JPS6184340A - Manufacture of neodymium alloy - Google Patents

Manufacture of neodymium alloy

Info

Publication number
JPS6184340A
JPS6184340A JP20618284A JP20618284A JPS6184340A JP S6184340 A JPS6184340 A JP S6184340A JP 20618284 A JP20618284 A JP 20618284A JP 20618284 A JP20618284 A JP 20618284A JP S6184340 A JPS6184340 A JP S6184340A
Authority
JP
Japan
Prior art keywords
alloy
iron
neodymium
ndf3
commercially available
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20618284A
Other languages
Japanese (ja)
Inventor
Mitsunobu Tanaka
光信 田中
Tsuneo Fujino
藤野 恒雄
Hiroshi Saito
弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20618284A priority Critical patent/JPS6184340A/en
Publication of JPS6184340A publication Critical patent/JPS6184340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture an Nd alloy suitable for use as a mother alloy for manufacturing a magnet material at a low cost by adding CaCl2 to NdF3, Ca and Fe, putting them in an iron container, and melting them by heating under specified conditions to reduce the NdF3. CONSTITUTION:CaCl2 as a flux is added to NdF3, Ca and Fe blended in a prescribed ratio, and they are put in an iron container and melted by heating to 750-1,000 deg.C in a nonoxidizing atmosphere to reduce the NdF3. Thus, an Nd-Fe alloy is manufactured. Commercially available powdery NdF3 of about -150 mesh size, commercially available powdery pure iron of <=about -32 mesh size and commercially available metallic Ca of about 1-6mm size are used as said starting materials. CaCl2 is added in about (1-2):1 molar ratio of CaCl2:CaF2. CaF2 is produced by reduction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ネオジウム合金の製造に係り、より詳細には
、主として磁石材料製造用の母合金として好適なN d
 −F e 或いはN (1−F a −B等のネオジ
ウム合金を安価に製造し得る方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to the production of neodymium alloys, and more specifically, the present invention relates to the production of neodymium alloys, and more specifically, N d which is suitable as a master alloy mainly for producing magnet materials.
The present invention relates to a method for manufacturing neodymium alloys such as -F e or N (1-F a -B) at low cost.

(従来技術) ネオジウム(Nd)は希土類金属(R)の一つであり、
セリウム(Ce)ランタン(La)に次ぐ産出基を持ち
、化合物としてはセラミックス顔料、セラミックスコン
デンサー、レーザ素子などの添加成分として使われてい
るが、金属としてはまだ確定した用途がなく、用途開発
が活溌に行われ、最近では磁石材料としての利用が検討
されている。
(Prior art) Neodymium (Nd) is one of the rare earth metals (R),
It has the second largest production group after cerium (Ce) and lanthanum (La), and as a compound it is used as an additive component in ceramic pigments, ceramic capacitors, laser elements, etc. However, as a metal, there is no definite use yet, and application development is still in progress. It is actively being used, and recently its use as a magnetic material is being considered.

特に磁石材料としての用途は、画期的性能を有するSm
−Co系希土類永久磁石の出現以来、性能向上と他の希
土類元素への代替を目的として活溌に研究が行われ、そ
の比較的豊富な資源皿に着目され、ますます重要性を増
してきている。
In particular, Sm, which has revolutionary performance, is used as a magnetic material.
-Since the appearance of Co-based rare earth permanent magnets, active research has been carried out with the aim of improving their performance and replacing them with other rare earth elements, and their relatively abundant resources have attracted attention, and their importance has been increasing. .

すなわち、現在の代表的な永久磁石材料としては、アル
ニコ、ハードフェライ1〜及びSm−Coを代表とする
希土類コバルト磁石があるが、Sm−C0磁石(希土類
コバルト磁石)はコバルトの高価格或いは〃;目2しJ
(情の小安定性及びSmの供紹能力の制約に伴い、強い
需要にもかかわらず、高価で供給letが限定され、]
・1来の伸びか危惧されている。
That is, current typical permanent magnet materials include alnico, hard ferrite 1~, and rare earth cobalt magnets such as Sm-Co. ;2nd J
(Despite the strong demand, the supply is limited due to the high price and the limited supply capacity due to the small stability of the situation and the limited supply capacity of Sm.)
・There are concerns that this will be the fastest growth since then.

