JPS6137341B2 - - Google Patents

Info

Publication number
JPS6137341B2
JPS6137341B2 JP60146450A JP14645085A JPS6137341B2 JP S6137341 B2 JPS6137341 B2 JP S6137341B2 JP 60146450 A JP60146450 A JP 60146450A JP 14645085 A JP14645085 A JP 14645085A JP S6137341 B2 JPS6137341 B2 JP S6137341B2
Authority
JP
Japan
Prior art keywords
rare earth
metal
molten salt
salt bath
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60146450A
Other languages
Japanese (ja)
Other versions
JPS6130639A (en
Inventor
Ee Shaama Ramu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of JPS6130639A publication Critical patent/JPS6130639A/en
Publication of JPS6137341B2 publication Critical patent/JPS6137341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Rare earth oxides can be reduced to rare earth metals by, a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride-based bath (44) along with calcium metal. The bath (44) is agitated and calcium metal reduces the rare earth oxides to rare earth metals. The metals collect in a discrete layer (43) in the reaction vessel (22).

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は希土類元素酸化物、特に酸化ネオジム
を直接還元して希土類元素金属にするための新規
な金属熱プロセス(metallothermicprocess)に
関する。この方法は特にネオジム・鉄・硼素磁石
用のネオジム金属の低コスト製造法に利用され
る。 これまで、商業的に製造される最高の永久磁石
はサマリウムとコバルトの合金(SmCo5)の焼結
粉末から造られた。最近更に強力な磁石が軽い希
土類元素、特にネオジム及びプラセオジム、鉄及
び硼素の合金から造られている。上記の合金及び
これらを加工して磁石にする方法はヨーロツパ特
許出願No.0108474、0125752、0133758及び
0144112に述べられている。 希土類(RE)元素周期表中の原子番号57〜71
並びに原子番号39イツトリウムの供給源はバスト
ネス石及びモナズ石である。希土類混合物を上記
鉱石から幾つかの公知の選鉱技術によつて抽出出
来る。次いで希土類を溶出及び液・液抽出などの
従来からのプロセスにより相互に分離出来る。 希土類金属を相互に分離した後は、これらを酸
化物から、永久磁石に役立つ比較的純粋な形(混
在物の種類によつて純度95原子パーセントか又は
それ以上)の夫々の金属に還元する必要がある。
これまでは上記の最終還元過程が複雑で費用が掛
かり、希土類金属のコストに大きな負担となつ
た。 希土類の還元には、電解プロセスと金属熱(非
電解)プロセスの両方が採用されて来た。電解プ
ロセスには(1)溶融アルカリ又はアルカリ土類塩に
溶けた無水希土類塩化物の分解及び(2)溶融弗化物
塩に溶けた希土類酸化物の分解がある。 両方の電解プロセスの欠点には、最終的には消
耗する高価な電極の使用、望ましくないRE・オ
キシ塩類(例えばNdOCl)の生成防止のための
無水塩化物又は弗化物塩の使用、高温度の電解槽
操作(一般には1000℃以上)、高いエネルギーコ
ストを斉らす低電流効率及び塩から金属への低収
率(40%以下の金属が回収出来るに過ぎない)が
挙げられる。RE・塩化還元プロセスでは腐蝕性
の塩素ガスが発生し、又弗化物プロセスでは希土
類金属団塊(nodule)を固化させるため電解塩槽
中の温度勾配を注意深く制御しなければならな
い。電解プロセスの利点は、還元された金属を取
出し、塩浴を補給出来る措置が講じられゝば、プ
ロセスを連続的に進めることが出来る事である。 金属熱(非電解)プロセスには(1)カルシウム金
属粉末によるRE・弗化物の還元(カルシオサ−
ミツク・プロセス(calciother−mic
process))、と(2)水素化カルシウム(C2H5)又は
カルシウム金属(Ca)によるRE・酸化物の還元
拡散がある。欠点はいずれのプロセスもバツチ方
式で、非酸化性雰囲気中で実施しなければなら
ず、エネルギー消費量が大きく又還元拡散法の場
合の生成物は粉末で、粉末は使用前に水和して精
製しなければならない事である。いずれのプロセ
スも多くの段階からなつている。金属熱還元プロ
セスの一つの利点は、酸化物又は弗化物からの金
属の収率が一般に90%より良いことである。 RE弗化物又は塩化物が含まれるプロセスに
は、RE・酸化物を前処理してハロゲン化物にす
る必要がある。この段階が加わるため、希土類金
属の最終コストがその分多くなる。 軽希土類・鉄永久磁石が発明されたため、低コ
ストで、比較的高純度の希土類金属に対する需要
は大幅に増大した。然しながら既存の希土類化合
物還元方法のいずれにも、コストの低減或いは磁
石グレードの金属の入手し易さの増大の面で大き
な期待が持てなかつた。従つて新規、効率的でコ
ストの安い希土類金属の製造法を提供することが
本発明の目的の一つである。 上記及びその他の目的は下記の本発明の好まし
い具体的に依つて達成されよう。 電気抵抗ヒーター又はその他の加熱手段によつ
て所望の温度迄加熱出来る反応容器を準備する。
容器本体は反応構成成分に実質上不活性か又は無
害な金属又は耐火材料で造られていることが好ま
しい。 予め所定量のRE・酸化物を、約70重量%以上
の塩化カルシウムと約5〜30重量%の塩化ナトリ
ウム(NaCl)の塩混合物を含んだ反応容器内に
装入する。塩は還元反応のための媒体となる。希
土類酸化物の量に対して、化学量論的に過剰のカ
ルシウム金属を添加する。還元された希土類金属
と共融合金を生成させて反応を低目の温度で行わ
せ、RE・金属生成物が液状で得られる様に、あ
る量の鉄或いは亜鉛などの別の金属を添加するの
が好都合であろう。 反応を進めるため、容器を構成成分の融点以上
の温度に迄加熱する(約675℃)。反応の進行中に
相互の接触を保つため容器内の溶融構成成分を急
速に攪拌する。必要に応じて塩化カルシウム
(CaCl2)を浴に補充し、CaCl2とNaClの合計重量
にたいして70重量%を維持する。CaCl2濃度が70
%以下の所で反応が進むと、収率が急激に低下す
る。 容器内では幾つかの異つた競争化学反応が起る
が、RE・酸化物の還元反応は下記の実験反応式
に従つて進むものと考えられる。 REnOm+mCa→mCaO+nRE 茲で「n」と「m」は構成成分のモル数で又、
nとmの関係は希土類元素の酸化状態によつて左
右される。 還元された金属の密度は約7グラム/c.c.で、塩
浴の密度は約1.9グラム/c.c.である。攪拌を止め
ると、還元金属は反応容器の底に完全な層が出来
る。この層は溶融状態のまま抜き取る事も出来、
或いは固化した後塩層と分離する事も出来る。 この様に、本発明の方法には従来技術の方法に
まさる多数の利点がある。この方法は、特に希土
類金属が亜鉛又は鉄との共融合金の形で回収され
る場合、約700℃と言う比較的低温の所で行われ
る。この方法には比較的安価なRE・酸化物、
CaCl2、NaCl及びCa金属が反応物として用いら
れる。RE・酸化物を塩化物又は弗化物に予め変
換する必要はなく、高価な還元剤である純Ca又
はCaH2を用いる必要もない。電解的な方法では
ないからエネルギー消費量も少く、約700℃の温
度で大気圧で具合よく実施される。この方法は回
分式又は連続式プロセスのいずれの形でも実施出
来、副生物CaCl2、NaCl及び酸化カルシウム
(CaO)は始末が容易である。 その上希土類金属は、RE−Fe共融合金の形で
造られる場合は反応容器中に鉄を添加して合金化
する事も出来、或いはその後に高価な精製処理を
行うことなしにRE−Fe磁石用に合金化すること
も出来る。 本発明は希土類元素の化合物を還元して対応す
る金属単体を得る改良された方法に関する。希土
類金属には、周期表の57〜71番元素(ランタン、
セリウム、プラセオジム、ネオジム、プロメチウ
ム、サマリウム、ユーロピウム、ガドリニウム、
テルビウム、ジスプロシウム、ホルミウム、エル
ビウム、ツリウム、イツテルビウム、ルテチウ
ム)及び原子番号39、イツトリウムが含まれる。
希土類の酸化物は一般に金属分離プロセスで生産
される着色粉末である。茲で「軽希土類」と言う
用語はランタン(La)、セリウム(Ce)、プラセ
オジム(Pr)及びネオジム(Nd)を表わす。 本発明の方法に於いて、RE酸化物は一般に分
離器から出たままの姿で使われるが、〓焼して過
剰の吸収水分又は炭酸ガスを除去してもよい。以
下の例ではRE・酸化物は使用に先立ち1000℃で
約2時間炉で乾燥した。塩浴用のCaCl2とNaClは
試薬グレードのもので、使用に先立ち500℃で約
2時間乾燥した。 当初の作業では、反応容器内に全く水分が導入
されない様に注意を払い、Na又はCaと有害な反
応が起らない様にした。NaCl・含有浴にカルシ
ウムを添加すると、下記の反応で、いくらかのナ
トリウム金属が生ずることができる。 2NaCl+Ca→CaCl2+2Na 溶融浴中でNd2O3にCaCl2が混合されると、下
記の反応でオキシ塩化物が生成する Nd2O3+CaCl2→2NdOCl+CaO この種のRE・オキシ塩化物の存在は先行技術
電解プロセスでは収率を低下させる事が知られて
いる。然しながら本発明に於いてはRE酸化物も
RE・オキシ塩化物も共に容易にカルシウム金属
で還元される。実際にはRE・オキシ酸化物は還
元されたRE・金属の溶融層上に浮遊するので、
その生成は好都合である。一方、RE・酸化物の
方は還元RE・金属に近い密度を持つているか
ら、還元RE・金属の溶融層中に不純物の形で保
持されるおそれがあり、RE金属を磁石用に使う
際に不都合を生ずるおそれがある。本発明に依る
方法で還元されたRE金属は基本的に酸素を含ん
でいなかつた。 合金化されないNd金属の融点は約1025℃であ
る。他の希土類金属も高い融点を持つている。対
象とする反応をこの程度の塩度で進めようと思う
なら、こうする事も可能であり純金属を高収率で
得ることも出来よう。然しながらもつと低い温度
で溶融する、回収希土類金属の合金を生成させる
ため、還元容器に鉄、亜鉛などの他の金属、又は
他の非希土類金属をある量添加することが好まし
い。例えば鉄はネオジムと低融点共融合金を生成
する(Fe11.5重量%;m.p.約640℃)、亜鉛も同
様である(Zn11.9重量%、m.p.約630℃)。Nd2O3
還元系に十分な鉄が添加されると、還元された金
属は約640℃で液状の溜りを生成する。Nd−Fe共
融合金は、鉄及び硼素を添加して合金化し、前述
のヨーロツパ特許出願に述べられた最適の
Nd2Fe14B磁石相を持つた磁石にすることが出来
る。 回収希土類金属の融点を引下げることが好まし
いが、その様にして添加された金属を残すことが
好ましくない場合は、回収希土類金属の沸点より
もずつと低い沸点を持つ金属を反応容器に添加し
てもよい。例えばZnは907℃で沸騰し、Ndは3150
℃で沸騰する。低融点金属はその後、簡単な蒸留
操作で希土類金属から容易に分離出来る。 反応容器又はその内張りに用いる材料は、溶融
希土類金属、特に塩融剤環境中に残つた希土類金
属に腐蝕性があるため慎重に選択されなければな
らない。イツトリヤ内張りアルミナや硼素トイト
ライドは非反応性である、耐火材料は一般に許容
される。タンタルの様な基本的に不活性の金属或
いは鉄の様な消耗性だが無害の金属で造られた耐
火内張り材を用いることも可能である。鉄の内張
りは還元されたRE金属を入れるのに使え、その
後磁石に使うためにREと合金化出来る。 本発明に依つて、希土類酸化物の還元にカルシ
ウム金属を用いる新しい方法が発見された。本方
法は溶融カルシウムとRE酸化物を一緒にして下
記の反応を起させることをその内容とする REnOm+mCa→nRE+mCaO 反応容器を加圧しない場合には、CaとNaClの
反応によつて生ずるNaの過大な損失を回避する
ため、温度を約910℃辺りに保つことが望まし
い。最も好ましい操業温度範囲は、約650〜750℃
の辺りである。この様な温度では、反応容器の損
耗は甚だしくはない。Nd−Fe及びNd−Zn供融物
の溶融温度は700℃以下であるから上記の温度範
囲はNd2O3をNd金属に還元するのに好適であ
る。その上約700℃では塩浴中のCa金属の溶解度
は約1.3モル%である。この値は速かにRE酸化物
をRE・金属に還元するのに十分である。 融剤から還元RE金属をうまく分離する必要が
ある場合は、反応温度を還元RE金属又は合金化
された即ち他の金属と一緒に還元された還元RE
金属の融点より高くしなければならない。上記の
比較的密度の高いRE金属又は合金は、沈降させ
ると反応容器の底に集まる。これで溶融中にこれ
らを抜き取り或いは固化後取出すことが出来る。 表1に本発明に用いた単体及び化合物の、分子
量(m.w.)、25℃に於ける密度(μ)(g/c.c.)、
融点(m.p.)及び沸騰点(b.p.)を示してある。
