Fig. 8. In the comparative example No. 2 strand, bending of about 1.51 T1 m occurred, whereas in the method of the present invention, there is almost no change.

また、この部位の鋳片横断面のサルファプリントにより
内部割れを調査したが、No、 2ス1〜ランドには内
部割れが発生しているのに対してNo ]ストランドで
は内部割れは発生しておらず、本発明法のロール曲り防
止による内部割れ防止に効果を得ることができる。
In addition, internal cracks were investigated by sulfur printing on the cross section of the slab at this location, and internal cracks occurred in No. 2 strands 1 to land, but no internal cracks occurred in No.] strand. However, the method of the present invention is effective in preventing internal cracking by preventing roll bending.

(1〜)効 果 本発明の方法によれば、連続5jJ造用ピンチロルを有
効に冷却することができるので、ロールの曲りを抑制で
き、鋳片内部割れの発生を防止することができる。
(1~) Effects According to the method of the present invention, the pinch rolls for continuous 5JJ production can be effectively cooled, so that bending of the rolls can be suppressed and the occurrence of internal cracks in the slab can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を適用した連続鋳造用ピンチロー
ルの正面図。第2図は第1図の■−■線からみた横断面
図。第3図は第1図の■−■線からみた横断面図。第4
図は本発明の方法の原理を示す説明図。第5図から第8
図までは本発明の方法の具体的実施例の説明図。 1:ピンチロール   2:ヘプタ 21:鋳片接触側分割へツタ 22:鋳片非接触側分割へツタ 11.12:冷却孔 211.221:ノスル・スリット 特許出願人  住友金属工業株式会社 (外4名) 第5図 I’tlI−に■ 平成格穐元年 φ月q日 2、発明の名称 連続鋳造用ピンチロールの冷却方法 6、補正をする者 事件との関係
FIG. 1 is a front view of a pinch roll for continuous casting to which the method of the present invention is applied. Figure 2 is a cross-sectional view taken along the line ■-■ in Figure 1. FIG. 3 is a cross-sectional view taken from the line ■-■ in FIG. Fourth
The figure is an explanatory diagram showing the principle of the method of the present invention. Figures 5 to 8
The figures are explanatory diagrams of specific embodiments of the method of the present invention. 1: Pinch roll 2: Hepta 21: Ivy to the slab contact side division 22: Ivy to the slab non-contact side division 11. 12: Cooling hole 211. 221: Nostle slit Patent applicant Sumitomo Metal Industries, Ltd. (external 4) Name) Figure 5 I'tlI-■ 2nd day of φ month q, 1st year of the Heisei era, Title of the invention: Method for cooling pinch rolls for continuous casting 6, Relationship with the person making the amendment case

Claims (1)

【特許請求の範囲】 1、連続鋳造設備の鋳片引抜用ピンチロールにおいて、
該ピンチロールの中心および円周方向に所定のピッチで
軸方向に貫通する複数の冷却孔を設け、該冷却孔に冷却
水を供給し、鋳造速度降下時に所定の時間だけ鋳片に接
する側の所定の冷却孔への冷却水の供給を強化すること
を特徴とした連続鋳造用ピンチロールの冷却方法。 2、前記円周方向に配置した冷却孔への冷却水の供給を
ノズル・ヘッダからの噴射水によって行い、該ノズル・
ヘッダを鋳片接触側と非接触側とに2分割し、接触側分
割ヘッダの給水を調節自在に制御することを特徴とした
請求項1記載の方法。
[Claims] 1. In a pinch roll for drawing slabs of continuous casting equipment,
A plurality of cooling holes are provided at a predetermined pitch in the center and circumferential direction of the pinch rolls, passing through the axis in the axial direction, and cooling water is supplied to the cooling holes so that when the casting speed decreases, the side in contact with the slab is closed for a predetermined period of time. A method for cooling pinch rolls for continuous casting, characterized by strengthening the supply of cooling water to predetermined cooling holes. 2. Cooling water is supplied to the cooling holes arranged in the circumferential direction by water jet from the nozzle header, and the nozzle
2. The method according to claim 1, wherein the header is divided into two parts: a slab contact side and a non-contact side, and the water supply to the contact side divided header is controlled in an adjustable manner.
JP6543889A 1989-03-17 1989-03-17 Method for cooling pinch roll for continuous casting Pending JPH02247053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6543889A JPH02247053A (en) 1989-03-17 1989-03-17 Method for cooling pinch roll for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6543889A JPH02247053A (en) 1989-03-17 1989-03-17 Method for cooling pinch roll for continuous casting