これに対し、高価なコハル1〜を含まず、かつ、昂」二
類金属として鉱(1中に多址に含まれている軽イb上類
を主成分とする希土類磁石の研究開発か盛んに行われる
ようになり、例えば、永久磁石としてFc 11  R
系永久磁石が既に報告されているように(特開II(j
 5≦ノー46008.59−89401参照)、軽希
土ガIを主成分とする希土類磁石が広い分野で使用され
る趨勢にあり、その多M:使月1のために一層安価な磁
石材料の提供が望まれている。
On the other hand, there is active research and development into rare earth magnets that do not contain the expensive Koharu 1~, and whose main components are the ``B'' class metals, which are present in large amounts in ``Koharu'' class 2 metals. For example, as a permanent magnet, Fc 11 R
As has already been reported (Japanese Patent Application Laid-open No. II (j
5 ≤ No. 46008.59-89401), rare earth magnets mainly composed of light rare earth magnets are being used in a wide range of fields. It is hoped that it will be provided.

例えば、このような希土類磁石の一例として、N d 
−F(3系乃至Nd−Fe−B系磁石も開発されている
が、その製造a;としては、電解鉄、フェロボロン合金
又は純ボロン及び希土類金属を高周波炉で溶解して製造
する方法がある。しかし、この方法では、純物質で組成
を自由に選らべるものの、純物質を使用するために高価
とならざるを得ない欠点がある。
For example, as an example of such a rare earth magnet, N d
-F (3 series or Nd-Fe-B series magnets have also been developed, but their production a) involves melting electrolytic iron, ferroboron alloys, pure boron, and rare earth metals in a high-frequency furnace. However, although this method allows the composition to be freely selected using pure substances, it has the disadvantage that it is expensive due to the use of pure substances.

一方、純物質の金属ネオジウムの製錬としては溶融塩電
解法と熱還元法とが考えられるが、i訂者は大址生産向
きであるが、活性な高温溶融物を長時間保持するため、
電解槽構成材料に問題があるので、後者がより現状に合
っている。その熱還元d;は一般的にはハロゲン塩をカ
ルシラ11で還元するが、その際フラックスとして塩化
カルシラ11を混合して還元レトル1−に入れ、Δrガ
ス1メ囲気ドにて行う。このときの還元し1−ルトはタ
ンタルやチタン製でないとネオジウムにより短時間に9
蝕されてしまうので、装置そのものが非常に高価になる
欠点を有している。
On the other hand, the molten salt electrolysis method and the thermal reduction method are considered for smelting the pure metal neodymium, but the i-editor is suitable for large-scale production, but because it retains the active high-temperature molten material for a long time,
The latter is more suitable for the current situation since there are problems with the electrolyzer construction materials. Thermal reduction d; generally involves reducing the halogen salt with Calcilla 11. At this time, Calcilla chloride 11 is mixed as a flux, placed in a reduction retort 1-, and carried out under 1 atmosphere of Δr gas. At this time, if the reduced metal is not made of tantalum or titanium, the neodymium will reduce it to 90% in a short time.
Since it is eroded, the device itself has the disadvantage of being very expensive.

また、フェロボロンはチルミノ1−v、で製造されるた
め、還元剤が抜けきれないで不要成分の混入を招くし、
ボロンIli体の場合は、溶融塩電解によって得られた
ものか、或いは金属す1〜リウ11若しくは金属マグネ
シウムで還元したものを用いるしかなく、極めて微粉末
で溶融作業に際して溶落に時間を要したり飛散する等の
問題を起こし易い−1−1高価である等の難点が有る。
In addition, since ferroboron is manufactured using tilmino 1-v, the reducing agent cannot escape, leading to the contamination of unnecessary components.
In the case of boron Ili, the only option is to use one obtained by molten salt electrolysis or one reduced with metals 1 to 11 or metal magnesium, and it is an extremely fine powder that takes time to burn off during the melting process. There are disadvantages such as high price and high price.

(発明の目的) 本発明は、これらの状況に鑑み、N d −F e系乃
至N d −F e −B系のネオジウム合金の製造に
つき、−・層安価に実用化し得る方法を提供することを
目的とし、これにより、特に希土類磁石材料用の高純度
のネオノウ11母合金を安価に提供せんとするものであ
る。
(Objective of the Invention) In view of these circumstances, the present invention provides a method that can be put to practical use at low cost for producing Nd-Fe-based or Nd-Fe-B-based neodymium alloys. The purpose is to provide a high-purity Neonnow 11 master alloy especially for rare earth magnet materials at a low cost.

(発明の構成) か〜ろ目的達成のため、本発明者らは、従来の製造法の
欠点が純物質の混合使用のための高価な純物質製造法に
依拠している点に着目し、このような製造θ;とは根本
的に異なる方法を見い出すべく鋭意研究した結果、純物
質の製造という1−程を経ることなくネオン911合金
を装造する方法として、反応容器を安価な鉄製とするこ
とを↓(本とし、このドで効果的に合金化し得る原材料
並びに反応条件をすい出すに至り、ここに本発明をなし
゛たものである。。
(Structure of the Invention) In order to achieve the objective, the present inventors focused on the drawback of the conventional manufacturing method, which is that it relies on an expensive pure substance manufacturing method for mixed use of pure substances, As a result of intensive research to find a method that is fundamentally different from this manufacturing method, we found that the reaction vessel was made of inexpensive iron as a method of packaging neon 911 alloy without going through the first step of manufacturing a pure substance. This is what led to the discovery of raw materials and reaction conditions that could be effectively alloyed, and the present invention was hereby made.