The present invention relates to a novel metallothermic process for the direct reduction of rare earth oxides, particularly neodymium oxide, to rare earth metals. This method is particularly useful for low-cost production of neodymium metal for neodymium-iron-boron magnets. To date, the best permanent magnets produced commercially have been made from sintered powder of an alloy of samarium and cobalt (SmCo 5 ). Recently even stronger magnets have been made from alloys of lighter rare earth elements, especially neodymium and praseodymium, iron and boron. The above alloys and methods of processing them into magnets are disclosed in European Patent Applications Nos. 0108474, 0125752, 0133758 and
0144112. Rare earth (RE) elements Atomic numbers 57 to 71 in the periodic table
The sources of yttrium with atomic number 39 are bastnesite and monazite. Rare earth mixtures can be extracted from the ores by several known beneficiation techniques. The rare earths can then be separated from each other by conventional processes such as elution and liquid-liquid extraction. Once the rare earth metals have been separated from each other, they must be reduced from their oxides to relatively pure forms of each metal (95 atomic percent purity or higher, depending on the type of inclusions) useful in permanent magnets. There is.
Up until now, the final reduction process described above has been complex and expensive, adding a significant burden to the cost of rare earth metals. Both electrolytic and metal thermal (non-electrolytic) processes have been employed for the reduction of rare earths. The electrolytic process includes (1) the decomposition of anhydrous rare earth chlorides dissolved in molten alkali or alkaline earth salts and (2) the decomposition of rare earth oxides dissolved in molten fluoride salts. Disadvantages of both electrolytic processes include the use of expensive electrodes that eventually wear out, the use of anhydrous chloride or fluoride salts to prevent the formation of undesirable RE-oxysalts (e.g. NdOCl), and high temperatures. These include electrolyzer operation (generally above 1000°C), low current efficiency combined with high energy costs, and low salt-to-metal yields (less than 40% of metal can be recovered). The RE/chloride reduction process generates corrosive chlorine gas, and the fluoride process requires careful control of the temperature gradient in the electrolytic salt bath to solidify rare earth metal nodules. An advantage of the electrolytic process is that the process can be run continuously if provision is made to remove the reduced metal and replenish the salt bath. Metal thermal (non-electrolytic) processes include (1) reduction of RE and fluoride (calciosa) using calcium metal powder;
Mitsuku process (calciother-mic)
(2) reduction and diffusion of RE/oxide by calcium hydride (C 2 H 5 ) or calcium metal (Ca). Disadvantages are that both processes must be carried out in batches, in a non-oxidizing atmosphere, consume a lot of energy, and in the case of the reduction-diffusion method, the product is a powder, which must be hydrated before use. It is something that must be refined. Both processes consist of many steps. One advantage of metal thermal reduction processes is that the yield of metal from oxide or fluoride is generally better than 90%. Processes involving RE fluoride or chloride require pretreatment of the RE oxide to form a halide. This additional step increases the final cost of the rare earth metal. With the invention of light rare earth iron permanent magnets, the demand for low cost, relatively high purity rare earth metals has increased significantly. However, none of the existing rare earth compound reduction methods has shown much promise in reducing costs or increasing the availability of magnet grade metals. Accordingly, it is one of the objects of the present invention to provide a new, efficient, and low cost method for producing rare earth metals. The above and other objects will be achieved by the preferred embodiments of the invention described below. A reaction vessel is prepared that can be heated to the desired temperature with an electric resistance heater or other heating means.
Preferably, the container body is constructed of a metal or refractory material that is substantially inert or non-toxic to the reaction components. A predetermined amount of RE/oxide is charged in advance into a reaction vessel containing a salt mixture of about 70% by weight or more of calcium chloride and about 5 to 30% by weight of sodium chloride (NaCl). The salt serves as a medium for the reduction reaction. A stoichiometric excess of calcium metal is added relative to the amount of rare earth oxide. A eutectic alloy is formed with the reduced rare earth metal, the reaction is carried out at a low temperature, and a certain amount of another metal such as iron or zinc is added so that the RE/metal product is obtained in liquid form. It would be convenient. To proceed with the reaction, the container is heated to a temperature above the melting point of the constituent components (approximately 675°C). The molten components in the vessel are stirred rapidly to maintain contact with each other during the course of the reaction. Calcium chloride (CaCl 2 ) is replenished into the bath as needed to maintain 70% by weight relative to the total weight of CaCl 2 and NaCl. CaCl2 concentration is 70
If the reaction proceeds below %, the yield will drop sharply. Although several different competitive chemical reactions occur within the container, the reduction reaction of RE/oxide is thought to proceed according to the experimental reaction formula below. REnOm+mCa→mCaO+nRE In the formula, “n” and “m” are the number of moles of the constituent components, and
The relationship between n and m depends on the oxidation state of the rare earth element. The density of the reduced metal is about 7 grams/cc and the density of the salt bath is about 1.9 grams/cc. When stirring is stopped, the reduced metal forms a complete layer at the bottom of the reaction vessel. This layer can also be extracted in its molten state,
Alternatively, it can be separated from the salt layer after solidification. Thus, the method of the present invention has a number of advantages over prior art methods. This process is carried out at relatively low temperatures of about 700° C., especially when the rare earth metals are recovered in the form of eutectic alloys with zinc or iron. This method uses relatively inexpensive RE/oxides,