Publications (1)

Publication Number Publication Date
JPH02247053A true JPH02247053A (en) 1990-10-02

Family

ID=13287132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6543889A Pending JPH02247053A (en) 1989-03-17 1989-03-17 Method for cooling pinch roll for continuous casting

Country Status (1)

Country Link
JP (1) JPH02247053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253810A (en) * 1996-01-18 1997-09-30 Nippon Steel Corp Roll for carrying in continuous casting apparatus
EP1330318A1 (en) * 2000-06-30 2003-07-30 Castrip, LLC Feeding strip material
JP2015202520A (en) * 2014-04-16 2015-11-16 新日鉄住金エンジニアリング株式会社 Internal cooling type roll and method for conveying high-temperature material
CN110280734A (en) * 2019-07-31 2019-09-27 攀钢集团工程技术有限公司 Large square bland continuous-casting machine pulling-straightening roller cooling water seal structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253810A (en) * 1996-01-18 1997-09-30 Nippon Steel Corp Roll for carrying in continuous casting apparatus
EP1330318A1 (en) * 2000-06-30 2003-07-30 Castrip, LLC Feeding strip material
EP1330318A4 (en) * 2000-06-30 2004-05-06 Castrip Llc Feeding strip material
JP2015202520A (en) * 2014-04-16 2015-11-16 新日鉄住金エンジニアリング株式会社 Internal cooling type roll and method for conveying high-temperature material
CN110280734A (en) * 2019-07-31 2019-09-27 攀钢集团工程技术有限公司 Large square bland continuous-casting machine pulling-straightening roller cooling water seal structure

Similar Documents

Publication Publication Date Title
JP5692451B2 (en) Continuous casting mold and steel continuous casting method
JP4786473B2 (en) Manufacturing method of slabs with excellent surface quality
US5871040A (en) Process for continuously casting thin slabs
JP2995519B2 (en) Light reduction of continuous cast strand
JPH02247053A (en) Method for cooling pinch roll for continuous casting
EP0127319B1 (en) Continuous casting apparatus for the production of cast sheets
JP5094154B2 (en) Slab cooling method in continuous casting machine
US11865607B2 (en) Method to obtain a continuous casting apparatus and continuous casting apparatus thus obtained
JP4992254B2 (en) Continuous casting mold and continuous casting method
JPH10263778A (en) Method for secondarily cooling cast slab in continuous casting
US4719964A (en) Method for producing a metal wire
CN114364471B (en) Crystallizer for continuous casting of metal products and corresponding casting method
JP3687547B2 (en) Secondary cooling method in continuous casting
JP2867894B2 (en) Continuous casting method
JPH07124712A (en) Continuous casting mold
GB2073074A (en) Producing an improved quality continuous casting
JPH0663715A (en) Method for executing rolling reduction to continuously cast bloom at end stage of solidification
KR20130022860A (en) Roll and twin roll strip caster comprising it
JP2024047886A (en) Continuous casting mold and method of manufacturing the same
JPH0796146B2 (en) Method and apparatus for continuous casting of thin slab
JPH0847757A (en) Divided roll with groove and device for guiding cast slab and method for guiding cast slab
JPS63183752A (en) Pouring nozzle for metal strip continuous casting apparatus
KR200188747Y1 (en) Device of continuous thin slab casting for twin roll type
JP3265230B2 (en) Continuous casting equipment
JPS61199554A (en) Method and device for continuous casting