すなわち、本発明の特徴とするところは、N d−F 
e合金の製造にあっては、弗化ネオジウム(NdF3)
 、カルシウム(Ca )及び鉄(Fe)にフラックス
として塩化カルシウム(Ca C]□)を加えてなる原
料を、鉄製容器に入れ、非酸化性雰囲気下で750〜1
000℃に加熱溶融し、ネオジウム(Nd)を還元して
N d −F e合金を得るようにしたことを特徴とし
、またN d −F e−B合金の製造にあっては、」
二記方法において原料に更に硼酸(B203)を添加し
、同様の条件の下でネオジウム(Nd)及びホウ素(B
)を同時にカルシウム(Ca)で還元してN d −F
 e −B合金を得ることを特徴とするものである。
That is, the feature of the present invention is that N d-F
In the production of e-alloy, neodymium fluoride (NdF3)
A raw material prepared by adding calcium chloride (Ca C]□) to calcium (Ca) and iron (Fe) as a flux was placed in an iron container and heated to 750-1 in a non-oxidizing atmosphere.
000° C. to reduce neodymium (Nd) to obtain a Nd-Fe alloy, and in the production of a Nd-Fe-B alloy,
In the second method, boric acid (B203) was further added to the raw material, and neodymium (Nd) and boron (B203) were added under the same conditions.
) is simultaneously reduced with calcium (Ca) to obtain N d -F
This method is characterized by obtaining an e-B alloy.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

■まず、原埴Fの調製は次のようにする。■First, the original clay F is prepared as follows.

ネオジウム源としては、酸化物(Nd203)、弗化物
(Nd F3)及び塩化物(Ndcl、)vFが考えら
れるが、Nd2O3とF2との反応生成物である市販の
NdF、を用い、−150メツシュ程度の粒状品が望ま
しい。他のネオジウム源としては、第]図に示す生成自
由エネルギ一温度図からみて、NdC]、でもMf能で
はあるが、NdC]jは無水物とか、オギシク[1ライ
1−を含んでいないものを1!)るのは難しく、反ノ、
ε:の而からも好ましくない。またNd2O3はそれ白
身及び生成するC a Oがスラグの融点を−L )/
させ、メタルからのスラブの分離を困難にするので、多
[I[の存在は好ましくない。
Possible neodymium sources include oxide (Nd203), fluoride (NdF3), and chloride (Ndcl, )vF, but commercially available NdF, which is a reaction product of Nd2O3 and F2, was used, and -150 mesh A granular product of about 100 ml is preferable. Other sources of neodymium, from the free energy of formation vs. temperature diagram shown in Figure 1, are NdC, which has Mf ability, but NdC is an anhydride, or one that does not contain 1- 1! ) is difficult, it is difficult to
It is also unfavorable because of ε:. In addition, Nd2O3 is white and the CaO produced lowers the melting point of the slag by -L)/
The presence of poly[I[ is undesirable as it makes it difficult to separate the slab from the metal.

Feは、Nd−Fe系磁石合金の構成成分であるが、本
発明に才;いては生成Ndと合金化して融点を1;げ、
プロセスの71IX度を下げることおよび鉄ルツボの9
蝕をへらすのに有効である。また、鉄分はスラグ成分が
溶解して融体となったときになるへく長時間懸濁しNd
と可及的法やかに合金化するものが望ましく、例えば−
32メツシユ(0,,15mm)以下の粉状の純鉄市販
品を使用することができる1、大きな塊状のものを用い
た場合には、還元過程で初期に沈んでしまい、還元反応
で生成したNdやBを捕捉して低融点合金(N(]−F
 o又はN d −Fa −I3 )をつくる機会を誠
することになるので、望ましくない。配合星はNd−F
e又はN d −F e −B共品合金組成近くの適当
旦(第2図に示すNd−Fe合金状態図の場合、Ndが
約70〜90 w t%)となるように配合する。
Fe is a component of the Nd-Fe magnet alloy, and in the present invention, it is alloyed with the generated Nd to lower the melting point to 1.
Lowering 71IX degree of process and 9 of iron crucible
It is effective in reducing eclipses. In addition, iron is suspended for a long time when the slag components are dissolved and becomes a molten material, and Nd
It is preferable to use a material that can be alloyed as quickly as possible with -
You can use a commercially available powdered pure iron product with a size of 32 meshes (0, 15mm) or less. 1. If you use a large lump, it will sink in the early stage of the reduction process, and the iron will be formed during the reduction reaction. Capturing Nd and B to create a low melting point alloy (N(]-F
This is undesirable because it would take away the opportunity to create 0 or N d -Fa -I3). The combination star is Nd-F
The composition of the Nd-Fe alloy is approximately 70 to 90 wt % in the case of the Nd-Fe alloy phase diagram shown in FIG. 2.