CaCl 2 , NaCl and Ca metal are used as reactants. There is no need to pre-convert the RE oxide to chloride or fluoride, and there is no need to use expensive reducing agents pure Ca or CaH 2 . Since it is not an electrolytic process, it consumes less energy and is conveniently carried out at temperatures of about 700°C and atmospheric pressure. The method can be carried out in either a batch or continuous process, and the by-products CaCl 2 , NaCl and calcium oxide (CaO) are easy to dispose of. Moreover, rare earth metals can be alloyed by adding iron into the reaction vessel if they are made in the form of RE-Fe eutectic alloys, or RE-Fe can be alloyed without subsequent expensive refining treatments. It can also be alloyed for use in magnets. The present invention relates to an improved method for reducing compounds of rare earth elements to obtain the corresponding elemental metals. Rare earth metals include elements 57 to 71 of the periodic table (lanthanum,
Cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium,
These include terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium) and atomic number 39, yttrium.
Rare earth oxides are commonly colored powders produced in metal separation processes. The term "light rare earths" in Japanese refers to lanthanum (La), cerium (Ce), praseodymium (Pr) and neodymium (Nd). In the process of the present invention, the RE oxide is generally used as it comes out of the separator, but may be calcined to remove excess absorbed moisture or carbon dioxide. In the examples below, the RE oxide was oven dried at 1000°C for approximately 2 hours prior to use. CaCl 2 and NaCl for the salt bath were of reagent grade and dried at 500° C. for approximately 2 hours prior to use. In the initial work, care was taken to ensure that no moisture was introduced into the reaction vessel to avoid harmful reactions with Na or Ca. Adding calcium to a NaCl-containing bath can generate some sodium metal in the reaction described below. 2NaCl + Ca → CaCl 2 + 2Na When CaCl 2 is mixed with Nd 2 O 3 in a molten bath, oxychloride is produced by the following reaction Nd 2 O 3 + CaCl 2 → 2NdOCl + CaO Presence of this type of RE/oxychloride is known to reduce yield in prior art electrolytic processes. However, in the present invention, RE oxide is also used.
Both RE and oxychloride are easily reduced with calcium metal. In reality, RE/oxyoxide floats on the molten layer of reduced RE/metal, so
Its generation is convenient. On the other hand, since RE/oxide has a density close to that of reduced RE/metal, there is a risk that it will be retained in the form of impurities in the molten layer of reduced RE/metal. may cause inconvenience. The RE metal reduced by the method according to the invention was essentially free of oxygen. The melting point of unalloyed Nd metal is approximately 1025°C. Other rare earth metals also have high melting points. If you want to proceed with the target reaction at this level of salinity, it would be possible to do this and obtain pure metal in high yield. However, in order to form an alloy of recovered rare earth metals that melts at lower temperatures, it is preferred to add some amount of other metals such as iron, zinc, or other non-rare earth metals to the reduction vessel. For example, iron forms a low melting point eutectic alloy with neodymium (Fe 11.5% by weight; mp approximately 640°C), as does zinc (Zn 11.9% by weight, mp approximately 630°C). Nd2O3 _
When enough iron is added to the reducing system, the reduced metal forms a liquid puddle at about 640°C. The Nd-Fe eutectic alloy is alloyed with the addition of iron and boron to achieve the optimal
It can be made into a magnet with Nd 2 Fe 14 B magnet phase. It is preferable to lower the melting point of the recovered rare earth metal, but if it is undesirable to leave the metal added in this way, a metal with a boiling point lower than the boiling point of the recovered rare earth metal may be added to the reaction vessel. It's okay. For example, Zn boils at 907℃, and Nd boils at 3150℃.
Boil at °C. The low melting point metal can then be easily separated from the rare earth metal by a simple distillation operation. The materials used for the reaction vessel or its lining must be carefully selected due to the corrosive nature of molten rare earth metals, especially rare earth metals left in salt flux environments. Refractory materials such as alumina and boron totride linings are non-reactive and are generally acceptable. It is also possible to use refractory linings made of essentially inert metals such as tantalum or consumable but non-hazardous metals such as iron. The iron lining can be used to contain reduced RE metal, which can then be alloyed with RE for use in magnets. In accordance with the present invention, a new method of using calcium metal for the reduction of rare earth oxides has been discovered. This method involves bringing molten calcium and RE oxide together to cause the following reaction: REnOm + mCa → nRE + mCaO If the reaction vessel is not pressurized, an excess of Na will be generated by the reaction between Ca and NaCl. It is desirable to keep the temperature around 910°C to avoid significant losses. The most preferred operating temperature range is approximately 650-750℃
It's around. At such temperatures, the wear and tear on the reaction vessel is not significant. Since the melting temperatures of Nd-Fe and Nd-Zn donors are below 700°C, the above temperature range is suitable for reducing Nd 2 O 3 to Nd metal. Furthermore, at about 700°C, the solubility of Ca metal in the salt bath is about 1.3 mol%. This value is sufficient to quickly reduce RE oxide to RE metal. If successful separation of the reduced RE metal from the flux is required, the reaction temperature may be lower than the reduced RE metal or the reduced RE metal alloyed, i.e. reduced together with other metals.
Must be higher than the melting point of the metal. The relatively dense RE metal or alloy described above collects at the bottom of the reaction vessel as it settles. This allows them to be taken out during melting or taken out after solidification. Table 1 shows the molecular weight (mw), density (μ) (g/cc) at 25°C, and the molecular weight (mw) of the simple substance and compound used in the present invention.
Melting points (mp) and boiling points (bp) are shown.