その際、Feは還元反応には直接関与しないが、合金化
に必要な量よりやや過剰に加えるようにする。なお、本
発明により得られるネオジウム合金を磁石材料として使
用する場合には、不純物は少ない鉱を用いるのが好まし
い。
At this time, although Fe does not directly participate in the reduction reaction, it is added in an amount slightly in excess of the amount required for alloying. In addition, when using the neodymium alloy obtained by the present invention as a magnet material, it is preferable to use an ore containing few impurities.

Nd−Fe−B合金を製造する場合には、ボロン源を原
料中に添加する必要があり、本発明においては硼酸(B
2O2)を用いる。B2O3としては、硼酸を強熱処理
して結晶水を除いた無水物がよく、市販のものを使用で
きる。添加址は、目標とする磁石合金中のNdとBの含
有量の比に近くなるように選択すれば良い。例えば、N
 d −F e −B母合金中にBとして0.5〜5%
含むものが製造可能である。なお、B2O3は約65%
が還元されてメタルへ移行し、一方、スラグ組成をCa
C1□−Ca F 、、−Ca O−B 203系とし
て融点を下げ、流動性を良くする効果もある。
When producing Nd-Fe-B alloy, it is necessary to add a boron source to the raw materials, and in the present invention, boric acid (B
2O2) is used. B2O3 is preferably an anhydride obtained by subjecting boric acid to strong heat treatment to remove crystallization water, and commercially available products can be used. The amount of addition may be selected so as to be close to the ratio of the Nd and B contents in the target magnet alloy. For example, N
0.5 to 5% as B in d -F e -B master alloy
can be manufactured. In addition, B2O3 is approximately 65%
is reduced and transferred to metal, while changing the slag composition to Ca.
It also has the effect of lowering the melting point and improving fluidity as a C1□-CaF,,-CaO-B203 system.

=7− Caは、N dや13を還元すると共に、スラグ成分(
C8F、、C”、 a O)を生成する成分であり、市
販の金属カルシラ15で1〜6 rn m程度に粉砕し
た小粒のものを使用することが好ましい。この配合lは
次式に従ってN (IやBを還元するのに必要な理論鼠
の約1.1〜1.5倍を配合すればよい。
=7- Ca reduces Nd and 13, and also reduces the slag component (
It is a component that produces C8F, , C'', a O), and it is preferable to use small particles crushed to about 1 to 6 rn m with commercially available metal Calcilla 15. This mixture l is calculated according to the following formula: Approximately 1.1 to 1.5 times the theoretical amount required to reduce I and B may be added.

2NdF3+3Ca→2Nd+3C’:、aF。2NdF3+3Ca→2Nd+3C':, aF.

B20J+3Ca→2 B + 3 CaOなお、N 
d−Fe −B合金を製造する場合には、上記後者の式
に従ってBが還元されるが、小粒で軽比重のY320ヨ
を原料中に均一に混合させて一1―記式による反応をI
’l ?i’Jに行オ)せるために、B2O3をカルシ
ウム及びフラックス(CaCl2)と共にルツボ底部に
置く。この際、三者をブリケラ1−にしてあればさらに
好ましい。次いでNdF2、CaC]、、、Ca、Fe
の混合原料をルツボに装入し還元する。
B20J+3Ca→2 B + 3 CaOIn addition, N
When producing a d-Fe-B alloy, B is reduced according to the latter formula above, but the reaction according to the formula
'l? B2O3 is placed at the bottom of the crucible together with calcium and flux (CaCl2) in order to perform i'J. In this case, it is more preferable if the three are Brichella 1-. Then NdF2, CaC], , Ca, Fe
The mixed raw materials are charged into a crucible and reduced.

NdやBの還元反応を促進し、メタル−スラグの分離を
容易にするために、フラックスとしてCaC]□を用い
る。CaCl2は、Ndの還元反応で生じたCaF2と
CaF2−CaC,l、系スラグを形成し、或いは原料
中にB2O3を添加した場合には、Bの還元反応で生じ
たC t)Oも加わってCa C1,2−Ca F 2
− Ca O−B 20 、系スラグを形成し、これに
より、第3図に示すCa Cl 2  CFI F z
  Ca O系三元状態図(CaC12高含有旦側)か
らもわかるように、Ndの還元反応で生成した高融点の
CaF2(融点約1380℃)に対して抵融点のCaC
l2(融点775℃)が増加してスラブの融点を下げる
効果が生ずる。スラグの融点としては、後述の反応温度
などとの関係から、約700°C位が適当である。その
ためには、CaCl2の配合景は還元反応で生成するC
aF2の量に対してモル比でCaC]□:CaF2=1
〜2:1を目安とすればよい。なお、B2O3添加の場
合には、Bの還元反応で生成するCaOが少量(約4〜
8%)であるので、スラグの融点は第3図に示す如く6
25℃強の温度となる。
CaC]□ is used as a flux to promote the reduction reaction of Nd and B and facilitate the separation of metal and slag. CaCl2 is formed by CaF2 produced by the reduction reaction of Nd and CaF2-CaC,l, forming a system slag, or when B2O3 is added to the raw material, Ct)O produced by the reduction reaction of B is also added. Ca C1,2-Ca F2
- Ca O-B 20 , forming a system slag, which results in the Ca Cl 2 CFI F z shown in FIG.
As can be seen from the CaO system ternary phase diagram (high CaC12 content side), CaC, which has a low melting point, is
l2 (melting point 775° C.) increases, resulting in the effect of lowering the melting point of the slab. The appropriate melting point of the slag is about 700°C, considering the reaction temperature described below. For this purpose, the composition of CaCl2 must be the C produced in the reduction reaction.
CaC in molar ratio to the amount of aF2]□:CaF2=1
~2:1 may be used as a guideline. In addition, in the case of B2O3 addition, a small amount of CaO (approximately 4 to 4
8%), the melting point of the slag is 6 as shown in Figure 3.
The temperature will be over 25°C.

■次に反応条件について説明する。(2) Next, the reaction conditions will be explained.

まず、本発明では反応容器として鉄製容器を用いること
を最も特徴としている。前述のとうり、タンタル、チタ
ン、タングステンなどからなる容器はNdに対して耐食
性を有するが、非常に高価であり、また、ト’Oを含む
合金に対しては耐食性が低ドし、寿命が短縮される。こ
れに対し、本発明では、はるかに廉価な鉄製ルツボの使
用を反応温度どの関連の)に可能にしたもので、1.0
00℃以下の温度範囲に41,1度制御すれば、鉄製で
もNdに51;ろ9蝕を、1−業的使用可能な程度まで
抑制できる。使用を11【ねて9蝕が犬きくな一〕た場
合でも、鉄製容器は安価であるので代替が容易であるし
、溶出する1・Cはネオジウム合金の一成分であるので
、問題はない。
First, the present invention is most characterized in that an iron container is used as the reaction container. As mentioned above, containers made of tantalum, titanium, tungsten, etc. have corrosion resistance against Nd, but they are very expensive, and they also have low corrosion resistance against alloys containing O and have a short lifespan. be shortened. In contrast, the present invention makes it possible to use a much cheaper iron crucible with a reaction temperature of 1.0
If the temperature is controlled to 41.1 degrees below 00 degrees Celsius, Nd corrosion can be suppressed to a level that can be used commercially even if the steel is made of iron. Even if it is used for 11 days, there will be no problem because iron containers are cheap and can be easily replaced, and the 1.C eluted is a component of the neodymium alloy. .

反応i!j度は約900℃前後が好ましい、、750℃
未満の411度では還元反応速度が遅くなりすぎて効率
が低ドし、逆にI 000℃を超える温度にするとCz
lのロスが多くなると共に、Ndによる鉄製容器の9蝕
が大きくなるので、反応温度は750〜1000℃にす
る。
Reaction i! j degree is preferably around 900℃, 750℃
If the temperature is less than 411 degrees Celsius, the reduction reaction rate will be too slow and the efficiency will be low; conversely, if the temperature exceeds I 000 degrees Cz
The reaction temperature is set at 750 to 1000° C. since the loss of 1 increases and the corrosion of the iron container by Nd increases.

処理雰囲気は非酸化性雰囲気とし、無駄な酸化とCaの
蒸発を防ぐ。人気下であるとCa lJ’酸化したり、
Caの窒化物ができてCaロスを招くからである。アル
ゴン等の不活性雰囲気や水素雰囲気であれば良い。また
Caの蒸発損失を防止するために加圧下で行う方が良い
が、1気圧でも充分行える。
The processing atmosphere is a non-oxidizing atmosphere to prevent unnecessary oxidation and evaporation of Ca. If it is popular, CalJ' oxidizes,
This is because Ca nitride is formed, leading to Ca loss. Any inert atmosphere such as argon or hydrogen atmosphere may be used. Further, in order to prevent evaporative loss of Ca, it is better to carry out the process under increased pressure, but 1 atm is also sufficient.