【表】 図1に本発明を実施するのに適当な装置が示し
てある、この装置で幾つかの実施例に述べてある
実験操作を行つた。実験は全てボルト6でドライ
ボツクスの床4に取付けられた内径が12.7cmで深
さが54.6cmの長い竪型炉20内で行われた、実験
操作中酸素(O2)、窒素(N2)及び水分(H2O)
が夫々百万分の一以下含まれているヘリウム雰囲
気が箱内に保持された。 炉を内径が13.3cmで全長が45.7cmの3個の円筒
状電気クラムシエル加熱体8,10及び12で加
熱した。炉の側面及び底面を絶縁物14で完全に
取囲んだ。熱電対15を竪型炉20の外壁16の
種々な位置にその長さ方向にそつて取付けた。中
央に位置する熱電対の中の一個を比例帯域温度調
節器(図示せず)に接続して利用し、自動的に中
央クラムシエルヒーター10を制御した。残りの
3つの熱電対をデジタル温度読み取り装置を用い
て監視し、頂部と底部のクラムシエル加熱器8及
び12は、変圧器を使つて手動で調節し炉全体を
かなり均一な温度に保つた。 ステンレス鋼竪型炉20中に保持された外径
10.2cm、深さ12.7cmで厚みが0.15cmのステンレス
鋼るつぼ18に納められた反応容器22中で還元
反応を行つた。実施例中で特に断つていない限
り、反応容器22はタンタル金属製であつた。 還元プロセス中溶融物の攪拌にタンタル攪拌器
24を用いた。攪拌器の軸の長さは48.32cmで翼
26が溶接されていた。攪拌器は700回転/分迄
の速度で作動出来る100w速度可変モーター28
で駆動された。モーターは、反応容器中の攪拌翼
26の深さを調整出来る様に、ブラケツト30に
取付けられた。軸は環状の支持ブラケツト34に
備えられたブシユ32に通された。ブラケツトは
カラー35で保持され、カラーには竪型炉20が
ボルト37によつて取付けられている。竪型炉2
0の頂部の近くに冷水コイル36があり、揮発性
の反応構成成分の凝縮を促進し逸散を防止する。
Na蒸気を還流させるために円維形のステンレス
鋼邪魔板38が用いられた。底の邪魔板42の筒
40を通つて還流生成物が下に落ちる。 操作の最後に炉内の構成成分の攪拌を止める
と、構成成分は底に希土類合金溜り43、その上
にRE・オキシ塩化物、塩化カルシウム/ナトリ
ウム塩浴44、その上にもしあれば未反応のカル
シウム金属45と言つた形で層状に分離する。 図2は本発明によるNd2O3のNd金属への還元
の理想化されたフロー・チヤートである。Nd2O3
は適当な比率の塩化カルシウムおよび塩化ナトリ
ウムと共に反応容器に添加される。 カルシウム金属と、共融Nd合金に近いものを
生成させるために十分な量の鉄又は亜鉛の様な共
融物生成金属が添加される。少くとも1時間約
700℃の温度において約300〜700回転/分で急速
に攪拌しながら反応が進められる。ヘリウムの様
な不活性ガス雰囲気を反応容器上に保持すること
が好ましい。Nd2O3が還元された後、約1時間
100回転/分に速度を下げて攪拌を継続し次いで
攪拌を止めて容器中の種々の液体を層状に分離さ
せる。還元Nd共融合金は、その密度が最も大き
いため底に集まる。残りの塩類及び未反応のCa
はNd合金上に集まり、容器が冷えて構成成分が
固化した後容易に壊わして取出すことが出来る。
この様にして造られたNd−Fe合金は追加元素と
合金化して、永久磁石組成物に仕上げることが出
来る。この磁石合金はメルト・スピニング法で加
工する事が出来又摩砕して粉末冶金法で加工して
磁石にすることも出来る。 実施例 純度99%のNd金属塊265グラムと99.9%純度Zn
金属50グラムを共融合金に近いもの315グラムを
造るためタンタル反応容器中に入れた。容器を炉
内に入れ、800℃に加熱してNdとZnを合金化させ
た。 炉の温度を約720℃に下げ70重量%のCaCl2
塩浴を造るためNaCl150グラムとCaCl2350グラム
を添加した。Nd2O3234グラム(0.7モル)を添加
した。Ca金属104グラム(2.6モル)をるつぼに
添加しこれを約2時間300回転/分の速度で攪拌
し次いで更に1時間60回転/分の速度で攪拌し
た。るつぼを炉から取出し、ドライボツクスの床
の上で冷やした。 容器の底に集まつたNd・Zn合金を蒸留して純
度が99%以上のNd金属189グラム(はじめに加え
たNd金属265グラムを除く)を回収した。酸化物
からのNd金属の収率は約94%であつた。 実施例 414グラムの共融合金に近いものを造るため、
純度99%のNd金属塊350グラムと電解鉄64グラム
を厚さ6mmの軟鋼製反応容器中に入れた。容器を
炉内に入れ800℃に加熱してNdと鉄を合金化させ
た。 炉の温度を約720℃に下げてCaCl2が70重量%
の塩浴を造るため、NaCl300グラムとCaCl2700グ
ラムを添加した。Nd2O3117グラム(0.35モル)
を添加した。Ca金属46グラム(1.15モル)と
Na10.8グラム(0.47モル)をるつぼに添加し約
135分間300回転/分の速度でこれらを攪拌した。
この時点で更に、Nd2O3117グラム(0.35モル)、
Ca金属46グラム(1.15モル)及びNa10.8グラム
(0.47モル)を添加した。反応物を更に114分間、
300rpmで攪拌し次いでもう1時間60rpmの攪拌
速度で攪拌した。反応容器を炉から取出しドライ
ボツクスの床の上で冷やした。塩層の上に未反応
のCa−Na合金の層が出来た。 純度97%のNd−Fe合金、594グラムが回収され
た。この合金から、回収後直ちに、鉄及び硼素を
結合させて、永久磁石製造用の理想的なNd−Fe
−B合金を造ることができる。Nd−Fe合金の形
で99%以上の純度のNd金属180グラムが回収され
た。この実施例はCaCl2−NaCl融剤浴中でカルシ
ウム及びナトリウム溶融物が、希土類酸化物を還
元出来ることを示している。 実施例 実施例に述べたプロセスを用いて、但し反応
物を4時間300回転/分で攪拌した後更に60rpm
で1時間攪拌してCa金属を用いてNd2O3約234グ
ラムを金属熱還元した時の種々の構成成分の使用
量を表に掲げてある。
Table 1 Figure 1 shows an apparatus suitable for carrying out the invention, on which the experimental operations described in some of the Examples were carried out. All experiments were conducted in a long vertical furnace 20 with an inner diameter of 12.7 cm and a depth of 54.6 cm, which was attached to the floor 4 of a dry box with bolts 6. Oxygen (O 2 ), nitrogen (N 2 ) and moisture (H 2 O)
A helium atmosphere containing less than one part per million of each was maintained within the box. The furnace was heated with three cylindrical electric clamshell heating elements 8, 10 and 12 with an inner diameter of 13.3 cm and a total length of 45.7 cm. The sides and bottom of the furnace were completely surrounded by an insulator 14. Thermocouples 15 were attached to the outer wall 16 of the vertical furnace 20 at various positions along its length. One of the centrally located thermocouples was used to connect to a proportional band temperature controller (not shown) to automatically control the central clamshell heater 10. The remaining three thermocouples were monitored using digital temperature readouts, and the top and bottom clamshell heaters 8 and 12 were manually regulated using transformers to maintain a fairly uniform temperature throughout the furnace. Outer diameter held in stainless steel vertical furnace 20
The reduction reaction was carried out in a reaction vessel 22 housed in a stainless steel crucible 18 measuring 10.2 cm by 12.7 cm deep and 0.15 cm thick. Unless otherwise specified in the examples, reaction vessel 22 was made of tantalum metal. A tantalum stirrer 24 was used to stir the melt during the reduction process. The length of the stirrer shaft was 48.32 cm and blades 26 were welded to it. The stirrer has a 100W variable speed motor 28 that can operate at speeds up to 700 rpm.
Driven by. The motor was attached to the bracket 30 so that the depth of the stirring blade 26 in the reaction vessel could be adjusted. The shaft passed through a bushing 32 mounted on an annular support bracket 34. The bracket is held by a collar 35, to which the vertical furnace 20 is attached by bolts 37. Vertical furnace 2