(実施例1) 本実施例はNd−Fe合金を製造する場合である。(Example 1) This example is a case of manufacturing a Nd-Fe alloy.

原料としては、150#で純度95%の市販のNdF3
を44.0重量部、粒度1−3mmで純度99.5%以
上の市販の金属カルシウム粒状品を15.2重量部(理
論量の1.20%配合)、純度99.99%の市販電解
鉄を100メツシユ以下に粉砕した鉄粉を7.4重基部
、並びにフラックスとして市販の塩化カルシラ11を強
熱して無水化したものを60.0重量部、準備した。
As a raw material, commercially available NdF3 of 150# and 95% purity is used.
44.0 parts by weight of commercially available metallic calcium granules with a particle size of 1-3 mm and a purity of 99.5% or higher (1.20% of the theoretical amount), a commercially available electrolytic powder with a purity of 99.99%. A 7.4-weight base of iron powder obtained by pulverizing iron to 100 meshes or less, and 60.0 parts by weight of commercially available Calcilla chloride 11 as a flux made by igniting and making it anhydrous were prepared.

まず、NdF3とCaCl2を所定は杯数して混合し、
400℃で1時間加熱して脱水処理した。次いで金属カ
ルシウムと鉄粉を所定斌秤址して」二記N d F 3
及びCaC1゜の混合物に加え、■型混合機で混合した
後、鉄製ルツボに装入した。そして、その鉄製ルツボを
抵抗式電気炉に装入し、炉内を一度真空にした後、Ar
ガスで置換しArガスを流速2〜3Q/mjnで流しつ
つ電気炉を昇温し、900〜920℃で1時間保持した
後、予め乾燥処理しておいた金型内に紡造した。冷却後
、メタルとスラグを分離した。
First, NdF3 and CaCl2 are mixed in a predetermined number of cups,
Dehydration treatment was performed by heating at 400° C. for 1 hour. Next, put the metallic calcium and iron powder on a predetermined scale.''2 NdF 3
The mixture was added to a mixture of 1° of CaC and 1° of CaCl, mixed in a type 3 mixer, and charged into an iron crucible. Then, the iron crucible was placed in a resistance electric furnace, and after the furnace was evacuated, the Ar
The temperature was raised in the electric furnace while purging with gas and Ar gas was flowing at a flow rate of 2 to 3 Q/mjn, and the temperature was maintained at 900 to 920° C. for 1 hour, followed by spinning in a mold that had been previously dried. After cooling, the metal and slag were separated.

このメタルを分析したところ、メタルは第1表に示す化
学成分を有するNd−Fe合金であって、不純物が少な
いことが判明した。また、第2表に示すように、Ndの
還元は高収率でなされ、Feの収率も高いことがわかっ
た。なお、鉄製ルツボはほとんど9蝕されていないこと
を確認した。
When this metal was analyzed, it was found that the metal was a Nd--Fe alloy having the chemical components shown in Table 1, and contained few impurities. Furthermore, as shown in Table 2, it was found that Nd was reduced in high yield and Fe yield was also high. It was confirmed that the iron crucible was hardly eroded.

第1表 メタル分析値 (wt%) −12= 第2表 収率 (実施例2) 本実施例はNd−Fe−B合金を製造する場合である。Table 1 Metal analysis values (wt%) −12= Table 2 Yield (Example 2) This example is a case of manufacturing a Nd-Fe-B alloy.

原料としては、−1508で純度95%の市販(7)N
dF3を41.2重量部、市販(1)−100:Aッシ
ュで純度99%の8203を3.7重量部、粒度1〜3
mmで純度99.5%以上の市販の金属カルシウム粒状
品を22.6重量部(理論量の120%配合)、純度9
9.99%の市販の電解鉄を100メツシユ以下に粉砕
した鉄粉を7.2重量部、並びにフラックスとして市販
の塩化カルシウムを強熱して無水化したものを711重
基、べl!備した。
As a raw material, commercially available (7)N with -1508 and 95% purity was used.
41.2 parts by weight of dF3, 3.7 parts by weight of commercially available (1)-100:Ash 8203 with a purity of 99%, particle size 1-3
22.6 parts by weight of commercially available metallic calcium granules with a purity of 99.5% or higher (120% of the theoretical amount), purity 9
7.2 parts by weight of iron powder made by pulverizing 9.99% commercially available electrolytic iron to 100 mesh or less, and 711 heavy groups, Bel! Prepared.

まず、NdF3とCaCl2を所定量秤量して混合し、
400℃で1時間加熱して脱水処理した。別に脱水処理
したC a Cl□とB2O2及び還元に必要なCd(
理論鼠の1.2倍)とをブリケットに成形し、鉄製ルツ
ボに入れ、次いで金属カルシラlいと鉄粉を所定鼠秤鼠
して上記NdF3及びCa CI bの/14合物に加
え、V型混合機で混合した後、先のフリケラ1−を入れ
た鉄製ルツボに装入した。そして、その鉄製ルツボを抵
抗式電気炉に装入し、炉内にArガスを流速2〜:1 
(1,/minで流しつつ電気炉をy1温し、900〜
920℃で1時間保持した後、予め乾燥処理しておいた
金型内に鋳造した。冷却後、メタルとスラグを分離した
First, a predetermined amount of NdF3 and CaCl2 are weighed and mixed.
Dehydration treatment was performed by heating at 400° C. for 1 hour. Separately dehydrated C a Cl□ and B2O2 and Cd (
(1.2 times the theoretical weight) was formed into a briquette, placed in an iron crucible, and then metal Calcilla and iron powder were weighed on a predetermined scale and added to the /14 mixture of NdF3 and Ca CI b, and then made into a V-shaped briquette. After mixing with a mixer, the mixture was charged into an iron crucible containing the Frikera 1-. Then, the iron crucible was placed in a resistance electric furnace, and Ar gas was introduced into the furnace at a flow rate of 2 to 1.
(Heat the electric furnace y1 while flowing at 1,/min, 900~
After being held at 920° C. for 1 hour, it was cast into a mold that had been previously dried. After cooling, the metal and slag were separated.

このメタルを分析したところ、メタルは第3表に示す化
学成分を有するNd−Fe−B合金であって、不純物が
少ないことが判明した。また、第4表に示すように、N
d及びBの還元は高収率でなされ、Feの収率も高いこ
とがわかった。なお、鉄製ルツボはほとんど9蝕されて
いないことを確認した。
When this metal was analyzed, it was found that the metal was a Nd-Fe-B alloy having the chemical components shown in Table 3, and that it contained few impurities. Also, as shown in Table 4, N
It was found that the reduction of d and B was carried out in high yields, and the yield of Fe was also high. It was confirmed that the iron crucible was hardly eroded.

第3表 メタル分析値 (、B:%) 第4表 収率 (発明の効果) 以上詳述したところから明らかなように、本発明は、反
応容器として鉄製容器を使用して還元反応を行うので設
備費がか\らず、しかも、還元が容易な反応条件の範囲
を選択し、入手容易な市販の原料を使用できるので、ネ
オジウム合金を安価に製造することができる。加えて、
得られたネオジウム合金は安価であると共に高純度であ
るので、例えば磁石合金用として用いる場合には、単に
鉄に本発明による合金を母合金として加えJしば、容易
にNd−Fe及びNd−Fe−B磁石合金を製造でき、
磁石用として好ましくない不純物を伴わないため高性能
の希土類磁石が得られ、その際、NdとBを同時に添加
できるのでNd−Fe−B系磁石用母合金として好適で
あり、なおまた本発明法がブラセオジウ11合金の製造
にも適用可能でもある等々、その実用りの効果は極めて
大きい。
Table 3: Metal analysis values (,B:%) Table 4: Yield (effects of the invention) As is clear from the above detailed description, the present invention performs a reduction reaction using an iron container as a reaction container. Therefore, equipment costs are low, and the range of reaction conditions that allow easy reduction can be selected, and easily available commercially available raw materials can be used, so neodymium alloys can be manufactured at low cost. In addition,
The obtained neodymium alloy is inexpensive and has high purity, so when it is used, for example, as a magnet alloy, the alloy according to the present invention is simply added to iron as a master alloy, and Nd-Fe and Nd- Fe-B magnet alloy can be manufactured,
A high-performance rare earth magnet can be obtained since it does not contain impurities that are undesirable for magnets, and since Nd and B can be added at the same time, it is suitable as a master alloy for Nd-Fe-B magnets. The practical effects of this method are extremely large, such as that it can also be applied to the production of BRACEOJIU 11 alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカルシウム還元に係る生成自由エネルギー湿度
図、 第2図はNd−Fc二元状態図、 第3図はCaCl2−CaF、(−CaO系三元状態図
であって、Ca に 12高含イJ基側の部分を示した
ものである。
Fig. 1 is a formation free energy hygrogram related to calcium reduction, Fig. 2 is a binary phase diagram of Nd-Fc, and Fig. 3 is a ternary phase diagram of CaCl2-CaF, (-CaO system. This figure shows the part on the J-group side containing A.