A cold water coil 36 is located near the top of the 0 to promote condensation of volatile reaction components and prevent their escape.
A circular stainless steel baffle 38 was used to reflux the Na vapor. The reflux product falls down through the tube 40 of the bottom baffle 42. At the end of the operation, when the stirring of the components in the furnace is stopped, the components are deposited with the rare earth alloy reservoir 43 at the bottom, the RE/oxychloride, calcium chloride/sodium salt bath 44 above, and any unreacted components above. Calcium metal 45 separates into layers. FIG. 2 is an idealized flow chart of the reduction of Nd 2 O 3 to Nd metal according to the present invention. Nd2O3 _
is added to the reaction vessel along with the appropriate proportions of calcium chloride and sodium chloride. Calcium metal and a sufficient amount of a eutectic metal such as iron or zinc are added to form something close to a eutectic Nd alloy. at least 1 hour
The reaction is carried out at a temperature of 700°C with rapid stirring at approximately 300-700 revolutions/min. Preferably, an inert gas atmosphere, such as helium, is maintained over the reaction vessel. After Nd 2 O 3 is reduced, about 1 hour
Stirring is continued at a reduced speed to 100 revolutions per minute and then stopped to allow the various liquids in the container to separate into layers. The reduced Nd eutectic alloy gathers at the bottom because it has the highest density. Remaining salts and unreacted Ca
collects on the Nd alloy, and after the container cools and the components solidify, they can be easily broken and removed.
The Nd-Fe alloy thus produced can be alloyed with additional elements to form a permanent magnet composition. This magnetic alloy can be processed by melt spinning, or it can be ground and processed into a magnet by powder metallurgy. Example: 265 grams of 99% pure Nd metal ingot and 99.9% pure Zn
Fifty grams of the metal were placed in a tantalum reactor to produce 315 grams of a near-eutectic alloy. The container was placed in a furnace and heated to 800°C to alloy Nd and Zn. The temperature of the furnace was lowered to about 720° C. and 150 grams of NaCl and 350 grams of CaCl 2 were added to create a salt bath of 70% by weight CaCl 2 . 234 grams (0.7 mole) of Nd2O3 was added. 104 grams (2.6 moles) of Ca metal were added to the crucible, which was stirred for approximately 2 hours at a speed of 300 revolutions/minute and then for an additional hour at a speed of 60 revolutions/minute. The crucible was removed from the furnace and cooled on the floor of a dry box. By distilling the Nd/Zn alloy that had gathered at the bottom of the container, 189 grams of Nd metal with a purity of over 99% (excluding the 265 grams of Nd metal added at the beginning) was recovered. The yield of Nd metal from the oxide was about 94%. Example: To make something close to 414 grams of eutectic alloy,
350 grams of Nd metal ingot with a purity of 99% and 64 grams of electrolytic iron were placed in a mild steel reaction vessel with a thickness of 6 mm. The container was placed in a furnace and heated to 800°C to alloy Nd and iron. Lower the furnace temperature to about 720℃ to reduce CaCl2 to 70% by weight
To make a salt bath, 300 grams of NaCl and 700 grams of CaCl2 were added. 117 grams (0.35 moles) of Nd2O3
was added. Ca metal 46 grams (1.15 moles) and
Add 10.8 grams (0.47 mol) of Na to the crucible and approx.
These were stirred at a speed of 300 revolutions/min for 135 minutes.
Additionally at this point, 117 grams (0.35 moles) of Nd 2 O 3
46 grams (1.15 moles) of Ca metal and 10.8 grams (0.47 moles) of Na were added. The reaction was heated for an additional 114 minutes.
The mixture was stirred at 300 rpm and then for another hour at a stirring speed of 60 rpm. The reaction vessel was removed from the furnace and cooled on the floor of a dry box. A layer of unreacted Ca-Na alloy was formed on top of the salt layer. 594 grams of 97% pure Nd-Fe alloy was recovered. Immediately after recovery, this alloy is combined with iron and boron to create an ideal Nd-Fe for permanent magnet production.
-B alloy can be made. 180 grams of Nd metal with purity greater than 99% was recovered in the form of Nd-Fe alloy. This example shows that calcium and sodium melts in a CaCl2 -NaCl flux bath can reduce rare earth oxides. Example Using the process described in the example, but stirring the reactants at 300 rpm for 4 hours and then an additional 60 rpm.
The table lists the amounts of the various components used in the metallurgical reduction of about 234 grams of Nd 2 O 3 using Ca metal with stirring for 1 hour.

【表】 CaCl2が65.5重量%でNaClが34.5重量%の塩浴
比の時、収率は65.2%になる。CaCl2が70重量%
又はそれ以上になると、夫々の場合Ndの収率は
85%より高く一般的に95%以上である。図3は
Ca金属を還元剤に用いたNaCl−CaCl2二成分系
出発塩浴中のCaCl2の重量%に対してNd2O3から
のNd金属の収率をプロツトしたものである。表
及び図3に示されるように、高収率を得るに
は、塩浴中のCaCl2の量を約70重量%以上に保つ
必要がある事が分つた。又RE・酸化物の分散に
適当な融剤を得るには、塩とRE・酸化物の容積
比を少くとも2:1にすることが望ましい。塩浴
のRE・酸化物にたいする容積比が増すに伴つ
て、或る決まつた時間内に同じ収率を得るのに攪
拌速度を引下げられることができると言う事が認
められた。CaCl2含有浴は本発明の重要な特徴で
ある。 幾つかのサンプルを一緒にして真空蒸留によつ
てZn金属を除去した。得られた合金を分析して
純度が99%以上でアルミニウム0.4%、珪素0.1
%、カルシウム0.01%で痕跡量の亜鉛、マグネシ
ウム及び鉄が混在している事が分つた。この様に
して得られたNd金属を真空炉中で電解鉄及びフ
エロ硼素と溶融して名目組成が
Nd0.15B0.05Fe0.80の合金を造つた。この合金
を上述のヨーロツパ特許出願No.0108474に述べ
られている様にしてメルト・スピニングし、急冷
時の保持力が約10メガ・ガウス・エルステツドの
非常に細かい結晶性リボンを造つた。 本発明はNd2O3の還元に就いて詳しく述べてあ
るが、他の単独の希土類単体の酸化物又は希土類
酸化物の組合せ物の還元にも同様に適用出来る。
これはCaOがいずれの希土類の酸化物よりも安定
であると言う事実に基いている。この分野に精通
した人ならこれまでRE酸化物とCaOの相対的自
由エネルギーを求めることが出来たであろうが、
本発明以前は、RE・酸化物が非電解液相プロセ
スでCa金属で還元出来る事は知られていなかつ
た。 望むなら、FeやCoの様な遷移金属の酸化物
を、本発明のプロセスでRE酸化物と一緒に還元
出来る。 要するに、希土類酸化物を希土類金属に還元す
る新しい効率がよくコストの安い方法が開発され
た。本方法は、適当な溶融CaCl2ベース浴を造
り、その中で希土類酸化物を、それを還元するに
十分な量のカルシウム金属と攪拌することをその
内容とする。攪拌を止めると、構成成分は明確な
層に分かれ、この層は冷却し固化した後こわして
除くことが出来る。別の方法では、還元された液
状の希土類金属を反応容器の底から抜き取ること
が出来る。RE金属を抜き取つた後、融浴に補給
して次のバツチに移り、プロセスを基本的に連続
的なものにすることが出来る。
[Table] When the salt bath ratio is 65.5% by weight of CaCl 2 and 34.5% by weight of NaCl, the yield is 65.2%. 70% by weight CaCl2
or higher, in each case the yield of Nd is
Higher than 85% and generally 95% or higher. Figure 3 is
The yield of Nd metal from Nd 2 O 3 is plotted against the weight percent of CaCl 2 in the NaCl-CaCl 2 binary starting salt bath using Ca metal as the reducing agent. As shown in the table and FIG. 3, it was found that to obtain a high yield, it was necessary to maintain the amount of CaCl 2 in the salt bath above about 70% by weight. Further, in order to obtain a flux suitable for dispersing the RE/oxide, it is desirable that the volume ratio of the salt to the RE/oxide be at least 2:1. It has been observed that as the volume ratio of the salt bath to RE/oxide increases, the stirring speed can be reduced to obtain the same yield within a given time. The CaCl 2 -containing bath is an important feature of the invention. Several samples were combined to remove Zn metal by vacuum distillation. The resulting alloy was analyzed and found to have a purity of 99% or higher with 0.4% aluminum and 0.1% silicon.
%, calcium 0.01%, and trace amounts of zinc, magnesium, and iron were found to be present. The Nd metal thus obtained is melted with electrolytic iron and ferroboron in a vacuum furnace to reduce the nominal composition.
An alloy of Nd 0.15 B 0.05 Fe 0.80 was created. This alloy was melt spun as described in the above-mentioned European Patent Application No. 0108474 to produce a very fine crystalline ribbon with a retention strength of approximately 10 megagauss oersted upon quenching. Although the present invention has been described in detail with respect to the reduction of Nd 2 O 3 , it is equally applicable to the reduction of other single rare earth oxides or combinations of rare earth oxides.
This is based on the fact that CaO is more stable than any rare earth oxide. A person familiar with this field would have been able to determine the relative free energy of RE oxide and CaO, but
Prior to the present invention, it was not known that RE/oxides could be reduced with Ca metal in a non-electrolytic liquid phase process. If desired, oxides of transition metals such as Fe and Co can be reduced together with RE oxides in the process of the present invention. In summary, a new efficient and low cost method for reducing rare earth oxides to rare earth metals has been developed. The method consists of creating a suitable molten CaCl 2 -based bath and stirring therein the rare earth oxide with an amount of calcium metal sufficient to reduce it. When stirring is stopped, the components separate into distinct layers that can be broken off after cooling and solidification. Alternatively, the reduced liquid rare earth metal can be withdrawn from the bottom of the reaction vessel. After the RE metal is extracted, the melt bath can be refilled and moved on to the next batch, making the process essentially continuous.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明によつてRE・酸化物をRE金属に
還元する方法を実施するのに適した装置を側面か
ら見た断面図である。図2は酸化ネオジム
(Nd2O3)をカルシウムで還元してネオジム共融合
金を造る際のフロー・チヤートである。図3は
Nd2O3からのネオジム(Nd)金属の収率を、本
発明で用いた融剤浴中のCaCl2の百分率に対して
プロツトしたものである。
FIG. 1 is a sectional side view of an apparatus suitable for carrying out the method of reducing RE oxides to RE metal according to the invention. Figure 2 is a flow chart for producing a neodymium eutectic alloy by reducing neodymium oxide (Nd 2 O 3 ) with calcium. Figure 3 is
The yield of neodymium (Nd) metal from Nd 2 O 3 is plotted against the percentage of CaCl 2 in the flux bath used in the present invention.