Claims (1)

【特許請求の範囲】 1 弗化ネオジウム、カルシウム及び鉄にフラックスと
して塩化カルシウムを加えてなる原料を、鉄製容器に入
れ、非酸化性雰囲気下で750〜1000℃に加熱溶融
し、ネオジウムを還元してネオジウム−鉄合金を得るよ
うにしたことを特徴とするネオジウム合金の製造方法。 2 弗化ネオジウム、カルシウム、鉄及び硼酸にフラッ
クスとして塩化カルシウムを加えてなる原料を、鉄製容
器に入れ、非酸化性雰囲気下で750〜1000℃に加
熱溶融し、ネオジウム及びホウ素を還元してネオジウム
−鉄−ホウ素合金を得るようにしたことを特徴とするネ
オジウム合金の製造方法。
[Claims] 1. A raw material made by adding calcium chloride as a flux to neodymium fluoride, calcium, and iron is placed in an iron container, heated and melted at 750 to 1000°C in a non-oxidizing atmosphere, and the neodymium is reduced. A method for producing a neodymium alloy, characterized in that a neodymium-iron alloy is obtained. 2. A raw material made by adding calcium chloride as a flux to neodymium fluoride, calcium, iron, and boric acid is placed in an iron container, heated and melted at 750 to 1000°C in a non-oxidizing atmosphere, and neodymium and boron are reduced to form neodymium. - A method for producing a neodymium alloy, characterized in that an iron-boron alloy is obtained.
JP20618284A 1984-10-03 1984-10-03 Manufacture of neodymium alloy Pending JPS6184340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20618284A JPS6184340A (en) 1984-10-03 1984-10-03 Manufacture of neodymium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20618284A JPS6184340A (en) 1984-10-03 1984-10-03 Manufacture of neodymium alloy

Publications (1)

Publication Number Publication Date
JPS6184340A true JPS6184340A (en) 1986-04-28

Family

ID=16519171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20618284A Pending JPS6184340A (en) 1984-10-03 1984-10-03 Manufacture of neodymium alloy

Country Status (1)

Country Link
JP (1) JPS6184340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767455A (en) * 1986-11-27 1988-08-30 Comurhex Societe Pour La Conversion De L'uranium En Metal Et Hexafluorure Process for the preparation of pure alloys based on rare earths and transition metals by metallothermy
JPH04350134A (en) * 1990-12-06 1992-12-04 General Motors Corp <Gm> Method for thermal reduction of rare earth element fluoride to metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767455A (en) * 1986-11-27 1988-08-30 Comurhex Societe Pour La Conversion De L'uranium En Metal Et Hexafluorure Process for the preparation of pure alloys based on rare earths and transition metals by metallothermy
JPH04350134A (en) * 1990-12-06 1992-12-04 General Motors Corp <Gm> Method for thermal reduction of rare earth element fluoride to metal

Similar Documents

Publication Publication Date Title
JP5327409B2 (en) Recovery method of rare earth elements
KR920006603B1 (en) Neodyme alloy and the method of making
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JPS59146920A (en) Manufacture of pure metal silicon
US4786319A (en) Proces for the production of rare earth metals and alloys
CN106011572B (en) A kind of high roll forming ability magnesium-rare earth alloy and preparation method thereof
JPS63153230A (en) Production of pure alloy based on rare earth metal and transition metal by heat-reduction of metal
CN110172614B (en) Method for preparing samarium cobalt alloy
US20120282130A1 (en) Method for producing permanent magnet materials and resulting materials
JPS6184340A (en) Manufacture of neodymium alloy
JPS61157646A (en) Manufacture of rare earth metal alloy
JPH0790411A (en) Production of high-purity rare earth metal
CN106636668B (en) A kind of waste and old electromagnetic wire copper refining agent and its preparation method and application
CN110117752B (en) Method for preparing samarium-iron alloy
JP6281261B2 (en) Method for reducing boron content of rare earth oxides containing boron
CN1332053C (en) Multiplex rare-earth ferroalloy (RERAFe#-[2]) powder and method for preparing same
JPS6077943A (en) Manufacture of raw material alloy for rare earth magnet
CN101210294B (en) Preparation method of A5B19 type alloy
JP2926280B2 (en) Rare earth-iron alloy production method
CN105734377A (en) SmFex alloy and preparation method thereof
JPS63227740A (en) Production of alloy for permanent magnet
US3679394A (en) Method for casting high ti content alloys
JPH0790410A (en) Production of low-oxygen rare earth metal
JPS6160809A (en) Production of rare earth alloy powder
CN105200294B (en) A kind of battery pole plates calcium Al-Pb alloy and preparation method thereof