Claims (1)

【特許請求の範囲】 1 塩化カルシウムが過半量を占める溶融塩浴中
に、溶融塩浴よりも少ない容量の希土類酸化物を
分散せしめ、存在する希土類金属イオンにたいし
て化学量論的に過剰のカルシウム金属を溶融塩浴
中に加え、該溶融塩浴を攪拌し、反応式 REnOm+mCa→nRE+mCaO 〔式中REは原子価2、3または4をもつ1種
または複類の希土類原素を表わし、Oは酸素を表
わし、Caはカルシウムを表わし、CaOは酸化カ
ルシウムを表わし、nとmは希土類元素の原子価
のn倍が酸素の原子価のm倍に等しくなるような
整数を表わす。〕に従つて環元が行われることを
特徴とする希土類酸化物の基土類金属への金属熱
非電解還元法。 2 反応式 Nd2O3+3Ca→2Nd+3CaO によつて溶融塩浴中で酸化ネオジムがネオジム金
属に還元される特許請求範囲第1項た記載の金属
熱非電解還元法。 3 方法が、塩化カルシウムより成る溶融塩浴を
造ること;上記の溶融塩浴に予め決められた量の
希土類酸化物を添加すること;存在する希土類酸
化物の量を基準にして化学量論理的に過剰のカル
シウム金属を上記の溶融塩浴に添加すること;上
記の溶融塩浴を溶融状態に保つて攪拌し、カルシ
ウム金属が希土類酸化物を希土類金属に還元する
こと、より成ることを特徴とする特許請求範囲第
1項に記載の金属熱非電解還元法。 4 酸化ネオジムがネオジム金属に還元される特
許請求範囲第3項に記載の還元法。 5 方法が、塩化カルシウムの重量%が少くとも
70%より成る溶融塩浴を造ること;上記の溶融塩
浴に予め決められた量の希土類酸化物を添加する
こと;存在する希土類酸化物の量を基準にして化
学量論的に過剰のカルシウム金属を上記の溶融塩
浴に添加すること;上記の溶融塩浴を溶融状態に
保ちカルシウム金属が希土類酸化物を希土類金属
に還元する迄攪拌すること;次いで攪拌を中止し
溶融塩浴中に希土類金属を含んだ明確な層を生成
させること、より成る特許請求範囲第1項に記載
の金属熱非電解還元法。 6 希土類酸化物が、酸化ランタン、酸化セリウ
ム、酸化プラセオジム及び酸化ネオジムより成る
群から選ばれる1種又はそれ以上の希土類酸化物
である特許請求範囲第5項に記載の金属熱非電解
還元法。 7 方法が、塩化カルシウムの重量%が少くとも
70%で残りが塩化ナトリウムである溶融塩浴を造
る段階;溶融塩浴の容積の50%以下の容積の酸化
ネオジムNd2O3を溶融塩浴に添加する段階;その
中の酸化ネオジムの量をベースにして化学量論的
に過剰のカルシウム金属を溶融塩浴に添加する段
階;溶融塩浴をその溶融温度より高い温度に保つ
段階;上記の溶融塩浴を攪拌し構成成分を互いに
混合し、大部分の酸化ネオジムがネオジム金属に
還元される迄その攪拌を継続する段階;その後構
成成分を溶融状態に保つたまま攪拌を中止し、溶
融塩浴中に基本的に酸化ネオジムを含まない、還
元されたネオジム金属を含む明確な層を生成させ
る段階、より成る特許請求範囲第1項に記載の金
属熱非電解還元法。 8 方法が、塩化カルシウムが少くとも70重量%
で、残りが塩化ナトリウムである溶融塩浴を造る
段階;溶融塩浴の容積の50%以下の容積の希土類
酸化物を溶融塩浴に添加する段階;存在する希土
類酸化物を還元するに十分な量のカルシウム金属
を溶融塩浴に添加する段階;溶融塩浴をその溶融
温度以上の温度に保持する段階;溶融塩浴を攪拌
して構成成分を相互に混ぜ合わせ、大部分の希土
類酸化物が希土類金属に還元される迄上記の攪拌
を継続する段階;次いで構成成分を溶融状態に保
つたまま攪拌を中止し、溶融塩浴中に還元された
希土類金属を含んだ明確な層を生成させる段階、
より成る特許請求範囲第1項に記載の金属熱非電
解還元法。 9 方法が、塩化カルシウムの重量%が少くとも
70で塩化ナトリウムの重量%が0〜30である溶融
塩浴を造ること;上記の溶融塩浴に予め決められ
た量の希土類酸化物を添加すること;溶融塩浴に
希土類酸化物の量を基準にして化学量論的に過剰
のカルシウム金属を添加すること;上記の溶融塩
浴を溶融状態に保ち攪拌してカルシウム金属が希
土類酸化物を希土類金属に還元する様にするこ
と;希土類金属の溶融温度より遥かに低い溶融温
度を持つた希土/非希土金属合金を生成するに十
分な量の非希土類金属を上記の溶融塩浴に添加す
ること;次いで攪拌を中止し上記の溶融塩浴中に
希土/非希土金属合金を明確な層の形で集める様
にすること、より成る特許請求範囲第1項に記載
の金属熱非電解還元法。 10 希土類酸化物が、酸化ランタン、酸化セリ
ウム、酸化プラセオジム及び酸化ネオジムより成
る群から選ばれた1種又はそれ以上の希土類酸化
物であることを特徴とする特許請求範囲第9項に
記載の金属熱非電解還元法。 11 希土類酸化物が酸化ネオジムである特許請
求範囲第9項に記載の金属熱非電解還元法。 12 非希土類金属が鉄である特許請求範囲第9
項ないし第11項のいずれか一項に記載の金属熱
非電解還元法。 13 非希土類金属が亜鉛である特許請求範囲第
9項ないし第11項の中のいずれか一項に記載の
金属熱非電解還元法。
[Claims] 1. In a molten salt bath in which calcium chloride accounts for the majority, rare earth oxides are dispersed in a volume smaller than that of the molten salt bath, and a stoichiometric excess of calcium metal with respect to the rare earth metal ions present is dispersed. is added to the molten salt bath, the molten salt bath is stirred, and the reaction formula is REnOm+mCa→nRE+mCaO [wherein RE represents one or more rare earth elements with a valence of 2, 3, or 4, and O is oxygen , Ca represents calcium, CaO represents calcium oxide, and n and m represent integers such that n times the valence of the rare earth element is equal to m times the valence of oxygen. ] A metal thermal non-electrolytic reduction method of a rare earth oxide to a base metal, characterized in that the ring element is reduced according to the method. 2. The metal thermal non-electrolytic reduction method according to claim 1, wherein neodymium oxide is reduced to neodymium metal in a molten salt bath according to the reaction formula Nd 2 O 3 +3Ca→2Nd+3CaO. 3. The method comprises: creating a molten salt bath consisting of calcium chloride; adding a predetermined amount of rare earth oxide to said molten salt bath; adding an excess of calcium metal to the molten salt bath; maintaining the molten salt bath in a molten state and stirring, so that the calcium metal reduces the rare earth oxide to the rare earth metal. A metal thermal non-electrolytic reduction method according to claim 1. 4. The reduction method according to claim 3, wherein neodymium oxide is reduced to neodymium metal. 5. The method is such that the weight percent of calcium chloride is at least
creating a molten salt bath consisting of 70%; adding a predetermined amount of rare earth oxide to said molten salt bath; a stoichiometric excess of calcium based on the amount of rare earth oxide present; Adding the metal to the molten salt bath; keeping the molten salt bath in a molten state and stirring until the calcium metal reduces the rare earth oxide to the rare earth metal; then discontinuing stirring and adding the rare earth to the molten salt bath; A method according to claim 1, comprising producing a distinct layer containing metal. 6. The metal thermal non-electrolytic reduction method according to claim 5, wherein the rare earth oxide is one or more rare earth oxides selected from the group consisting of lanthanum oxide, cerium oxide, praseodymium oxide, and neodymium oxide. 7. The method is such that the weight percent of calcium chloride is at least
Creating a molten salt bath with 70% and the balance being sodium chloride; Adding to the molten salt bath a volume of neodymium oxide Nd 2 O 3 not more than 50% of the volume of the molten salt bath; the amount of neodymium oxide therein; adding a stoichiometric excess of calcium metal to the molten salt bath; maintaining the molten salt bath above its melting temperature; stirring the molten salt bath to mix the components together; , continuing the stirring until most of the neodymium oxide has been reduced to neodymium metal; then stopping the stirring while keeping the components in a molten state, so that the molten salt bath essentially does not contain neodymium oxide; A method according to claim 1, comprising the step of producing a distinct layer comprising reduced neodymium metal. 8. The method contains at least 70% by weight of calcium chloride.
creating a molten salt bath with the balance being sodium chloride; adding a volume of rare earth oxide to the molten salt bath equal to or less than 50% of the volume of the molten salt bath; adding enough rare earth oxide to reduce the rare earth oxide present; adding an amount of calcium metal to the molten salt bath; maintaining the molten salt bath at a temperature above its melting temperature; stirring the molten salt bath to mix the components together so that most of the rare earth oxide is Continuing the above stirring until the rare earth metal is reduced; then stopping the stirring while keeping the components in a molten state to form a distinct layer containing the reduced rare earth metal in the molten salt bath. ,
A metal thermal non-electrolytic reduction method according to claim 1, which comprises: 9. The method is such that the weight percent of calcium chloride is at least
70 and the weight percent of sodium chloride is 0 to 30; adding a predetermined amount of rare earth oxide to the molten salt bath; adding an amount of rare earth oxide to the molten salt bath; Adding a stoichiometric excess of calcium metal based on the standard; maintaining the molten salt bath in a molten state and stirring so that the calcium metal reduces the rare earth oxide to the rare earth metal; adding a sufficient amount of non-rare earth metal to the molten salt bath to form a rare earth/non-rare earth metal alloy having a melting temperature well below the melting temperature; then discontinuing stirring and adding the molten salt to the molten salt; A method according to claim 1, comprising allowing the rare earth/non-rare earth metal alloy to collect in a well-defined layer in the bath. 10. The metal according to claim 9, wherein the rare earth oxide is one or more rare earth oxides selected from the group consisting of lanthanum oxide, cerium oxide, praseodymium oxide, and neodymium oxide. Thermal non-electrolytic reduction method. 11. The metal thermal non-electrolytic reduction method according to claim 9, wherein the rare earth oxide is neodymium oxide. 12 Claim No. 9 in which the non-rare earth metal is iron
The metal thermal non-electrolytic reduction method according to any one of Items 1 to 11. 13. The metal thermal non-electrolytic reduction method according to any one of claims 9 to 11, wherein the non-rare earth metal is zinc.
JP14645085A 1984-07-03 1985-07-03 Metal thermal reduction for rare earth element oxide with calcium metal Granted JPS6130639A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62773684A 1984-07-03 1984-07-03
US627736 1984-07-03

Publications (2)

Publication Number Publication Date
JPS6130639A JPS6130639A (en) 1986-02-12
JPS6137341B2 true JPS6137341B2 (en) 1986-08-23

Family

ID=24515917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14645085A Granted JPS6130639A (en) 1984-07-03 1985-07-03 Metal thermal reduction for rare earth element oxide with calcium metal

Country Status (10)

Country Link
EP (1) EP0170372B1 (en)
JP (1) JPS6130639A (en)
KR (1) KR910001581B1 (en)
AT (1) ATE36560T1 (en)
AU (1) AU575965B2 (en)
BR (1) BR8503140A (en)
DE (1) DE3564451D1 (en)
ES (1) ES8702508A1 (en)
MX (1) MX173880B (en)
ZA (1) ZA854474B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578242A (en) * 1984-07-03 1986-03-25 General Motors Corporation Metallothermic reduction of rare earth oxides
US4680055A (en) * 1986-03-18 1987-07-14 General Motors Corporation Metallothermic reduction of rare earth chlorides
US4837109A (en) * 1986-07-21 1989-06-06 Hitachi Metals, Ltd. Method of producing neodymium-iron-boron permanent magnet
AT389899B (en) * 1986-08-19 1990-02-12 Treibacher Chemische Werke Ag METHOD FOR THE PRODUCTION OF SE METALS AND ALLOYS CONTAINING SE
JPH01138119A (en) * 1987-11-24 1989-05-31 Mitsubishi Metal Corp Recovery of samarium and europium from electrolytic slag of rare-earth element
DE3817553A1 (en) * 1988-05-24 1989-11-30 Leybold Ag METHOD FOR PRODUCING TITANIUM AND ZIRCONIUM
US4917724A (en) * 1988-10-11 1990-04-17 General Motors Corporation Method of decalcifying rare earth metals formed by the reduction-diffusion process
KR100373109B1 (en) * 1999-09-30 2003-02-25 해 남 현 Extraction method of soil exchangeable K with salt solution and analytical method of the K in the solution
JP2004052003A (en) * 2002-07-16 2004-02-19 Cabot Supermetal Kk Method and apparatus for producing niobium powder or tantalum powder
RU2405045C2 (en) * 2008-05-12 2010-11-27 Анатолий Евгеньевич Волков Method of autoclave production of chemically active materials and device to this end
AU2011205326B2 (en) * 2010-01-12 2015-08-20 Sylvan Source, Inc. Heat transfer interface
CN103436718B (en) * 2013-08-16 2015-06-17 宁夏东方钽业股份有限公司 High-purity lanthanum metal preparation method
KR20210012013A (en) 2018-05-30 2021-02-02 헬라 노벨 메탈스 엘엘씨 Method for producing fine metal powder from metal compound
KR102153737B1 (en) * 2019-12-12 2020-09-09 한국지질자원연구원 Method of recovery rare earth elements from a ferrite-rare earth-based permanent magnet using selective chlorination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177346A (en) * 1983-03-25 1984-10-08 Sumitomo Special Metals Co Ltd Alloy of rare earth metal for magnet material
JPS6077943A (en) * 1983-10-03 1985-05-02 Sumitomo Special Metals Co Ltd Manufacture of raw material alloy for rare earth magnet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190923215A (en) * 1909-10-11 1910-09-29 Hans Kuzel Process for the Production of Zirconium and other Rare Metals.
US2950962A (en) * 1957-03-28 1960-08-30 Carlson Oscar Norman Reduction of fluoride to metal
GB1040468A (en) * 1964-10-26 1966-08-24 Dow Chemical Co Preparation of rare earth metal, yttrium, or scandium
GB1579978A (en) * 1977-07-05 1980-11-26 Johnson Matthey Co Ltd Production of yttrium
SU1027232A1 (en) * 1982-01-15 1983-07-07 Научно-исследовательский институт металлургии Method for producing master alloy
EP0108474B2 (en) * 1982-09-03 1995-06-21 General Motors Corporation RE-TM-B alloys, method for their production and permanent magnets containing such alloys
US4578242A (en) * 1984-07-03 1986-03-25 General Motors Corporation Metallothermic reduction of rare earth oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177346A (en) * 1983-03-25 1984-10-08 Sumitomo Special Metals Co Ltd Alloy of rare earth metal for magnet material
JPS6077943A (en) * 1983-10-03 1985-05-02 Sumitomo Special Metals Co Ltd Manufacture of raw material alloy for rare earth magnet

Also Published As

Publication number Publication date
BR8503140A (en) 1986-03-18
MX173880B (en) 1994-04-07
ES544799A0 (en) 1987-01-01
KR860001203A (en) 1986-02-24
EP0170372B1 (en) 1988-08-17
JPS6130639A (en) 1986-02-12
ES8702508A1 (en) 1987-01-01
KR910001581B1 (en) 1991-03-16
EP0170372A1 (en) 1986-02-05
AU575965B2 (en) 1988-08-11
DE3564451D1 (en) 1988-09-22
ZA854474B (en) 1986-03-26
ATE36560T1 (en) 1988-09-15
AU4448885A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
US4578242A (en) Metallothermic reduction of rare earth oxides
EP0238185B1 (en) Metallothermic reduction of rare earth chlorides
US6309441B1 (en) Reduction-melting process to form rare earth-transition metal alloys and the alloys
JPS6137341B2 (en)
US2091087A (en) Process for the production of pure beryllium
US4216010A (en) Aluminum purification system
US4767455A (en) Process for the preparation of pure alloys based on rare earths and transition metals by metallothermy
Sharma et al. Metallothermic Reduction of Nd2 O 3 with Ca in CaCl2‐NaCl Melts
JP3215825B2 (en) Rare earth metal generation method
CN85100813A (en) The metallothermic reduction of rare earth oxide
US4308245A (en) Method of purifying metallurgical-grade silicon
KR920007932B1 (en) Making process for rare metals-fe alloy
US4297132A (en) Electroslag remelting method and flux composition
US3951647A (en) Reduction method for producing manganese metal
JPS61157646A (en) Manufacture of rare earth metal alloy
RU2218436C1 (en) Method of production of aluminum-scandium master alloy
RU2061078C1 (en) Process of production of alloys based on rare-earth metals, scandium and yttrium
Sharma et al. Metallothermic Reduction of Nd2O3 with Ca in CaCl2-NaCl Melts
US20240191321A1 (en) Semi-continuous rare earth metal production
RU1791462C (en) Charge for extra-furnace production of magnetic alloys with rare-earth metals
Gasik et al. Alkaline Earth Metal Ferroalloys
JPH04214824A (en) Manufacture of low oxygen-containing rare earth metal
JP2003013153A (en) Method for producing vanadium material
JPS6184340A (en) Manufacture of neodymium alloy
Lewis et al. Report of a literature survey of high-temperature metallurigical refining processes